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Digital reconstruction or tracing of 3D tree-like neuronal structures from optical
microscopy images is essential for understanding the functionality of neurons and
reveal the connectivity of neuronal networks. Despite the existence of numerous
tracing methods, reconstructing a neuron from highly noisy images remains challenging,
particularly for neurites with low and inhomogeneous intensities. Conducting deep
convolutional neural network (CNN)-based segmentation prior to neuron tracing
facilitates an approach to solving this problem via separation of weak neurites from a
noisy background. However, large manual annotations are needed in deep learning-
based methods, which is labor-intensive and limits the algorithm’s generalization for
different datasets. In this study, we present a weakly supervised learning method of a
deep CNN for neuron reconstruction without manual annotations. Specifically, we apply
a 3D residual CNN as the architecture for discriminative neuronal feature extraction.
We construct the initial pseudo-labels (without manual segmentation) of the neuronal
images on the basis of an existing automatic tracing method. A weakly supervised
learning framework is proposed via iterative training of the CNN model for improved
prediction and refining of the pseudo-labels to update training samples. The pseudo-
label was iteratively modified via mining and addition of weak neurites from the CNN
predicted probability map on the basis of their tubularity and continuity. The proposed
method was evaluated on several challenging images from the public BigNeuron and
Diadem datasets, to fMOST datasets. Owing to the adaption of 3D deep CNNs and
weakly supervised learning, the presented method demonstrates effective detection of
weak neurites from noisy images and achieves results similar to those of the CNN model
with manual annotations. The tracing performance was significantly improved by the
proposed method on both small and large datasets (>100 GB). Moreover, the proposed
method proved to be superior to several novel tracing methods on original images. The
results obtained on various large-scale datasets demonstrated the generalization and
high precision achieved by the proposed method for neuron reconstruction.
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INTRODUCTION

Neuronal morphology reflects the organization and function
of the brain. Digital reconstruction or tracing of 3D tree-like
neuronal structures from optical microscopy images is essential
for the morphological characterization and analysis of neurons,
synaptic integration, phenotype identification, neural circuit
building, and network mapping, all of which reveal the role of
neurons in brain activities (Donohue and Ascoli, 2011; Parekh
and Ascoli, 2013; Peng et al., 2015; Abdellah et al., 2018).
Currently, most neurons are reconstructed by hand, which is a
laborious, time-consuming, and non-reproducible task (Brown
et al., 2011; Wang et al., 2019). Therefore, automatic and accurate
neuron reconstruction or tracing methods are in high demand in
computational neuroscience.

With advances in optical imaging and molecular labeling
techniques, neuronal images were achieved at submicron
resolution and at the large scale of a mammalian brain (Li et al.,
2010; Jefferis and Livet, 2012; Silvestri et al., 2012; Gong et al.,
2013; Xiong et al., 2014; Economo et al., 2016). These advances
have fueled the generation of various optical images for different
applications and posed new challenges in neuron reconstruction.
One such challenge arises from significant variations in the image
quality and attributes across different datasets due to several
factors, including differences in the imaging system, labeling
methods, animal species, neuron types, and individual users
(Brown et al., 2011; Chen et al., 2015; Peng et al., 2015). For
example, the intensity range (0–255 vs. 0–4095), image size
(megabytes to gigabytes vs. terabytes), neuronal structures (single
short neurons vs. brain-size long-range projection neurons with
complex dendrites and axons) are entirely different for the
mouse neuronal images from the BigNeuron datasets (Peng et al.,
2015) and the fMOST (fluorescence micro-optical sectioning
tomography) datasets (Gong et al., 2013). Another challenge
lies in the fact that microscopy images generally have high
background noise, exhibiting weak and discontinued neurites
(Mukherjee et al., 2015; Li R. et al., 2017; Li S. et al., 2017). It is
difficult to discern neurites with low and uneven intensities from
the noisy background, particularly for large-scale neuron images
with large image blocks and low signal-to-noise ratio (SNR) (Li
et al., 2019b; Wang et al., 2019). The variability among different
datasets and low SNR of optical images all add to obstacles for the
generalization and accuracy of neuron reconstruction algorithms.

Numerous semiautomatic or automatic methods have been
proposed for the tasks of neuron reconstruction or tracing of
optical images (Rodriguez et al., 2009; Bas and Erdogmus, 2011;
Wang et al., 2011; Zhao et al., 2011; Basu et al., 2013; Mukherjee
et al., 2013, 2015; Xiao and Peng, 2013; Dercksen et al., 2014;
Chen et al., 2015; Quan et al., 2016; Li S. et al., 2017; Radojević and
Meijering, 2017; Skibbe et al., 2019). A diversity of computational
concepts and various global and local image characteristics have
been employed in these algorithms to achieve neuron tracing.
These include, but are not limited to, region growing (Rodriguez
et al., 2009), open curve snake (Wang et al., 2011), tubular
model (Zhao et al., 2011; Feng et al., 2015), all-path pruning
(Xiao and Peng, 2013), principal curves (Bas and Erdogmus,
2011; Quan et al., 2016), graph-theoretical approach (De et al.,

2016), tubularity flow field (Mukherjee et al., 2015), probability
hypothesis density filtering (Radojević and Meijering, 2017), and
self-learning-based support vector machine (SVM) (Chen et al.,
2015; Li S. et al., 2017). These algorithms generally exhibit good
performance on optical neuronal images with clear structures.
However, many methods are designed based on specific datasets
or for particular problems, and their performances on various
types of datasets may decline, whereby complicated parameter
adjustments would be required. Furthermore, most algorithms
perform poorly with regard to tracing neurites from images with
low SNR and tend to either over-reconstruct background noise
or under-trace weak neurites (Xiao and Peng, 2013; Chen et al.,
2015; Mukherjee et al., 2015).

Recently, deep convolutional neural networks (CNN) have
achieved impressive performances in both nature and medical
image segmentation (Long et al., 2015; Çiçek et al., 2016; Chen
et al., 2018; Falk et al., 2019), owing to their ability to capture
richer and more discriminative features than traditional methods.
The deep learning toolbox, DeepNeuron (Zhou et al., 2018),
was designed for neuron tracing with manually reconstructed
neurons as training samples. The algorithm was based on a
2D CNN, and its performance in the case of weak neurites
was poor (Zhou et al., 2018). A 3D CNN designed for neuron
segmentation and tracing exhibited improved performance on
images with high noise (Li R. et al., 2017; Li and Shen, 2019).
However, these algorithms demanded a large amount of labor-
intensive, time-consuming, and expensive manual annotations
for neuron segmentation (Magliaro et al., 2019). Users are
required to annotate an adequate number of new samples for
neuron datasets from different organizations to achieve robust
estimation. The need for manual annotation has significantly
limited the generalization of deep learning-based methods for
various optical neuron images.

In this study, we propose a weakly supervised deep learning
method for automatic neuron reconstruction. A 3D deep residual
CNN was employed for accurate neuron detection from neuronal
images with low SNR. A weakly supervised deep learning
framework was developed to improve the generalization of the
CNN for various neuronal datasets without manual annotation.
The framework was built via iterative expansion of undetected
weak neurites and refining of the training samples for retraining,
on the basis of neurite properties of tubularity and continuity.
The comparison of results on challenging datasets demonstrates
that the proposed method significantly improves the tracing
performance of weak neurites from images with high noise
and outperforms several novel tracing algorithms on original
images. Performances on various large datasets demonstrate the
high precision and generalization of the proposed method in
neuron detection, which can be used to significantly improve
neuron tracing for various large datasets without laborious
manual annotation.

MATERIALS AND METHODS

We propose a weakly supervised learning framework of 3D
deep CNNs for automatic and accurate neuron tracing without
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FIGURE 1 | Flowchart of the proposed weakly supervised deep learning method for neurite segmentation. Four steps, S1–S4. S1. Automatic segmenting neurites
from optical images using an existing neuron tracing method and tubular neurite shape. S2. Training of a 3D segmentation network using input images and their
pseudo-labels (automatic segmentations) as training sets. S3. Predicting the probability map of the foreground via CNN and using the segmentation as seed region.
Yellow boxes indicate neurites that not detected by CNN with pseudo labels. S4. Refining pseudo labels of training samples (labeled by yellow boxes): expanding the
seed region to include more weak neurites using region growing and obtaining skeleton results to remove background. Iterating steps 2–4 to update pseudo labels
of training samples for foreground segmentation improvement (three iterations).

hand-designed features or manual annotations. The flowchart of
the proposed framework is illustrated in Figure 1. The method
includes four steps: (1) automatic segmentation of neurites from
optical images based on an existing automatic tracing method
and tubular neurite shape, (2) training of a 3D segmentation
network using input images and their pseudo-labels (automatic
segmentations) as training sets, (3) prediction of the probability
map of the foreground using CNN, and (4) refinement of pseudo-
labels of training samples by mining weak neurites from the
probability map using region growing and skeleton strategies.
Steps 2–4 are iterated to update the pseudo-labels and optimize
the segmentation network.

Initial Training Labels
Initial neurite segmentations are automatically obtained via an
existing tracing method and identification of neurite shape
characteristics. These are then regarded as the initial training
labels (i.e., pseudo-labels). First, neurite skeletons are traced
via an existing automatic tracing method. Here, we apply our
previously established method ST-LVF for tracing (Li et al.,
2019b), which is integrated into the GTree software1. In ST-LVF,
a local threshold is applied to separate neurite signals from the
background, and SVM is employed to identify weak signals for
which the local threshold fails (Li et al., 2019b). During tracing,
default parameters were chosen and the threshold parameter
was set to 1–2 to keep weak signals in the training images.
Isolated short neurites or short branches were removed to prevent
background noise interference. Subsequently, the 3D skeletons
were resampled to maintain the adjacent skeleton points that
are connected in their 26-voxel neighborhood. Considering the
tubular shape of neurites and their typical radius (2–4 pixels), 3D

1https://github.com/GTreeSoftware/GTree/releases

cylinder shapes with skeletons at their centerline and a radius of
two pixels are finally generated as initial neurite segmentations.

Network Architecture and Loss Function
We employ the 3D deep voxelwise residual network (VoxResNet)
for neurite segmentation (Chen et al., 2018). The network is
chosen owing to its following attributes: (1) It employs the
concept of deep residual learning in image recognition to
facilitate the training process and improve the accuracy in deep
layers (He et al., 2016). (2) It demonstrates robustness and
precision in volumetric image segmentation at different scales, as
it seamlessly integrates multi-resolution image appearances and
context features at low and high levels with deep supervision
(Chen et al., 2018). The architecture of the network is
illustrated in Figure 2. The network contains 21 convolutional
layers (including six stacked deep residual modules) and four
deconvolutional layers. The stacked convolutional layers with
a kernel size of 3 × 3 × 3 are used to extract features from
different receptive field sizes. The number of channels in the
first two layers is 32 with stride 1, and the number of channels
of other layers is 64 with stride 2. The residual module is
shown in Figure 2B. To prevent the optimization degradation
problem, the residual module propagates information directly
from the forward block to the backward block by applying
identity mappings via a shortcut connection and element-wise
addition. Because the optimal function is closer to an identity
mapping than to a zero mapping, it is considered easier for
a solver to drive the weights of multiple nonlinear layers
toward zero to approach identity mapping (He et al., 2016).
The deconvolutional layers are employed to map the extracted
features to pixels using the same functions as convolutional
layers, such as filtering and pooling; however, they do so in
reverse (Zeiler and Fergus, 2014). The deconvolutional layers
comprise two channels (i.e., foreground and background). The
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FIGURE 2 | Architecture of VoxResNet for neurite segmentation. (A) Detailed network architecture. Sizes of the convolutional (Conv) and deconvolutional (Deconv)
layers are shown on the respective boxes. Batch normalization (BN) and rectified linear unit (ReLU) activation function is applied. Res refers to residual module.
(B) Structure of residual module.

deconvolutional layers’ output is processed by convolutional
layers of kernel size 1 × 1 × 1 for auxiliary classification,
and the classified results are combined for the final output.
A softmax layer is finally used to normalize the output in
the range [0, 1]. In the network, a rectified linear unit is
used as the activation function. Batch normalization, which
involves normalization for each training mini-batch to achieve
regularization, is applied to reduce the internal covariate shift and
improve the prediction.

Three-dimensional patches of 120 × 120 × 120 or
64 × 64 × 64 volumes were randomly chosen as training
samples from the training images considering the input image
size, computational cost, and segmentation accuracy (Huang
et al., 2018). Patches containing few voxels of positive pseudo-
labels (<α1V , where V denotes the total number of voxels
of a patch, and α1 is a ratio set to 0.001) were removed to
eliminate blank patches. The patches were normalized to zero
mean and unit variance, and random rotation, flip, contrast and
brightness adjustment, and Gaussian blur were performed for
data augmentation to enhance network robustness. Stochastic
gradient descent optimization was applied. The initial learning
rate is 0.01 and decreased by half every four epochs. In the
training, the batch size, momentum, and weight decay are set to 3,
0.9, and 0.0005, respectively. The maximum number of training
epochs is set to 100.

Because neurites only occupy a small fraction of the patches,
the foreground (i.e., segmented neurites) and background classes
are usually unbalanced, which could lead to a prediction bias.
Weighted cross-entropy loss and dice loss functions mitigate the

influence of class imbalance (Huang et al., 2018; Falk et al., 2019).
We adopt a hybrid loss function combining the two loss functions
to prevent class imbalance and preserve region continuity, which
is calculated as follows:

losshybird = σlosscross entropy + lossdice (1)

losscross entropy =

m∑
i=1

−α · gi log
(
pi
)
, α =

∑m
i=1 gi
m

(2)

lossdice = 1− 2
∑m

i=1 pigi + ε∑m
i=1 pi +

∑m
i=1 gi + ε

(3)

where pi is the predicted probability of pixel i; gi is the
corresponding pseudo-label for the foreground or background
with a value of 0 or 1, respectively; α is the ratio of the foreground
pseudo-label voxel numbers to the image volume voxel numbers
m; and ε is a smoothing parameter set to 1; σ is used to balance
the ratio of the loss functions, and it is set to 0.5.

Mining Weak Neurites for Pseudo-Label
Refinement
In initial training labels obtained by automatic tracing, some
weak and inhomogeneous neurites are not detected, which
decreases network prediction accuracy for neuronal images with
low SNR. Thus, the initial training set must be refined for
better segmentation. We first train the network with the initial
training set. Then, we iteratively mine more undetected weak
neurites from the CNN-predicted probability map based on the
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FIGURE 3 | An example of weak neurite mining process for pseudo-label
refinement. (a1–a3) Estimated foreground probability map by CNN. (b1–b3)
Seed region of foreground via maximum probability classification and image
denoising. (c1,c2) Grow the seed region to include nearby weak neurites.
(d1,d2) Skeleton of the grown region to refine pseudo labels. (e,f) Overlapped
results of predicted neurites by CNN, manual annotation and original images,
respectively. Red arrows point to the changed areas.

neurite tubular and continuous characteristics, employing region
growing and skeleton methods. Figure 3 depicts the mining
process for pseudo-label refinement.

The detailed mining steps are described as follows.

1. Generation of the seed region of neurites using the network
with the maximum probability classification. Removal of
small objects (volume size < 200 voxels) to prevent
noise interference.

2. Expansion of the seed region to include weaker neurites
using region growing based on the neurite continuity. Oreg
represents the seed region. Then, for each voxel in Oreg, its
neighborhood is searched according to (4):

Greg =
{
v ∈ N

(
vo) ∣∣s (v) > thre, vo

∈ Oreg
}

(4)

where vo and v represent voxels; N(vo) is the 8-voxel
neighborhood of vo; s(v) is the probability map value of v; thre is
an adaptive threshold for region growing; and Greg is the grown
region of G reg.

After obtaining Greg , Oreg is replaced with Greg and Greg
is updated according to (4). This procedure is repeated until
Greg converges. During region growing, thre remains fixed as the
average value of the neighborhood voxels in the seed region. The
neighborhood is defined as:

Nreg =
{
v ∈ N∗

(
vo) ∣∣v /∈ Oreg, vo

∈ Oreg
}

(5)

where N∗ (vo) is the 124-voxel (124 is 5 to the power 3 minus 1)
neighborhood of vo. In comparison to the seed region, the grown
region contains more voxels from the neurite region.

3. Extraction of the closely connected skeleton of the grown
region via a thinning method (Lee et al., 1994). Removal

of short branches to prevent spurious end nodes caused
by irregularities along the surface of the grown region
(Rodriguez et al., 2009).

4. Update of the neurite region according to the extracted
skeleton. The 3D cylinder objects with the skeletons as the
centerline and a radius of two are obtained as updated neurite
segmentations. Thus, new pseudo-labels are generated.

The proposed weak neurite mining process allows the update
of training labels. The updated training set is used to retrain the
CNN for better prediction of weak neurites, and more undetected
weak neurites are mined from the newly predicted probability
map. This procedure is repeated until the pseudo-labels of the
training set converge or the iteration number becomes larger than
a defined maximum iteration (between 3 and 5). This iterative
process is illustrated in Figure 4 (the first iteration indicates the
performance of the first trained CNN with initial training labels
that are generated by the automatic tracing method).

Post-processing
In this study, we enhance the original optical images using the
CNN-predicted probability map to suppress image noise and
strengthen weak neurites. The predicted probability map has the
same size as the input image stack with values between [0, 1]. The
enhanced procedure is similar to the method in Li R. et al. (2017)
and calculated as follows:

F (x) = δ · I (x)+ (1− δ) · IM · P (x) (6)

Here, I (x), P (x), and F (x) represent the value of the original
image, predicted neurite probability map, and enhanced image at
voxel x, respectively; IM is the maximum intensity of the image
and δ is a weight parameter, and it is set between 0.6 and 0.8.

After neuronal image enhancement, the previously employed
ST-LVF method is applied on the enhanced image for neurite
tracing (Li et al., 2019b) with default parameters. The above
procedure yields the tracing performance from the enhanced
image as the result of the proposed method and compares it to
other reconstruction methods performed on original images.

Evaluation
For an objective and systematic evaluation of neuron
reconstruction or tracing algorithms, typical criterions of
precision and recall (Quan et al., 2016; Li S. et al., 2017; Li
et al., 2019b), as well as neuron distance criterions ESA12
(entire-structure-average distance from neurons 1 to 2), ESA21
(entire-structure-average distance from neurons 2 to 1), ESA
(average of the bidirectional entire-structure-average distance),
DSA (different-structure average), and PDS (percentage of
different structures) (Yang et al., 2018), are employed for
quantitative assessment. The manual tracing result of the
skeletons is considered as the gold standard. Precision and recall
are defined as the ratio of true-positive skeleton points to the
total number of skeleton points obtained from tracing algorithms
and manual reconstruction, respectively. For any skeleton point
obtained from the tracing algorithm, if the distance from the
nearest point obtained from manual reconstruction is below
n pixels (n is set to six considering the neurite radius), the
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FIGURE 4 | Iterative process of the proposed method for weak neurites mining. Column (a) shows typical neuronal images with low and uneven foreground. Column
(b) shows manual tracing results. Columns (c–e) show overlapped results of predicted neurites by CNN and original images of the first, second, and third iterations,
respectively.

skeleton point is regarded as a true positive (Quan et al., 2016;
Li S. et al., 2017). High-precision and recall values correspond
to a good segmentation result. For the five-neuron distances,
neuron 1 is set to the gold standard and neuron 2 is set to the
tracing result by algorithm. The distances can be calculated
from a neuron distance plugin in Vaa3D with default distance
threshold 2 (Yang et al., 2018). In contrast to precision and recall,
lower neuron distances correspond to a better segmentation
result. Before evaluation, the skeletons obtained by tracing
algorithms and manual reconstruction are equally resampled
to maintain the distance between any two neighboring skeleton
points as one pixel.

Experimental Setup
We evaluated the proposed method and several best available
tracing algorithms (Rodriguez et al., 2009; Xiao and Peng, 2013;
Li et al., 2019a) on various 3D optical neuronal datasets, including
fMOST datasets for brain-scale long-projection neuron images at
terabyte scale (Gong et al., 2013), and the public BigNeuron (Peng
et al., 2015) and Diadem Challenge datasets (Brown et al., 2011).

For the fMOST datasets, we selected image stacks from brain-
scale mouse neuronal images with a voxel size of 0.2 × 0.2 × 1
µm for training and testing. The training set included 35 image
stacks of 300 × 300 × 300 volume from different brain regions.
The testing set included 15 challenging image stacks of volume
300× 300× 300, five image stacks of volume 1000× 1000× 300,
and a large image (approximately 140 Gigabytes) of volume
9620× 3780× 2100. BigNeuron and Diadem datasets comprised
neuronal image stacks from different organizations of various
types, scales, and sizes (Brown et al., 2011; Peng et al., 2015). We
validate the generalization and accuracy of the proposed method

on the public datasets using transfer learning. In our weakly
supervised training process, manual tracing results of the public
datasets were not used. A larger neuronal image from the datasets
of volume 2111× 3403× 291 and voxel size of 0.18× 0.18× 0.5
µm was used for fine-tuning, and six image stacks with voxel sizes
of 0.31–1, 0.31–1, and 0.54–3.4 µm were used for evaluation.

The proposed method was implemented on C++ and Python
3.6 using the PyTorch library. The segmentation network was
trained and evaluated on a computer with Intel i7-6850K CPU
(64 GB RAM) and two NVIDIA 1080Ti GPUs.

RESULTS

A general deep learning method (GDL) is normally regarded
as the “upper bound” of a weakly supervised deep learning
method. A GDL is applied on the same network and training
samples as the proposed method, while neurite labels were
manually annotated and not generated automatically like in the
proposed method. Generally, a GDL demands laborious and
expensive manual annotation for robust estimation, which limits
its use for various datasets. Here, experiments using different
quantities of manual annotation had been performed to justify
the work of the proposed method and explain why it is urgently
needed in deep learning method. In the experiments, 35 neuronal
images from different brain regions were carefully selected as
training dataset, which included neuronal images with different
neurite appearances (neurites with high, low, or inhomogeneous
intensities) and structures (straight or twisted neurites with
varied radius). We randomly selected 5, 10, 15, 20, 25, 30, and 35
images from the training dataset as training samples. The average
neuron distance evaluation results of images in Figure 7 were
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FIGURE 5 | Comparative performance of a deep learning method using different quantities of manual annotation on neuronal images. (A) Evaluation results using
five-neuron distance. (B) An example of CNN-predicted segmentations using different numbers of training samples. Yellow arrows indicate differences across
different experiments.

showed in Figure 5A. The distances were large when only using
few training samples since the network trended to overfit with
a small number of samples. As the number of training samples
grew, the neuron distances stepped down and the estimations
became closer to the ground truth (for training number 35, all the
distances were lower than 3). As shown in Figure 5B, the network
was hard to estimate neurites with weak and inhomogeneous
intensities or extreme high intensities accurately using only
a few samples. The performances became more accurate and
robust with more quantities of manual annotations. These results
suggest that large numbers of training samples are needed for
robust neurite segmentation, especially for neurites from large-
scale images with varied intensities and structures.

In the proposed weakly supervised deep leaning method, the
iterative mining process for training label refinement is key to
neurite segmentation from images with low SNR. Figure 4 shows
the comparative neurite detection results using the proposed
method with no iterative mining process (third column, the first
performance of the trained CNN with initial training labels) and
with the iterative mining process (fourth and fifth columns).
Without the iterative mining process, the trained network had
difficulties in detecting neurites with low and uneven intensities
from a noisy background, which led to incomplete or failed
tracing of these neurites. With the proposed iterative mining
process, these difficult-to-identify neurites can be detected by the
final trained network, whose performance is compared to the
first trained CNN. We further evaluated the role of the weak
neurite mining process using the same iterative procedure with
and without the mining process on five fMOST image stacks
of 1000 × 1000 × 300 volume. Without the mining process,
some neurites with weak and uneven intensities remained
undetected, and the tracing results were discontinuous, requiring
extensive manual proofreading (Figure 6b). In contrast, with
the mining process, the proposed method detected almost all
neurites (Figure 6c). The entire skeleton length of the neurites
in the five image stacks with and without the mining process

was likewise calculated. The average skeleton lengths increased
by 212.0 µm when using the mining process, representing 13.2%
of the detected neurite length. Hence, the mining process is
essential to the proposed method of accurate neurite detection
in images with low SNR.

We evaluated the effectiveness and accuracy of the proposed
weakly supervised deep learning method for neurite detection
and tracing by two approaches: (1) comparing the detection
performance of the proposed and a GDL, (2) comparing the
tracing performance of the proposed method with several best
available tracing methods (Rodriguez et al., 2009; Xiao and Peng,
2013; Li et al., 2019b). Figure 7 shows the performances of the
proposed and GDL method on neuronal images with various
intensity distributions and high noise. Both the proposed and
GDL methods demonstrated accurate detection of neurites from
neuronal images with different appearances, and their detection
difference was very small (as pointed out by the yellow arrows
in Figure 7, only small, very thin, and weak neurites were not
detected by the proposed method). The quantitative detection
results (neurite skeletons) of the two methods were evaluated
on 10 neuronal image stacks of 300 × 300 × 300 volume.
The recall and precision were 98.4 and 98.5% for the proposed
method and 99.6 and 99.8% for the GDL method, respectively.
The mean value and standard deviation of ESA12, ESA21,
ESA, DSA, and PDS distances in images shown in Figure 7
are listed in Table 1. Neuron distances of both the weakly
supervised and manually annotated deep learning methods were
small (ESA ≤ 1.2 and PDS ≤ 0.1), and their differences were
smaller than 0.06. These results suggest that the proposed method
achieves a comparable detection performance to the GDL method
and manual detection, without the need for human annotation.

Figure 8 shows the tracing performance of the proposed
method and several novel semiautomatic and automatic tracing
methods on five neuronal images with weak and inhomogeneous
intensity neurites of 300 × 300 × 300 volume. Tracing methods
include the voxel scooping method (Rodriguez et al., 2009), the
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FIGURE 6 | Comparative performance of the proposed weakly supervised method without/with weak neurite mining process for images with low SNR. (a) Original
image; (b,c) represent tracing performance without and with the mining process. Yellow arrows indicate weak neurites.

FIGURE 7 | Comparative results of the proposed weakly supervised (a3–d3) and a general deep learning method with same network (a4–d4) and manual
annotations (a2–d2). (a1–d1) show neuronal images with different intensity distributions and noise level. Yellow arrows indicate small detection differences between
two methods.
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TABLE 1 | The mean (standard deviation) of ESA12, ESA21, ESA, DSA, and PDS distances between gold standard reconstructions, weakly supervised (our), and
manual-annotated deep learning method on images in Figure 7.

Metrics ESA12 ESA21 ESA DSA PDS

Methods

Weakly supervised 1.20 ± 0.26 1.17 ± 0.25 1.19 ± 0.25 2.88 ± 0.44 0.09 ± 0.09

Manually annotated 1.17 ± 0.35 1.11 ± 0.25 1.14 ± 0.30 2.92 ± 0.74 0.10 ± 0.09

FIGURE 8 | Comparison of the proposed method and several best available tracing methods on neurite tracing. (a1–e1) show different original neuronal images.
(a2–e2) show corresponding manual tracing results. (a3–e3), (a4–d4), (a5–d5) and (a6–d6) are the tracing results of the proposed method, ST-LVF (GTree
software), APP2 (Vaa3d software) and voxel scooping method (NeuronStudio software). Red arrows indicate untraced weak neurites by tracing methods from
images with low SNR.

APP2 method (Xiao and Peng, 2013; Peng et al., 2014), and the
previously employed ST-LVF method (Hang et al., 2017; Li et al.,
2019b). To achieve a fair comparison, several parameters were
carefully set to separate neurites from a noisy background and
obtain the optimal tracing results. These included the parameter
for global threshold estimation, initial seed points of the voxel
scooping algorithm, the parameter for global background value

estimation of the APP2 algorithm, and the parameter for
local background value estimation of the ST-LVF algorithm.
Tracing by the proposed method was fully automatized without
parameter tuning, as described in section “Post-processing.” As
pointed out by the arrows in Figure 8, the voxel scooping
method (Rodriguez et al., 2009), which employed the dynamic
threshold method for neurite segmentation and voxel scooping
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TABLE 2 | Evaluation of proposed and several best available methods in neurite tracing on five images in Figure 8.

Data Recall Precision

Name Our ST-LVF APP2 Voxel scooping Our ST-LVF APP2 Voxel scooping

a1 1 1 0.993 0.580 0.996 1 0.978 1

b1 0.995 1 0.711 0.868 1 1 0.982 0.998

c1 1 0.937 0.461 0.795 1 1 1 1

d1 0.983 0.747 0.285 0.296 0.993 1 0.978 1

e1 1 0 0 0 1 0 0 0

Average 0.996 0.737 0.490 0.508 0.998 0.800 0.788 0.800

TABLE 3 | The mean (standard deviation) of ESA12, ESA21, ESA, DSA, and PDS distances between gold standard reconstructions and tracing performances of several
best available methods on images in Figure 8.

Metrics Available number ESA12 ESA21 ESA DSA PDS

Methods

Our 5 1.30 ± 0.35 1.26 ± 0.26 1.28 ± 0.30 3.09 ± 0.84 0.13 ± 0.07

ST-LVF 4 6.46 ± 7.29 1.19 ± 0.90 3.83 ± 3.95 8.37 ± 9.35 0.20 ± 0.21

APP2 4 83.56 ± 108.76 4.09 ± 4.43 43.82 ± 56.51 49.47 ± 55.93 0.56 ± 0.30

Voxel scooping 4 24.98 ± 18.67 1.46 ± 2.16 13.22 ± 9.34 29.10 ± 31.91 0.04 ± 0.28

for tracing, was unable to detect neurites with weak or sudden
changes in intensity, rendering the tracing results incomplete and
discontinuous. The APP2 method (Xiao and Peng, 2013), which
employed a global threshold for the initial neuron segmentation
and all-path pruning for refinement, likewise faced difficulty
in tracing some weak and uneven neurites from images with
high noise. The ST-LVF method, which employed a threshold-
based method for initial neurite detection and a SVM-based
method for the detection of weak neurites, detected more neurites
than the voxel scooping and APP2 methods, while still failing
to trace some weak neurites from the noisy background. The
proposed method, employing weakly supervised learning for
automatic training of label building and the deep learning
method for the acquisition of more representative features,
succeeded in the detection of almost all weak neurites and
achieved very similar results to the manual detection. The
quantitative tracing performance of the corresponding images in
Figure 8 is shown in Table 2. The average recall and precision
of the proposed method were 0.996 and 0.998, respectively,
which were significantly higher than the recall 0.788–0.800
and precision 0.490–0.730 of other tracing methods (Rodriguez
et al., 2009; Xiao and Peng, 2013; Li et al., 2019b). The mean
value and standard deviation of ESA12, ESA21, ESA, DSA, and
PDS distances of images in Figure 8 are listed in Table 3.
With the proposed method, tracing could be performed on
all five images, while other methods failed to trace neurites
from images with low SNR. Our method exhibited the smallest
average mean and standard deviation of ESA12, ESA, and DSA
distances, with values close to zero. The results demonstrate
that the proposed method promotes weak neurite tracing and
considerably outperforms several novel tracing algorithms on
images with low SNR.

We also evaluated the generalization of the proposed method
for neurite detection and tracing by two approaches: (1)

evaluating the performance of the proposed method on a large-
scale dataset (approximately 140 gigabytes, 9620 × 3780 × 2100
volume) with various intensity distributions and (2) applying
the proposed method to the public BigNeuron and Diadem
datasets (Brown et al., 2011; Peng et al., 2015), which have
entirely different styles of data compared to the fMOST
datasets (Gong et al., 2013). Figure 9 shows the tracing
results of the proposed method and its basic tracing method
ST-LVF (Li et al., 2019b) on a large-scale dataset that
included numerous weak neurites and complex structures.
To process this large dataset, we first partitioned the dataset
into small sequential image blocks, after which we applied
the automatic tracing method ST-LVF on the original image
and its corresponding enhanced image using the proposed
method. We finally joined the tracing results in the sequence
for large-scale neurite tracing. The proposed method achieved
similar results to manual tracing on the large dataset. The
recall of the proposed method was 0.991, and for the ST-
LVF method it was 0.909. We further evaluated the tracing
results of a single neurite highlighted in Figure 9b. There
were 28 separations along the highlighted neurite with the ST-
LVF method, whereas no separations were obtained by the
proposed method. In comparison to the basic ST-LVF method,
the proposed method accurately detects more weak neurites
from a noisy background, thus improving trace completion and
significantly reducing laborious manual neurite tracing work
for images with low SNR. The high recall achieved by the
proposed method on both small and large datasets confirms
the generalization of the proposed method for neuronal images
with various appearances and volumes. Notably, a few scattered
segments were erroneously regarded as detected neurites by
the proposed method (Figure 9c). However, they were easily
identifiable and removed as they were isolated, short, and far
from other neurites.
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FIGURE 9 | Automatic tracing performance of the proposed method and its basic tracing method ST-LVF on a large-scale dataset. (a) Original image with weak
neurites and complex neuronal structures. (b–d) are performances of manual tracing, the proposed method, and ST-LVF, respectively. Magnified views are shown in
the bottom-right corner of (b–d) for better visualization.

Figures 10, 11 show performances of the proposed method
on the public BigNeuron and Diadem datasets to demonstrate
its generalization on different types of datasets. Because the
image format, quality, and attributes vary significantly across
public datasets and the previously trained fMOST datasets, we
applied transfer learning to reduce the training energy and time
spent on new datasets. Unlike traditional transfer learning, which
adapts a pre-trained network to new datasets using manually
annotated datasets (Falk et al., 2019), the training labels for new
datasets were automatically constructed, and the training process
was conducted by the proposed method as previously described.
Figure 10 shows the segmentations obtained from the proposed
method and manual identification on three confocal image
stacks from BigNeuron datasets (Peng et al., 2015) with high
noise and weak neurites. Figure 11 displays the segmentations
of the proposed method on two two-photon laser-scanning
image stacks from Diadem datasets (Brown et al., 2011) with
densely distributed and uneven intensity neurites on a noisy
background. The proposed method detects almost all neurites in
the neuronal images, including the hard-to-identify thin neurites
with relatively low intensity. These results indicate that the
proposed method can automatically learn weak features of new

datasets, and it is easily transferred to datasets with varying image
formats and qualities.

DISCUSSION

This paper presents a weakly supervised deep learning method of
CNN for automatic neuron reconstruction in various 3D optical
images with low SNR. The weakly supervised learning method
builds initial training labels using automatic tracing methods
and neurite shape characteristics, then iteratively updates training
labels by mining more weak neurites to refine the 3D CNN model
based on the tubularity and continuity of neurites. In summary,
the main contributions of the proposed method are as follows.
(1) An accurate, automatic, and general method is proposed for
neuron tracing from 3D optical images with low and uneven
signal intensities. (2) A weakly supervised learning framework of
3D residual CNNs is presented to address the challenges faced
by current methods for precise tracing on different kinds of
neuronal datasets. The proposed method demands no special
hand-designed features across diverse datasets and no manual
annotation for supervised learning algorithms. To the best of
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FIGURE 10 | Performance of proposed method on public BigNeuron datasets of human Allen Brain Atlas. (a1–c1) show original images. (a2–c2) shows manual
tracing results (green line). (a3–c3) show segmentations of the proposed method. Arrows indicate thin neurites with extreme weak intensity.

our knowledge, this is the first weakly supervised deep learning
method to address the problem. (3) The proposed method
outperforms several novel tracing methods in weak neurite
tracing from highly noisy images and improves the current
tracing method. It is effective on both public and fMOST datasets
and can perform large-scale and even brain-wide neuron tracing.

Robust and accurate neuron tracing from 3D optical
images with low SNR remains a challenge for most methods.
Unlike traditional methods, which demand careful hand-
designed features and parameter tuning, the deep learning-
based algorithm provides an effective and automatic approach
for neurite detection from a high-noise background. However,
large numbers of training samples are generally needed for
accurate and robust estimation when using a deep learning
method (Figure 5). The scarcity of manually annotated training
samples limits the use of the deep learning-based method for
neurite detection across datasets. Herein, a weakly supervised
deep learning method is presented to deal with the above
issues without manual annotations, which is achieved by three

approaches. (1) Initial training labels were built based on
an existing automatic tracing method and neurite structure
characteristics, which allow the employed 3D CNN to learn
discriminative features of the neurites and background. (2) The
CNN model is refined by iteratively optimizing the training
labels and retraining the model for improved prediction. This
process can tolerate some uncertainties during initialization and
promote the learning accuracy (as shown in Figures 4, 6). (3)
Undetected weak neurites are mined from the probability map
of the previously trained CNN model using region growing,
skeleton extracting, and neurite structure information. This
mining process helps find the neurites that are hard to identify
by most tracing algorithms and modifies the training labels
to be almost equal to manual annotations, thus improving
the tracing accuracy and achieving comparable performance
to the network with manual labels (Figures 6, 7). As shown
in Figures 8, 9, the proposed method, which assumes the
SVM-based ST-LVF tracing method (Li et al., 2019b) as
the baseline, enables the detection and tracing of commonly
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FIGURE 11 | Performance of the proposed method on public Diadem datasets of Neocortical Layer 1 Axon images. The first column shows original images. The
second and third columns show segmentations of the proposed method and its combination with manual identification (green line), respectively. Arrows indicate
hard-to-identify weak and thin neurites.

occurring weak neurites and reduces laborious manual correction
work of the original tracing method (particularly for large
datasets). The comparative performance of the proposed
and several novel tracing methods (Rodriguez et al., 2009;
Xiao and Peng, 2013; Li et al., 2019b) demonstrated the
superiority of the proposed method on neuron reconstruction
from images with low SNR. As shown in Figure 9, the
proposed method can be applied to large-scale datasets that
contain various neuronal structures and weak neurites without
parameter tuning. The performance of the proposed method
on the Diadem and BigNeuron datasets demonstrates its
adaptability to datasets collected from different imaging systems,
and no manual annotations are needed for new training
samples (Figures 10, 11). Therefore, the proposed method is
suitable for numerous types of neuronal images in automatic
neurite tracing, and it can be extended to other tracing
tasks, such as vessel detection, considering the similar shape
characteristics.

Nevertheless, some limitations remain. First, the proposed
method is designed for neurite detection and tracing, and
the detection of neuronal somas is not as accurate. Specific
methods are required to relocate somas from the detection
results. Second, although the proposed method is not limited
to a specific existing automatic tracing method, the tracing
accuracy will affect the number of iterations required for training,

and a very low tracing accuracy may undermine the final
detection accuracy.

CONCLUSION

We propose an accurate and general weakly supervised 3D
deep learning-based method for fully automatic neuron tracing
without manual annotation. We employed a 3D deep residual
CNN for weak neurite detection from a high-noise background
and proposed a weakly supervised learning framework to
adapt the CNN model to different kinds of optical neuronal
datasets without manual labeling, model redesign, or parameter
adjustment. The proposed framework exploits the existing
automatic tracing method, 3D CNN model, and the tubular
and continuous structural characteristics of the neurites to
iteratively and automatically refine the training labels of the
CNN model. The performances on challenging 3D optical images
from different types of datasets demonstrate the accuracy and
generalization of the proposed method in neurite detection and
tracing. The proposed method outperformed several current
algorithms in neurite tracing from images with low SNR and
enhanced the current method to achieve more precise and
complete neurite tracing. Promising results on a large neuronal
image (>100 gigabytes) indicate the potential of the proposed
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method for long-range projected neuron reconstruction at a
large scale.
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