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Background: The pathogenesis of type 1 diabetes (T1D) involves complex genetic
susceptibility that impacts pathways regulating host immunity and the target of
autoimmune attack, insulin-producing pancreatic b-cells. Interactions between risk
variants and environmental factors result in significant heterogeneity in clinical
presentation among those who develop T1D. Although genetic risk is dominated by the
human leukocyte antigen (HLA) class II and insulin (INS) gene loci, nearly 150 additional
risk variants are significantly associated with the disease, including polymorphisms in
immune checkpoint molecules, such as SIRPG.

Scope of Review: In this review, we summarize the literature related to the T1D-
associated risk variants in SIRPG, which include a protein-coding variant (rs6043409,
G>A; A263V) and an intronic polymorphism (rs2281808, C>T), and their potential impacts
on the immunoregulatory signal regulatory protein (SIRP) family:CD47 signaling axis. We
discuss how dysregulated expression or function of SIRPs and CD47 in antigen-
presenting cells (APCs), T cells, natural killer (NK) cells, and pancreatic b-cells could
potentially promote T1D development.

Major Conclusions: We propose a hypothesis, supported by emerging genetic and
functional immune studies, which states a loss of proper SIRP:CD47 signaling may result
in increased lymphocyte activation and cytotoxicity and enhanced b-cell destruction.
Thus, we present several novel therapeutic strategies for modulation of SIRPs and CD47
to intervene in T1D.

Keywords: CD47, SIRPG, SIRPA, SIRPB1, type 1 diabetes, signal regulatory protein
INTRODUCTION

Type 1 diabetes (T1D) pathogenesis involves marked failures in immunoregulation and an adaptive
immune response targeting b-cell autoantigens expressed in the pancreatic islets of Langerhans.
Genome-wide association studies (GWAS) have shown that T1D is a highly polygenic disease (1–3).
The majority of T1D risk is conferred by the highly polymorphic human leukocyte antigen (HLA)
org September 2021 | Volume 12 | Article 7390481
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class II region and the insulin locus; however, there are nearly
150 additional single nucleotide polymorphisms (SNPs)
associated with T1D risk (1, 3, 4). A subset of these SNPs
impact CD4+ and CD8+ T cell function, including risk variants
tagged to co-stimulatory and co-inhibitory molecules CD226,
CTLA4, and SIRPG (2, 3).

Among these variants, those associated with SIRPG (signal
regulatory protein gamma), which encodes the receptor-like
transmembrane protein SIRPg, have been proposed to
modulate T cell and natural killer (NK) cell activation (5–7).
SIRPG contains two SNPs associated with risk for T1D (5, 8–12):
rs2281808 [C>T, intronic, minor allele frequency (MAF): 0.27,
odds ratio (OR): 1.11] and rs6043409 (G>A, Ala263Val, MAF:
0.20, OR 1.13). These SNPs are in tight linkage disequilibrium
(LD) (R2 = 0.94; D’ = 0.98) (8, 10, 13–15) and tend to be inherited
as a haplotype that carries either risk (C/G, 65.2%) or protection
(T/A, 33.5%) from T1D in European cohorts (13). In addition to
T1D, rs2281808 and rs6043409 are associated with other T cell-
mediated autoimmune diseases, such as rheumatoid arthritis
(RA), systemic lupus erythematosus (SLE), and ulcerative colitis
(UC) (6–8, 10, 14–17).

While much of the impact of SIRPG risk variants have yet to be
empirically determined, bioinformatic analysis of the locus provides
some insight into how variants may impact expression and
processing. SIRPG is predicted to exhibit three different isoforms
with isoform 1 being the most predominant and encoding the
longest form of the protein. Alternative splicing results in the
production of shorter isoforms 2 and 3 (modeled in Figure 1A)
(6, 18, 19) which lack a majority of the transmembrane domain and
thus, might allow for secretion of the SIRPg protein rather than
expression on the cell surface. The intronic T1D risk allele (C;
rs2281808) may be associated with a decreased SIRPG intron-
excision ratio in whole blood and spleen [Data Source: GTEx
Analysis Release V8 (dbGaP Accession phs000424.v8.p2)] (20).
Hence, we speculate that the risk allele could potentially increase the
predominance of isoforms 2 and 3 due to interrupted splicing of the
Abbreviations: T1D, Type 1 Diabetes; HLA, Human Leukocyte Antigen; INS,
Insulin; SIRP, Signal Regulatory Protein; APCs, Antigen-Presenting Cells; SNPs,
Single Nucleotide Polymorphisms; NK, Natural Killer; MAF, Minor Allele
Frequency; OR, Odds Ratio; LD, Linkage Disequilibrium; RA, Rheumatoid
Arthritis; SLE, Systemic Lupus Erythematosus; UC, Ulcerative Colitis; IAP,
Integrin-Associated Protein; eQTL, Expression Quantitative Trait Loci; Ig,
Immunoglobulin; ITIMs, Immunoreceptor Tyrosine-based Inhibition Motifs;
SHP 1/2, SH2-domain-containing Protein Phosphatase 1/2; DC, Dendritic Cells;
DAP12, DNAX-Activation Protein 12; ITAMs, Immunoreceptor Tyrosine-based
Activation Motifs; VEGFR-2, Vascular Endothelial Growth Factor Receptor-2;
TSP-1, Thrombospondin-1; Gi, Inhibitory G Protein; BNIP3, BCL2 Interacting
Protein 3; RBCs, Red Blood Cells; NOD, Non-Obese Diabetic; HUVEC, Human
Umbilical Vein Endothelial Cell; PD-1, Program Cell Death Protein 1; CTLA-4,
Cytotoxic T-Lymphocyte-Associated Protein 4; IFN-g, Interferon Gamma; Th, T
helper; HEL, Hen Egg Lysozyme; MHEC, Murine Heart Endothelial Cell; NOR,
Nonobese T1D-resistant; FOXP3+, Forkhead box P3; TCR, T Cell Receptor; DN,
Double Negative; ZAP70, Zeta-chain-Associated Protein; ERK, Extracellular
signal-Regulated Kinases; MAPK, Mitogen-Associated Protein Kinase; H2S,
Hydrogen Sulfide; EGR-1, Early Growth Response gene-1; PTPN2, Protein
Tyrosine Phosphatase Non-receptor 2; TNFAIP3, Tumor Necrosis Factor,
Alpha-Induced Protein 3; Ca2+, Calcium; AP-1, Activator Protein 1; UPR,
Unfolded Protein Response; IGF-1, Insulin-Like Growth Factor-1; TEDDY, The
Environmental Determinants of Diabetes in the Young.
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full-length isoform lowering overall SIRPg expression on the cell
surface (Figures 1C, D) (18, 19).

The exonic risk allele (G; rs6043409; alanine (Ala;A) codon)
alters the structure of the extracellular D3 domain of SIRPg, the
function of which is currently unknown (Figure 1B) (15). It is
possible that the conformation of the D1 and D2 domains of
SIRPg, which facilitate binding to the integrin-associated protein
(IAP; CD47), could be impaired by the Ala mutation in the
nearby D3 domain, inhibiting this protein-protein interaction
(Figures 1C, D) (15). In turn, the protective allele [A; valine (Val;
V) codon] could alter the D3 domain of SIRPg and thereby
enhance CD47 binding, but this has not been confirmed at this
time (15). Further experiments are warranted to validate the
predicted impacts of these risk variants on altered splicing and
expression of SIRPG, along with their downstream effects on
immune cell activation and function.

Although SIRPg is the only member of the SIRP family with
known T1D risk loci, other proteins found in this family, such as
SIRPa and SIRPb1, may also be involved in T1D pathogenesis.
For example, the rs2281808 and rs6043409 risk variants are
expression quantitative trait loci (eQTL) for both SIRPG and
SIRPB1, whereby SIRPg expression is reduced and SIRPb1
expression is reciprocally increased (21). Thus, it is of
importance to examine not only SIRPg but also, other
members of the SIRP family and their binding partner CD47
as a potential pathway of interest in T1D.

CD47 is ubiquitously expressed and is well known for providing
a “don’t eat me” signal via binding to SIRPa on macrophages,
which prevents macrophage-mediated phagocytosis and
destruction of CD47-expressing target cells (22, 23). CD47 is also
involved in the regulation of apoptosis, proliferation, adhesion, and
migration of immune cells (24–28) as well as metabolic signaling in
b-cells (29, 30). However, there remains limited understanding of
the functional impact of SIRPG risk variants on SIRP:CD47
signaling and downstream immune cell activation and
proliferation, as well as on pancreatic b-cell survival and function
in the context of T1D pathogenesis. We hypothesize that the T1D-
risk alleles of rs2281808 and rs604309 tagged to SIRPGmight result
in reduced CD47 binding capability or decreased expression of
SIRPg on T cells and NK cells (Figure 2). We pose that the SIRP:
CD47 signaling pathway could be an important element in the
regulation of autoimmunity. In this review, we describe the SIRP:
CD47 signaling pathway and highlight potential functional
implications of the T1D-associated SIRPG SNPs. We also discuss
various strategies for modulating SIRPs/CD47 signaling to intervene
in T1D.
STRUCTURAL FEATURES AND
SIGNALING PATHWAYS OF SIRPS:CD47

SIRP Family
SIRPa, SIRPb1, and SIRPg, which comprise the SIRP family,
are type 1 transmembrane glycoproteins with three
immunoglobulin-like (Ig-like) extracellular regions, a single
transmembrane domain, and varying cytoplasmic domains
September 2021 | Volume 12 | Article 739048
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(Figure 2) (5, 31). The cytoplasmic tail of SIRPa contains two
immunoreceptor tyrosine-based inhibitory motifs (ITIMs),
which interact with Src homology region 2-domain-containing
phosphatase 1 (SHP1) and SHP2 (5, 31, 32). In antigen-
presenting cells (APCs), such as dendritic cells (DCs) and
macrophages/monocytes, SIRPa-induced SHP1/2 activation
downregulates pro-inflammatory processes including cytokine/
chemokine production, cellular adhesion, and phagocytosis
(Figure 2A) (5, 31, 32). In contrast, SIRPb1 and SIRPg do not
contain signaling motifs in their cytoplasmic domains. SIRPb1
has a small six-amino acid tail that interacts with DNAX-
activation protein 12 (DAP12), a transmembrane adaptor
protein that contains immunoreceptor tyrosine-based
activation motifs (ITAMs) (5, 31). SIRPg, which has no
Frontiers in Immunology | www.frontiersin.org 3
ortholog in murine or other animal models, has a four-amino
acid cytoplasmic tail that has not been shown to interact with
adaptor proteins; thus, SIRPg is hypothesized to function as a
“decoy receptor” that competes for CD47 binding with SIRPa (5,
31). CD47 is a transmembrane protein in the Ig superfamily,
with a single IgV-like domain at its extracellular N-terminus that
binds to several integrins, vascular endothelial growth factor
receptor-2 (VEGFR-2), CD36, Fas/CD95, thrombospondin-1
(TSP-1), SIRPa, and SIRPg (23, 34). CD47 contains five
membrane-spanning segments and a C-terminus cytoplasmic
domain. Upon ligand binding to CD47, a heterotrimeric
inhibitory G protein (Gi) is recruited to its cytoplasmic tail
(25, 33), controlling various immunoregulatory processes, such
as activation and apoptosis (through BCL2 interacting protein 3
A

B

D

C

FIGURE 1 | SIRPg isoforms and predicted consequences of rs2281808 and rs6043409 SNPs: T1D-associated SNPs in signal regulatory protein gamma (SIRPG) may
alter splicing activity and thereby surface SIRPG expression. (A) Isoform 1 (NCBI Reference Sequence: NP_061026.2) is the longest and most predominant form of the
protein, while isoform 2 (NP_543006.2) and isoform 3 (NP_001034597.1) are shorter and less frequently observed (18, 19). All isoforms contain domain 1 (D1), which is
the immunoglobulin variable (IgV) region that binds to CD47. However, only isoform 1 contains two immunoglobulin constant (IgC) regions and a known transmembrane
region at the end of the protein structure. Isoform 3 contains at least one IgC, while isoform 2 has no constant region. (B) Gene and pre-mRNA diagrams of SIRPG
(NCBI reference sequence for gene: NC_000020.11, Gene ID: 55423; precursor mRNA for isoform 1: NM_018556.41). Reference and alternative alleles for rs2281808
and rs6043409 are shown. (C) We speculate that the protective alleles of rs2281808 and rs6043409 are associated with “normal” SIRPG splicing and high membrane
SIRPg expression on T cells and NK cells, while (D) SIRPG risk alleles might promote aberrant splicing, potentially resulting in a loss of exon 5, which encodes most of the
transmembrane region. We expect this would cause lower membrane expression of SIRPg as well as increased SIRPg secretion.
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(BNIP3) translocation) in DCs, monocytes/macrophages, T cells,
and NK cells (Figure 2A, B) (24).

SIRPa is expressed on a wide variety of cell types including
many leukocyte subsets (e.g., monocytes, macrophages, DCs, NK
cells), epithelial/endothelial cells, and other complex tissues (e.g.,
Frontiers in Immunology | www.frontiersin.org 4
brain, pancreas) (31, 32, 44), while SIRPg shows more restricted
expression (Figure 2A, B) (5, 31). Specifically, SIRPg is found on
CD4+ and CD8+ T cells along with NK cells, where its function
remains contested as promoting either activation or inhibition of
these subsets (5, 31). SIRPb1 is expressed on monocytes/
A

B

C

FIGURE 2 | Hypothetical model for how decreased SIRPs CD47 signaling may lead to a pro-inflammatory phenotype in leukocytes: (A) In antigen-presenting cells
(APCs) such as dendritic cells (DCs) and monocytes/macrophages, signal regulatory protein alpha (SIRPa) and CD47 are co-expressed, whereby SIRPa can bind
CD47 expressed on other cell types (e.g., leukocytes, epithelial cells, endothelial cells) in trans or possibly via in cis interactions, thus activating the immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) on its cytoplasmic tail (5, 22, 23, 31, 32). CD47 is activated by either thrombospondin 1 (TSP-1), SIRPa, or SIRPg, where it is
hypothesized that inhibitory G protein (Gi) binding inhibits inflammasome activation, pro-inflammatory cytokine expression, proliferation, and phagocytosis (25, 33).
These processes may be augmented if SIRPa and/or CD47 expression are decreased. (B) SIRPg and CD47 are co-expressed in T and natural killer (NK) cells (5–7,
31). CD47 ligation is hypothesized to inhibit T and NK cell activation via inhibition of unknown downstream elements of the zeta chain of T cell receptor-associated
protein kinase 70 (ZAP70) activation, inhibition phosphorylation of the mitogen-associated protein kinase (MEK), and inhibition of phosphorylation of the extracellular
signal-regulated kinases (ERK) (26, 34–37). BCL2 interacting protein 3 (BNIP3) is a mediator of apoptosis that may be upregulated by activation of CD47 (24, 34,
38). Decrease expression of CD47 and/or SIRPg could potentially augment T cells and NK cells in a way that results in a more activated phenotype and increase
proliferation in these immune cells. (C) Other examples of the effect of SIRPg:CD47 signaling in T cells. Upregulation of CD47 signaling is hypothesized to increase T
cell transmigration; however, it is not known for sure if this increase in transmigration alters activation of the T cell (39, 40). CD47 ligation is also hypothesized to help
maintain the naivety of T cells, and, once activated, promotes these T cells to differentiate to a more central memory phenotype (41–43). If loss of SIRPg:CD47
signaling occurs in T cells, it is hypothesized that this will contribute towards the differentiation to more effector and effector memory phenotypes along with a loss of
transmigration. Red Text/Box: Inhibition; Green Text/Box: Activation.
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macrophages and DCs, however, its ligand remains unknown
as it does not bind to CD47 (5, 31, 32). Hence, this review
will examine the SIRP:CD47 family signaling axis and its
potential role in T1D pathogenesis, centering on the impacts of
SIRPa, SIRPg, and CD47 on immune cell function, along with
that of SIRPa and CD47 on b-cell survival and insulin
production (Figure 3).

Implications of SIRPa:CD47 Signaling
in APCs in T1D
The systematic failure to regulate self-antigen reactivity along
with a pro-inflammatory cytokine signature has been shown to
contribute to T cell-mediated destruction of b-cells in T1D
(46, 47). Additionally, the involvement of APCs, such as
monocytes/macrophages, in b-cell destruction has been
hypothesized to further promote T1D pathogenesis (46–48).
During pancreatic organogenesis, macrophage precursors are
Frontiers in Immunology | www.frontiersin.org 5
present in developing islets where they promote b-cell
proliferation and survival (49–52). After islet maturation, b-cell
mass increases during the postnatal period over the first two to
three years of life, with tissue-resident macrophages playing a
supporting role in growth and development (49–52).
Throughout the pancreas, a tightly regulated balance of M1
(classically activated, pro-inflammatory) and M2 (alternatively
activated, immunoregulatory) macrophage polarization occurs
(49–52). M1 macrophages are required for protection from
microbial infection and overall injury, whereas M2
macrophages are required to induce b-cell proliferation,
cytotoxic protection, and prevent inflammatory responses
(49–53). Throughout T1D pathogenesis, a significant increase
in pancreatic tissue-resident M1 macrophages and a
compensatory decrease in M2 macrophages occurs, increasing
localized inflammation and promoting infiltration of more
macrophages into the pancreas (46, 48, 54). As such, reduction
A B

FIGURE 3 | Working model of the role of CD47:SIRPs signaling in health and during type 1 diabetes pathogenesis: (A) CD47 and signal regulatory protein (SIRP)
are expressed by immune cells during a healthy state. CD47 controls calcium (Ca2+) signaling in b-cells, through an unknown pathway, that promotes both cell
adhesion and insulin production as well (29, 30, 34, 45). Also, CD47 is hypothesized to control protective autophagy via BCL2 interacting protein 3 (BNIP3) and
Beclin-1 binding (34, 38). CD47 and SIRPa signaling can occur either in trans or in cis with each other or with other ligands, such as SIRPg. We hypothesize that a
reduction of SIRP expression and/or activity occurs on immune cells in type 1 diabetes (T1D), thus inhibiting peripheral immune tolerance. (B) Decreased CD47 and
SIRPa activity in b-cells could potentially inhibit insulin secretion and cell survival while increasing immune cell-mediated destruction. Red text box: inhibition; green
text box: activation; dashed arrows: inhibition.
September 2021 | Volume 12 | Article 739048
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of SIRPa and/or CD47 expression has been suggested to increase
APC activation, proliferation, and phagocytic capacity
(Figure 2A), characteristic of pro-inflammatory T1D-
associated M1 macrophage polarization (31, 46–48, 54–56).

Once an immune response has been resolved and APC
activation is no longer required, CD47 expression is
upregulated to inhibit inflammasome activation (57–59) and
the production of pro-inflammatory cytokines, including IL-12,
TNF-a, IL-6, and GM-CSF (57, 58, 60). Inhibition of this pro-
inflammatory milieu may contribute toward the mechanisms by
which SIRPa modulates macrophage polarization. Accordingly,
C57BL/6 mice with SIRPa overexpression exhibited an anti-
inflammatory M2 macrophage phenotype while SIRPa
knockdown promoted a predominantly pro-inflammatory M1
macrophage phenotype (61). M2 macrophages express higher
levels of SIRPa than M1 macrophages, and M2 macrophage-
secreted IL-8 has been shown to increase CD47 expression on
disseminated colon cancer cells, thereby preventing their
phagocytosis (62). Tseng and colleagues further demonstrated
that treatment of the DLD1 human colon cancer cell line with
anti-CD47 blocking antibody (clone B6H12) facilitated their
phagocytosis by macrophages, which subsequently increased
their ability to prime CD8+ T cells for proliferation and
cytotoxicity as compared to macrophages cultured with DLD1
cells in the absence of anti-CD47 (63). Critically, a non-blocking
anti-CD47 antibody (clone 2D3) did not impart comparable
effects (63). Under the same conditions, B6H12 mediated
phagocytosis of cancer cells reduced the ability of macrophages
to stimulate CD4+ T cell proliferation but also, significantly
reduced the percentage of CD4+FOXP3+ regulatory T cells in
co-culture (63).

Similarly, during viral infections, CD47 expression increases
on both immune cells and infected tissues due to an indirect
effect of TNFa-NFkB1-signaling (64). It is hypothesized that this
effect occurs to prevent the over-activation of immune cells
during infection, but it remains unknown whether viruses or
bacteria can directly influence CD47 expression to evade
detection by the immune system (64). Regardless, once
downregulation or blockade of SIRPa:CD47 signaling occurs,
most immune cells exhibit enhanced anti-viral capabilities (64).
In line with these findings, adoptively transferred CD47-deficient
red blood cells (RBCs) are cleared more quickly than CD47+

RBCs in non-autoimmune C57BL/6 recipient mice, supporting
the notion that CD47 expression is required for successful “don’t
eat me” signaling (65). Interestingly, proinflammatory
conditions or backcross to the autoimmune-prone non-obese
diabetic (NOD) background (65) further accelerate the clearance
of CD47-deficient RBCs (66). Altogether, these data suggest that
SIRPa:CD47 signaling is particularly important for regulating
immune responses in the context of cancer, infectious challenge
and potentially, b-cell stress in subjects with high genetic risk for
autoimmunity and specifically, T1D. Furthermore, these data
suggest that interruptions or deficiencies in SIRPa:CD47 could
promote the engulfment, processing, and aberrant presentation
of self-antigens to T cells during the pathogenesis of T1D. Studies
Frontiers in Immunology | www.frontiersin.org 6
of SIRPa and/or CD47 expression on both DCs and monocytes/
macrophages should be performed to elucidate the potential
failure of this pathway in T1D pathogenesis.

Implications of SIRPs:CD47 Signaling in
T Cells and NK Cells in T1D
While autoreactive T cells are widely accepted as a key
pathogenic feature of insulitis in organ donors with T1D (67,
68), the role of NK cells in T1D pathogenesis remains somewhat
controversial (69). Although NK cells have been observed to
infiltrate the human pancreas during T1D pathogenesis, NK cells
are not required for disease onset in the NOD mouse model (69,
70). Nevertheless, we hypothesize that T1D-associated SNPs in
the SIRPG locus contribute towards the decrease of SIRPg
expression on T cells and NK cells, potentially disrupting
CD47 signaling and the downstream regulation that constrains
the activation and proliferation of these subsets (Figure 2B). The
impacts of T1D-associated SIRPG SNPs on T cell phenotype
have been studied at the polyclonal level, but these observations
must be validated in autoreactive islet-specific T cell clones (6, 7).
SIRPglow CD8+ T cells isolated from healthy human donors
demonstrated an effector gene signature characterized by
increased TBX21, EOMES, IFNG, and GZMB expression, and
possessed lower activation thresholds, determined through anti-
CD3 titration in vitro, as compared to SIRPghigh CD8+ T cells (6).
These data support the hypothesis that decreased SIRPg
expression may enhance CD8+ T cell-mediated b-cell
destruction in T1D.

The ligation of CD47 is hypothesized to inhibit T and NK cell
activation via inhibition of unknown elements downstream of
the zeta chain of T cell receptor (TCR)-associated protein kinase
70 (ZAP70) activation and subsequent phosphorylation of the
extracellular signal-regulated kinases (ERK) from the mitogen-
associated protein kinase (MAPK) signaling cascade (Figure 2B)
(26, 34–37). Indeed, while phosphorylation of ZAP70 was
unaffected in activated Jurkat T cell lines incubated with the
CD47 ligand TSP-1, TSP-1 inhibited activation-induced
expression of T cell early activation markers, such as CD69
and early growth response gene-1 (EGR-1), demonstrating that
CD47 could be acting downstream of ZAP70 to inhibit T cell
activation (35). Additional studies have demonstrated that
activation of CD47 inhibits H2S signaling, which is a mediator
of ERK signaling (26, 37). Thus, CD47 signaling is important in
regulating T cell and potentially, NK cell activation through the
MAPK pathway.

In contrast, however, one study found evidence that CD47
may instead promote the activation of T cells. Specifically,
human Jurkat and primary human T cells or human CD47-
transfected murine 3.L2 T cells stimulated by anti-CD3 and anti-
CD47 activating antibodies, showed increased proliferation and
IL-2 production as compared to those stimulated with anti-CD3
alone (71). Additionally, CD47 activation enhanced TCR zeta
chain and ZAP70 phosphorylation (71). The cytoplasmic tail of
CD47 was not necessary for these effects; rather, the membrane
domain was required (71). The differing observations in this
September 2021 | Volume 12 | Article 739048
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study (71) are thought to be due to activating antibodies eliciting
a response from CD47 that contrasts from the quality or quantity
of stimulation with TSP-1 in subsequent studies (26, 34–37).
Thus, it is likely that endogenous CD47 signaling promotes T cell
regulation; although, there are certainly unanswered questions
regarding CD47 signaling in the context of other ligands.

Human tumor expression of CD47 has been shown to
correlate with the expression of various co-inhibitory markers,
such as program cell death protein 1 (PD-1) and cytotoxic T-
lymphocyte associated protein 4 (CTLA-4), on tumor-infiltrating
CD4+ and CD8+ T cells (72, 73). In mice, CD47 blockade
contributed toward increased activation and cytotoxic potential
of tumor-infiltrating CD8+ T cells (72, 73). Similarly, Seiffert
et al. demonstrated that antibody-mediated blockade of either
SIRPa or CD47 during DC priming of human CD8+ T cells
reduced their anti-tumor cytotoxic activity in vitro (74).
Disruption of SIRPa:CD47 signaling also increased NK cell
activation and cytotoxicity while CD47 overexpression
inhibited cytotoxic killing of tumor or MHC-deficient target
cells in vitro; importantly, this latter observation was dependent
upon SIRPa expression on NK cells (32). These mechanistic
studies are crucial to inform novel therapeutic approaches
capable of differentially targeting the SIRP:CD47 signaling
pathway in cancer and autoimmune disease settings.

It has also been observed that CD47 signaling can control
thymocyte selection, memory T cell differentiation, and CD4+ T
helper (Th) cell skewing (25, 26, 41, 55). Intriguingly, Dugas,
et al. observed that a Cd47-deficient transgenic mouse model,
expressing an anti-hen egg lysozyme (HEL) TCR (clone 3A9)
and HEL under the insulin promoter on the BALB/H-2k
background, developed accelerated autoimmune diabetes
concomitantly with a roughly two to four-fold decrease of
regulatory CD4-CD8- double negative (DN) T cells in the
spleen and skin-draining lymph nodes compared to Cd47-
sufficient controls (55). Briefly, DN T cells express a TCR but
not CD4, CD8 or NK markers, and they exert antigen-specific
negative regulation over effector T cells within peripheral blood
(75). In the NOD model, DN T cells have been shown to prevent
diabetes via production of IL-10 and/or cytotoxicity toward
antigen-specific B cells (76, 77), regulatory mechanisms which
may be lacking in the absence of CD47 expression. Meanwhile,
defects in peripheral regulation may also be attributed to the loss
of CD47-dependent T cell killing in the periphery (25).

Increased CD47 expression has been observed on naïve and
central memory as compared to effector memory CD4+ T cells
(Figure 2C) (41–43). CD47 expression is lower on activated than
long-lived antigen-specific memory CD4+ T cells (41). When
CD4+ T cells exhibit low CD47 expression, skewing shifts from a
Th2 phenotype toward an inflammatory Th1 response (42).
Together, these studies suggest that disruption of CD47
signaling could potentially augment T cell cytotoxicity and
infiltration into pancreatic tissues while inhibiting regulatory T
cell-mediated protection against b-cell destruction in
T1D (Figure 3).

Interestingly, NOD mice carry a polymorphism in the Sirpa
gene that induces an 18 amino acid variation in the IgV-like
Frontiers in Immunology | www.frontiersin.org 7
domain of the SIRPa protein, as compared to the non-obese
diabetes resistant (NOR) strain (56). This variation was
determined to increase the binding of SIRPa to CD47, thus
increasing SIRPa:CD47 signaling between APCs and T cells (56).
Furthermore, the authors showed that diabetogenic
NOD.BDC2.5 CD4+ T cells exhibited increased proliferation
and lower activation thresholds when co-cultured with NOD
DCs with increased SIRPa binding, as compared to NOR DCs
with decreased SIRPa binding to CD47 (56). More studies are
required to understand how SIRPs:CD47 signaling affects
priming and activation of CD4+ and CD8+ T cells, and the
corresponding implications for T cell-mediated autoimmunity
and T1D pathogenesis.

SIRPG does not have an orthologous counterpart in the
mouse, limiting studies of this gene in vivo. In an in vitro co-
culture model of human T cells and TNF-a activated human
umbilical vein endothelial cell (HUVEC) monolayers under
shear flow conditions, anti-CD47 and anti-SIRPg antibodies
prevented T cell transmigration across HUVECs (39, 40).
Similarly, these authors observed a decrease in in vitro
transendothelial migration of T cells across murine heart
endothelial cell (MHEC) monolayers from CD47-/- C57BL/6
mice in the presence of TNF-a induced inflammation (39, 40).
Therefore, CD47 binding to SIRPa or SIRPg can presumably
alter T cell extravasation (Figure 2C). Whether SIRPg:CD47
binding during transmigration is associated with modulation of
T or NK cell activation remains of interest. These in vitro
observations warrant further investigation of how SIRPg:CD47
signaling might play a role in modifying cell migration using ex
vivo platforms to study human pancreas (78–80) samples or
humanized mouse models (81) xenografted with human cells to
explore potential implications for islet infiltration and the
development of insulitis in human T1D.

Implications of SIRPa:CD47 Signaling
in Pancreatic b-Cells in T1D
Previous literature examining the impact of SIRP:CD47 signaling
has primarily focused on host immunity in the context of cancer
development; hence, little is currently known about how this
pathway relates to pancreatic b-cell development and survival in
the context of T1D pathogenesis. CD47 forms clusters in lipid
rafts on the surface of healthy cells, facilitating SIRPa ligation to
inhibit phagocytosis by macrophages; in contrast, apoptotic cells
exhibit a diffuse surface distribution of CD47 reducing the “don’t
eat me” signal (82). Hence, in pancreatic b-cells, CD47 is
hypothesized to promote survival via propagation of the “don’t
eat me” signal in addition to regulating calcium (Ca2+) signaling
associated with protection afforded by autophagy (Figure 3) (29,
30, 34, 45). CD47 promotes survival signaling through induction
of the activator protein 1 (AP-1) transcriptional factor family,
including the Jun (c-Jun, JunB, and Jun D) subset of
transcription factors, in a majority of endothelial tissues and
including b-cells (83–85). CD47 also enhances intracellular Ca2+

flux, which in terms of b-cell functionality, can contribute
towards promoting cell adhesion along with triggering insulin
secretion (86, 87). BNIP3 is bound to the cytoplasmic tail of
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CD47, where it can interact with Beclin-1, promoting protective
autophagy through the unfolded protein response (UPR) which
may occur in stressed b-cells (34, 38). Independent of immune-
mediated destruction, SNPs tagged to genes involved in the
regulation of apoptosis (protein tyrosine phosphatase non-
receptor 2 (PTPN2): rs1893217 and tumor necrosis factor,
alpha-induced protein 3 (TNFAIP3): rs2327832) have been
associated with T1D, with the risk variants resulting in
increased apoptosis of b-cells (88, 89). Accordingly, we
hypothesize that CD47 expression level or distribution may be
altered on the surface of b-cells in individuals carrying risk alleles
for these anti-apoptotic genes, thereby impacting b-cell survival.

Additionally, SIRPa is hypothesized to upregulate insulin
secretion and/or production (Figure 3) (29, 31, 44, 54).
Expression of SIRPa and CD47 colocalize with insulin staining
in b-cells of C57BL/6 mice (29). High-fat diet-fed SIRPa-/- mice
exhibit reduced plasma insulin levels and impaired glucose
tolerance as compared to wild-type mice, providing in vivo
evidence that SIRPa can control insulin secretion in the
context of metabolic stress (29). SIRPa phosphorylation is
stimulated by insulin and insulin-like growth factor-1 (IGF-1);
therefore, it is thought that SIRPa activation is controlled
contemporaneously with insulin/IGF-1 receptor signaling (29,
90). This last observation is intriguing as we recently reported
that IGF-1 levels are deficient before the clinical onset of T1D in
at-risk subjects (91), potentially contributing to a decrease in
SIRPa signaling in b-cells. The interaction between SIRPa and
CD47, expressed on both APCs and pancreatic b-cells, might
represent a key factor in T1D pathogenesis, and studies are
warranted to examine their in situ expression in the human
pancreas from control and T1D donors, impact on insulin
production, and eQTL epistasis from single-cell sequencing
data (92).
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POTENTIAL FOR SIRP:CD47-
MODULATING THERAPEUTICS IN T1D

Strategies focused on restoring or monitoring SIRPa, SIRPg, and/or
CD47 expression in subjects at-risk or with recent T1D onset may
aid in the prediction, prevention or reversal of T1D. The SIRPG
T1D-risk alleles and other T1D-risk loci have been associated with
serological markers of disease progression. For example, a study
conducted by The Environmental Determinants of Diabetes in the
Young (TEDDY) consortium found that among individuals with the
high-risk HLA-DR3/4 genotype, the minor (protective) allele for
rs2281808 reduced the risk of islet autoantibody (AAb)
seroconversion as compared to the major (risk) allele (93). These
analyses suggest that SIRPG SNP genotypes may associate with high-
risk HLA diplotypes, thus reinforcing the importance of examining
the roles of both HLA and non-HLA risk SNPs inmodulating events
driving tissue-specific reactivity in the pathogenesis of T1D (93).

In individuals with a family history of T1D or islet AAb
seropositivity, SIRPG SNP genotyping could potentially allow for
the identification of individuals who may benefit from SIRP:CD47
modulating therapies in precision medicine applications. Indeed,
small molecule drugs or biologics that promote SIRPG expression or
SIRPg:CD47 signaling could serve as novel candidate therapies.
Those that target CD47 (e.g., CD47 activating antibodies or SIRPg:
CD47 bi-specific antibodies) would likely be preferable for two key
reasons: 1) SIRPg:CD47 signaling occurs unilaterally downstream of
CD47, and 2) the T1D-risk associated SNPs tagged to SIRPG are
predicted to promote reduced SIRPg expression and/or interaction
with CD47 (5, 6, 20, 31, 35). Additionally, upregulation of CD47
and/or SIRPa expression on induced pluripotent stem cell-derived
b-cells or islet transplants might augment their survival following
b-cell replacement therapy in persons with longstanding
T1D (Figure 4).
FIGURE 4 | Potential clinical therapeutics targeting SIRPs and CD47 for type 1 diabetes prevention or suspension. Immunotherapies could be utilized to increase
the expression of SIRPg and/or CD47 on primary T cells for adoptive cell therapies or CD47 on stem cell-derived b-cells or islets before transplant to attenuate the
magnitude of recurrent autoimmunity. Red Text Box: Expected Decrease; Green Text Box: Expected Increase.
September 2021 | Volume 12 | Article 739048

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sharp et al. The SIRP:CD47 Pathway in T1D
We hypothesize that SIRPg expression on immune cells may be
correlated with specific stages of T1D development in a manner
governed by genetic risk variants in SIRPG, and thus, could be
used as a biomarker of disease progression in conjunction with C-
peptide and AAbs (12, 93, 94). In T1D subjects, SIRPG SNP
genotype was associated with T1D risk at an early age (P-value
<0.05, unadjusted), with the greatest effect at <7 years of age, an
intermediate impact from 7 to 13 years of age, and a reduced
impact at >13 years of age; therefore, therapeutic approaches
involving SIRPG may have the highest efficacy at delaying or
reducing T1D onset in younger patients (12, 93, 94).
DISCUSSION/CONCLUSION

As reviewed herein, prior research has suggested that SIRPs and
CD47 could be involved in immunoregulation and cross-talk
between immune cells as well as able to protect cells from
targeted cellular destruction. However, it remains unclear how
SIRP:CD47 signaling affects T cell activation in the periphery. We
hypothesize that SIRP:CD47 represents a co-inhibitory pathway
involved in immunoregulation. Because autoreactive T cells that
bypass negative selection in the thymus are thought to express
lower TCR affinities, SIRP:CD47 signaling may have an important
effect on both central and peripheral tolerance during autoimmune
disease pathogenesis. Therefore, we propose that novel
immunotherapies that upregulate the expression of SIRPg on T
cells or increase CD47 signaling in persons with recent-onset or
pre-T1D could ultimately serve as a powerful therapeutic approach
to inhibit autoimmune destruction. However, additional research,
including genotype/phenotype population studies, novel gene and
SNP editing approaches, and longitudinal natural history studies
are required to determine if the SIRP:CD47 signaling pathway
could serve as an informative predictive biomarker of this disease
or viable target for immune modulation.
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