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Adipose-derived stem cells (ADSCs) are an abundant cell source and provide an easy way to harvest mesenchymal stem cells, which
are the focus of considerable attention in regenerative medicine. Electric fields (EF) play roles in many biological events and have
been reported to promote cell proliferation, migration, and differentiation. In this study, ADSCs were treated with a direct current
electric field (DCEF) of either 0 (control group) or 300 mV/mm (EF group) for six hours. RNA screening and analysis revealed that
66, 164, 26, and 1310 circRNAs, IncRNAs, miRNAs, and mRNAs, respectively, were differentially expressed in the DCEF-treated
ADSCs compared with untreated ADSCs. Differentially expressed mRNAs were enriched in the MAPK signaling pathway, TNF
signaling pathway, and some other pathways. ANXA1l, ERRFII, JAGI, EPHA2, PRRY, and H2AFY2 were related to the
keratinocyte differentiation process. Competing endogenous RNA (ceRNA) networks were constructed on the basis of genes in
the MAPK signaling pathway. Twenty-one RNAs in the above networks were randomly chosen, and their expression was
validated using qRT-PCR, which showed the same expression trends as the RNA sequencing analysis. The MAPK signaling
pathway is of great importance in the ADSC processes that occur in a DCEEF, including keratinocyte differentiation. Several
ceRNAs may participate in the regulation of MAPK signaling. This study may give new insight into the proliferation, migration,

and differentiation of ADSCs, which will be valuable for tissue engineering and regenerative medicine.

1. Introduction

Mesenchymal stem cells (MSCs) are a population of adult
stem cells with self-renewal properties and multilineage dif-
ferentiation capacity. Compared with embryonic stem cells
(ESCs) and induced pluripotent stem cells (iPSCs), which
have the limitations of ethical issues and tumorigenicity,
MSCs have gained extensive attention in regenerative medi-
cine [1, 2]. MSCs have been reported to be isolated from a
number of sources, including the bone marrow, adipose tissue,
umbilical cord, and placental tissue [3]. Adipose-derived stem
cells (ADSCs) are advantageous due to their abundant cell
sources and ease of harvesting [4].

Electric fields (EFs) are necessary to maintain homeosta-
sis in cells and participate in many biological events ranging
from embryogenesis to tissue healing [5]. EF has several
potential advantages over other stimuli as no immunogenic
bioagent or complicated equipment is involved [6, 7]. At
present, various methods of electrical stimulation have been
applied in vitro, including direct current electric field
(DCEEF). DCEF can not only affect the survival and prolifera-
tion of many cell types but also change cell migration and
morphology. Previous studies have shown that DCEF can trig-
ger morphological changes in ADSCs and force cells to align
vertically to the EF vector or even induce them to migrate to
the cathode, which is also referred to as galvanotaxis [8].
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Multiple noncoding RNA species, including small non-
coding RNAs such as miRNAs, pseudogenes, long noncoding
RNAs (IncRNAs), and circRNAs, may possess competing
endogenous RNA (ceRNA) activity. In particular, IncRNAs
and circRNAs can bind some active miRNAs and indirectly
regulate the expression of other transcripts targeted by the
same set of miRNAs [9-11]. To our knowledge, there have
been no studies on transcriptome sequencing and ceRNA
network prediction of ADSCs in an EF.

In this study, we used whole-transcriptome sequencing
technology to investigate the RNA expression profile in
ADSCs stimulated by DCEF of 0 and 300 mV/mm for 6h,
respectively. Differentially expressed mRNAs, miRNAs,
IncRNAs, and circRNAs were identified. The differentially
expressed mRNAs were primarily enriched in the MAPK
and TNF signaling pathways. ANXA1l and some other
mRNAs were related to keratinocyte differentiation process.
Moreover, we predicted the ceRNA networks based on the
selected genes in the MAPK signaling pathway. Finally, 21
RNAs were randomly chosen, and their expression profiles
were validated using qRT-PCR.

2. Materials and Methods

2.1. Ethics Statement. The study was approved by the Ethics
Committee of the First Hospital of China Medical University
and complied with the Helsinki Declaration.

2.2. ADSC Isolation and Culture. Fat tissue was obtained
from three donors who underwent plastic surgery, after they
provided signed informed consents. Lipoaspirates were
washed 3 times with phosphate-buffered saline (PBS; Biolog-
ical Industries, CT, USA) to remove erythrocytes and enzy-
matically digested with 0.1% collagenase I (Solarbio,
Beijing, China) for 1h at 37°C. After neutralizing the cells
with 10% fetal bovine serum (FBS; Biological Industries),
centrifugation, and PBS washing, cells were resuspended
and cultured in DMEM/F-12 medium (Biological Industries)
supplemented with 10% FBS and 1% penicillin/streptomycin
(Biological Industries) at 37°C in a 5% CO, incubator. The
medium was changed every 3 days until 90% confluence
was achieved. ADSCs were detached with 0.25% trypsin-
EDTA (Biological Industries) then passaged. ADSCs from
passages 3-5 were used in this study.

2.3. Authentication of ADSCs. Passage 3 ADSCs were
digested by trypsin-EDTA and washed with PBS, then incu-
bated with fluorescein isothiocyanate- (FITC-) conjugated
and phycoerythrin- (PE-) conjugated antibodies, including
anti-CD34-FITC, anti-CD44-FITC, anti-CD90-FITC, anti-
CD45-PE, anti-CD73-PE, anti-CD105-PE, PE-labeled mouse
IgGl Kappa, and FITC-labeled mouse IgGl Kappa (BD
Pharmingen, USA) at 4°C for 40 min. We used flow cytome-
try (LSRFortessa, BD Biosciences, USA) to record and ana-
lyze the data. At least 1 x 10* cells were analyzed per test.
Briefly, 12-well plates were pretreated with gelatin (Cya-
gen, USA) to enhance adherence. Then, to confirm the multi-
lineage differentiation ability of ADSCs, passage 3 cells were
seeded at a density of 1 x 10* cells/well and cultured until
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60-70% confluence was achieved. The medium of some of
the wells was then changed to mesenchymal stem cell osteo-
genic differentiation medium (Cyagen, USA) according to
the manufacturer’s instructions. The medium was changed
within 72 h. For adipogenic differentiation, we used mesen-
chymal stem cell adipogenic differentiation medium (Cya-
gen, USA) according to the manufacturer’s instructions.
Two to four weeks later, the cells were stained with alizarin
red S (Solarbio, China) and oil red O (Cyagen, USA) sepa-
rately to identify osteogenic and adipogenic differentiation,
respectively.

2.4. Electric Field Application. ADSCs after five passages were
exposed to a DCEF of 300 mV/mm in our laboratory-made
equipment described in detail previously [12, 13]. In brief,
cells were seeded at 3 x 10*/cm® on a 100 mm petri dish,
which was treated before seeding with poly-D-lysine (Beyo-
time, China) for 5min and then left to dry for at least
30 min. Then, the cells were put back into the incubator for
at least 6 h to achieve attachment. Coverslips were attached
using high-vacuum silicone grease (Dow Corning, USA) to
form a small chamber with silicone grease separating the
petri dish into two reservoirs. Fresh medium was added into
the petri dish, and the two separated reservoirs were allowed
to connect. The petri dish was returned to the incubator for at
least 12 h to allow for cell recovery. The medium was chan-
ged, and HEPES buffer (Solarbio, China) was added to reach
25mM to maintain pH stability. Then, 2% agarose (Sigma,
USA) salt bridges were placed on both sides of the petri dish,
while the other side of salt bridges put in Steinberg’s solution,
connected with silver wires (Alfa Aesar, USA) to a direct cur-
rent power supply (Maisheng, China). The voltage of the
chamber was measured and adjusted every hour to reach
the set chamber EF strength.

2.5. RNA Extraction and Quality Control. Total RNA was
extracted using TRIzol reagent (Thermo Scientific, MA,
USA). RNA integrity and gDNA contamination were mea-
sured using electrophoresis with denatured agarose (Sangon
Biotech, Shanghai, China). The purified RNA concentration
was detected by NanoDrop ND-1000 (Thermo, USA).

2.6. Library Preparation and RNA Sequencing. RNA sequenc-
ing was accomplished by Cloud-Seq Biotech (Shanghai,
China). See the Supplementary Methods for additional infor-
mation (available here).

2.7. Identification of RNAs and Differential Expression
Analysis. RNA identification was accomplished by different
methods according to RNA species. Differential expression
of RNA was determined by fold change and p value. Please
see the Supplementary Methods for additional information
(available here).

2.8. GO and KEGG Pathway Analysis. We employed the GO
and KEGG pathway analysis tool to identify the differentially
expressed mRNAs. A p value of <0.05 was used as the thresh-
old of significant enrichment.
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2.9. ceRNA Network Construction. StarBase (v2.0) [14] and
Cytoscape (v3.7.1) were applied to identify and construct
the predicted ceRNA networks.

2.10. Validation of RNA Expression by qRT-PCR. For cir-
cRNAs, IncRNAs, and mRNAs, the annealing mixture was
incubated at 65°C for 5min and put on ice for 2 min, then
mixed to compose a reverse transcription mixture, followed
by incubation at 50°C for 60 min and 70°C for 15 min. For
miRNAs, the reverse transcription mixture was incubated
at 16°C for 30min, 42°C for 40 min, and 85°C for 5min.
Using SYBR Green master mix (CloudSeq, China), PCR
was carried out at conditions of 95°C for 10 min, followed
by 40 cycles of 95°C for 10s and 60°C for 1 min. U6 was
chosen as the miRNA reference while GAPDH was used
as the reference gene for the other three RNA groups. Sup-
plementary Table S1 displays the primers for RNAs and
control genes.

2.11. Statistical Analysis. GraphPad Prism was used for statis-
tical analysis. The paired Student’s ¢-test was used to com-
pare the RNA expression profiles of the experiment and
control groups. A p value of <0.05 was considered statistically
significant.

3. Results

3.1. ADSC Authentication. The collagenase-digesting method
was used to isolate ADSCs. Expanded cells were authenti-
cated by flow cytometry and multilineage differentiation.
Characteristic ADSC surface markers, including CD34,
CD44, CD45, CD73, CD90, and CD105, were chosen. The
hematopoietic lineage marker CD34 and the leukocyte
marker CD45 were not expressed while the other 4 markers
were expressed, confirming that the cells we obtained and
used were ADSCs (Figure 1(a)). To confirm the multilineage
potential, adipogenic differentiation and osteogenic differen-
tiation were carried out in differentiating media. Figures 1(b)
and 1(c) show the adipocytes and osteoblasts that differenti-
ated from the ADSCs.

3.2. Differential Expression Analysis of circRNAs, IncRNAs,
miRNAs, and mRNAs. ncRNAs and mRNAs that were differ-
entially expressed in cells of the DCEF group (n = 3) relative
to those in the control group are indicated in a heat map and
a volcano map (Figure 2).

Finally, 8944 circRNAs were detected, among which 2234
were novel ones. Of these, we identified 66 significantly dys-
regulated circRNA transcripts with 38 upregulated and 28
downregulated transcripts. Of the 18564 IncRNAs detected,
164 were significantly differentially expressed, including
24 upregulated IncRNAs and 140 downregulated IncRNAs.
A total of 26 differentially expressed miRNAs were screened
with 5 upregulated in the DCEF group and 21 downregulated,
among 678 detected miRNAs with 117 novel ones. Among
17,252 detected mRNAs, 1310 differentially expressed mRNAs
were screened, of which 274 were upregulated and 1036 were
downregulated in the DCEF group. Table 1 displays the cir-
cRNAs, IncRNAs, miRNAs, and mRNAs with the highest
log, fold change.

3.3. GO and KEGG Pathway Analysis in mRNA Differential
Expression. To study the expression of upregulated and
downregulated genes, we enriched these genes under the
GO terms BP (biological processes), CC (cellular compo-
nents), and MF (molecular functions) (Figure 3(a)). When
the upregulated mRNAs were enriched, mRNAs involved in
protein refolding and regulation of the p38MAPK cascade
in BP; clathrin-sculpted vesicle, endocytic vesicle lumen in
CC, and MAP kinase tyrosine/serine/threonine phosphatase
activity; MAP kinase phosphatase activity in MF were the
terms showing the highest level of enrichment. When the
downregulated mRNAs were enriched, protein localization
to kinetochore in BP, condensed chromosome outer kineto-
chore in CC, endodeoxyribonuclease activity, and producing
5'-phosphomonoesters in MF were the terms showing the
highest level of enrichment. The terms exhibiting the highest
enrichment might help us macroscopically screen possible
pathways attributing to the biological reactions of ADSCs
in a DCEF, especially those related to the MAPK family.
Among all the BP terms, 94 upregulated and 37 downregu-
lated genes related to migration, 80 upregulated and 62
downregulated genes related to proliferation, and 89 upregu-
lated and 76 downregulated genes related to differentiation
were screened. mRNAs that were upregulated in the DCEF
group, namely, ANXAI, ERRFI1, JAGl, EPHA2, and
PRRY, were related to keratinocyte differentiation terms,
while H2AFY2 was downregulated. Among the upregulated
mRNAs, PRR9 had relatively low expression levels in both
groups, indicating that PRR9 may only play a minor role in
the process.

For the KEGG pathway analysis, a group of pathways was
enriched by upregulated mRNAs after 6 h of EF stimulation.
Of these, the TNF signaling pathway, MAPK signaling path-
way, and the cytokine-cytokine receptor interaction pathway
were prominent. Other related signaling pathways such as
the NOD-like receptor, TGF-p, estrogen, and the RIG-I-like
receptor may also contribute to completing the process of
the reaction of ADSCs to the DCEF. As we can see, the term
cluster showed that the EF may stimulate the cells, as the sig-
naling pathways triggered are similar to those seen in legio-
nellosis, hepatitis B, influenza A, and salmonella infection
(Figure 3(b)).

3.4. ceRNA Network Construction. ceRNA networks were
constructed based on a selected group of mRNAs. The
groups of mRNAs related to the MAPK signaling pathway
in upregulated mRNAs were picked to maintain the showed
ceRNA network (Figure 4). In this study, 7 circRNAs includ-
ing hsa_circ_0000489, hsa_circ_0001222, hsa_circ_0001017,
hsa_circ_0001460, hsa_circ_0001910, hsa_circ_0000268,
and hsa_circ_0000048; 4 IncRNAs including JHDM1D-
AS1, AC124068.2, LINC00324, and BX284668.2; 30 miRNAs
such as miR-362-5p; and 20 mRNAs were related to the net-
work shown. In the network, miR-362-5p had 12 different
regulatory relationships between other circRNA, IncRNA,
and mRNA; circ_0000489 could interact with 7 miRNAs,
and MAP3K8 could interact with 14 miRNAs. The relation-
ships between these RNAs may provide a novel perspective
into the MAPK signaling pathway and the regulation of
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FIGURE 1: Characterization of adipose-derived stem cells (ADSCs): (a) expression of the characteristic surface markers of ADSCs shown by
flow cytometry; (b) oil red O staining showing adipogenic induction after 14 days of induction; (c) alizarin red S staining showing osteogenic

induction after 21 days of induction.

the proliferation, differentiation, and migration of ADSCs
in DCEF.

3.5. Validation of circRNA, IncRNA, miRNA, and mRNA
Expression. According to the MAPK signaling pathway, we
selected six upregulated mRNAs, namely, BDNF, GADD45G,
NR4A1, DUSPI, JUN, and MAP3KB, to validate their
expression. Four downregulated mRNAs were chosen,
namely, KIF14, ACVR2B, ANKSIA, and RUNX2. Although
these mRNAs have few relationships with the MAPK signal-
ing pathway, they were associated with the cell proliferation,

migration, and differentiation processes. The four circRNAs,
three IncRNAs, and four miRNAs were randomly selected
among the mRNAs showing altered expression profiles. All
21 RNAs showed significant differential expression with
p values of <0.05 (Figure 5).

4. Discussion

ADSCs hold significant promise for regenerative medicine
due to their ease of harvesting and multilineage differentia-
tion ability. Physical stimulators like EF can promote stem
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FIGURE 2: Expression profiles of circRNAs, IncRNAs, miRNAs, and mRNAs. Differential ncRNAs and mRNAs in the three paired EF and
control cell groups are shown using (a) heat map and (b) volcano plot.

TaBLE 1: Statistical analysis of all differentially expressed ncRNAs and mRNAs.

ifres::;safl{N As Total no. upi\ej(gfl.ﬂ(; fte d dowgr:g?ja ted The most upregulated (log, FC) ~ The most downregulated (log, FC)
circRNA 66 38 28 hsa_circ_0008650 (5.65) hsa_circ_0001582 (-5.19)
IncRNA 164 24 140 AK298056 (5.53) BX538221_2 (-4.38)
miRNA 26 5 21 hsa-miR-novel-chr7_23770 (7.72)  hsa-miR-novel-chr17_8249 (-4.83)
mRNA 1310 274 1036 FOS (7.10) DNMT3B (-10.75)

cell differentiation. It has been confirmed that, for ADSCs,
5min pulses of 448 kHz sine wave current, at a subthermal
density of 50 uA/mm? separated by 4h interpulse lapses,
along a total period of 48 h, could enhance cell proliferation
rate [15]. Studies have also shown that application of 1kHz
and 2 mV/mm low-frequency ACEF leads to chondrogenesis
in ADSCs [16]; application of 1 Hz and 100 mV/mm low-
frequency ACEF for 4 h/day for 14 days promoted osteogenic
differentiation of ADSCs cultured in osteogenic differentia-
tion medium [17]; application of +4V and 1ms and -4V,
1 ms, and 1 Hz ACEF-treated mouse ADSCs for 72 h showed
an induced transcriptional profile more closely related to that
of neonatal cardiomyocytes [18]; 35-53 mV/mm EF (current

5son, 20 s off) with copper for 1 h can induce differentiation
of ADSCs toward the neuronal lineage [19]. From these stud-
ies, we could know that different parameters of EF would
have different effect on ADSC differentiation, with ACEFs
of great importance among them. Studies have also reported
the alignment, elongation, and cathode migration of ADSCs
in a DCEF [8, 20]. So, whether DCEF can regulate the differ-
entiation of ADSCs into osteoblasts, keratinocytes, and other
cell lineages and how a DCEF could regulate changes in cell
morphology and migration remains a question for our fur-
ther studies. Different cells may require different intensities
of DCEF to respond. In our preparatory experiments, we
tried different intensities of DCEF to treat ADSCs, in the
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range of 200-600 mV/mm. We recorded that DCEF at
300 mV/mm was strong enough to orient the cells while
low rate of cell death (data not shown).

The MAPK signaling pathway map can be roughly
divided into the classical MAP kinase pathway, JNK and
P38 MAP kinase pathway, and ERK5 pathway. Our 21 upreg-
ulated MAPK-related mRNAs seemed to be divided into
these three parts. In the classical part, BDNF as a growth fac-
tor, DUSPs, FOS, and MYC were mentioned. BDNF partici-
pates in the classical MAP kinase pathway by binding to its
tyrosine kinase receptor TrkB, leading to cell proliferation
and differentiation [21]. Downregulated c-myc could inacti-

vate the p38 MAPK pathway and suppress cell proliferation
and migration [22], suggesting that the upregulated c-myc
observed in our study may induce these responses. DUSP is
a group of dual-specificity phosphatases that are closely
related to MAPK and mostly negatively regulate their func-
tion. Among the selected MAPK-related genes, DUSPI,
DUSP2, and DUSP5 are located in the nucleus, while DUSP6,
DUSPS, and DUSP10 are located in the cytoplasm. DUSP1
and DUSP6 dephosphorylate ERK, while DUSP10 is related
to JNK/p38 [23]. For the JNK and p38 MAP kinase pathways,
IL1B, MAP3K8, HSPB1, DUSP10, FOS, JUN, and JUND
were included. IL1B serves as an upstream molecule, while
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MAP3KS8 acts as a MAPKKK. AP-1, JUND, and HSP1B,
which also contribute to the MAPK pathway, can be phos-
phorylated to regulate proliferation, differentiation, and apo-
ptosis. Furthermore, GADD45B and GADDA45G could
contribute to p38 activation and regulate development and
cell apoptosis [24]. HSP70 proteins are also related to JNK
and p38 MAPK functions [25]. In the ERK5 pathway,
ERK5 enhances the transcriptional activity of NR4Al
through phosphorylation [26]. Then, NR4Al, a transcription
factor that regulates cell proliferation and apoptosis, can be
induced by a variety of stimuli. The NR4A1 mRNA expres-
sion level in the BMSCs of postmenopausal osteoporosis
patients was reported to be significantly higher than that in
the normal control group, suggesting that NR4A1 may be
related to osteogenesis [27]. As a result, the abovementioned
MAPK-related genes might make a difference in ADSC
homeostasis and proliferation and most interestingly, in dif-
ferentiation. In the process of epidermal maturation, DUSP6
and other phosphatases promote keratinocyte differentiation
by suppressing ERK MAPK and inducing AP-1. However,
DUSP10 expression antagonized the process, forming a net-
work to regulate epidermal homeostasis [28]. Also, wound-
induced AP-1 plays a pivotal role in fetal skin reepithelializa-
tion and keratinocyte differentiation via MAPK [29]. Thus,
the EF-induced alterations in the mRNA expression may
participate in keratinocyte differentiation, which leads us to
investigate this in greater detail. Several dysregulated mRNAs
related to keratinocyte differentiation attracted our attention.
As the component of the cell envelopes barrier structure of
keratinocytes, ANXA1 participates in the process of kerati-
nocyte terminal differentiation [30]. EPHA2, one of the
receptor tyrosine kinases, is abundantly expressed in kerati-
nocytes. EPHA?2 plays an important role in eliciting the des-
moglein 1 expression, enhancing adhesion, and promoting
the differentiation of keratinocytes [31]. JAGI, the ligand
for multiple Notch receptors, has the ability to induce kerati-
nocyte differentiation and form the stratum corneum, via
activating NF-xB and inducing PPARy. ERRFI]I is a negative
regulator of EGFR signaling. ERRFI1 can regulate keratino-
cyte differentiation and prevent their overproliferation via

the MAPK pathway [32]. All the abovementioned upregu-
lated genes suggested the induction of keratinocyte differen-
tiation. However, H2AFY2 was downregulated in our
profile, and this mRNA encodes macroH2A.2, which is a his-
tone variant expressed at low levels in the stem cells but is
induced during differentiation and is also related to keratino-
cyte differentiation [33]. Since this histone may participate in
many other processes, H2AFY2 may induce minor effects in
differentiation. Due to the number of advantages mentioned
before, ADSCs are expected to differentiate into keratino-
cytes in conditions such as chronic ulcers or other cutaneous
disease treatment. Researchers have worked hard to discover
methods of inducing ADSCs into keratinocytes, such as
coculture with keratinocytes or fibroblasts, or using BMP4
or other biological factors [34-37]. Knowing about such
changes of related genes may form the basis for the explora-
tion of EF-induced differentiation of ADSCs to keratinocytes.

To our knowledge, no studies have been published about
the transcriptome sequencing and ceRNA network predic-
tion of ADSCs in EF. In this paper, we designed laboratory-
made DCEF equipment and treated ADSCs in 0 (control
group) or 300mV/mm EF (DCEF group) for 6h. ADSCs
were identified by flow cytometry, and their multilineage
potential was confirmed. We obtained circRNA, IncRNA,
miRNA, and mRNA from both groups from 3 donors. By
using different ways of screening, standardization, and com-
parison with databases, the expression profiles and differen-
tially expressed RNAs were analyzed.

Upregulated and downregulated mRNAs were enriched
to GO terms and KEGG pathways. Among all the related
pathways, the MAPK signaling pathway, which is also an
important pathway regulating ADSC proliferation [38], dif-
ferentiation [39], and migration [40], had the highest gene
ratio in the upregulated mRNA enriched pathways. To
screen the three terms related to MAPK signaling pathway,
all the BP terms enriched by differential expressed mRNAs
were calculated (p <0.05). A total of 80 upregulated and
62 downregulated proliferation-related genes were found
while there were 94 upregulated and 37 downregulated
migration-related genes. Furthermore, 89 upregulated and
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76 downregulated genes related to differentiation were found,
and the most enriched terms were for fat cell differentiation,
cell differentiation, and osteoblast differentiation in the
upregulated group and cell differentiation, neuron differenti-
ation, and hematopoietic progenitor cell differentiation in the
downregulated group. Four circRNAs, three IncRNAs, and
four miRNAs expressed differentially between the EF and
control groups were randomly chosen from the pool of dif-
ferentially expressed RNAs and were validated by RT-PCR.
The expression of ten mRNAs related to the MAPK signaling
pathway or cell proliferation, migration, and differentiation
was also validated.

We constructed ceRNA networks containing circRNAs
or IncRNAs of ADSCs in the EF and control groups based
on a series of upregulated MAPK signaling pathway mRNAs,
which meant the upregulated circRNAs, upregulated
IncRNAs, and downregulated miRNAs were used to contrib-
ute to the network. Finally, 7 circRNAs, 4 IncRNAs, 30 miR-
NAs, and 20 mRNAs were included in the network. The
prediction of the ceRNA network may shed light on the reg-
ulation process of proliferation, migration, and differentia-
tion of ADSCs in DCEF.

5. Conclusions

The MAPK signaling pathway is of great importance in the
ADSC processes that occur in a DCEF, including keratino-
cyte differentiation. Several ceRNAs may participate in the
regulation of MAPK signaling. This study may give new
insight into the proliferation, migration, and differentiation
of ADSCs that will be valuable for tissue engineering and
regenerative medicine.

Data Availability

Sequencing data have been submitted to the NCBI Gene
Expression Omnibus, accession number GSE149888.

Conflicts of Interest

Authors declare that there are no conflicts of interest.

Acknowledgments

This work was supported by a grant from the National Nat-
ural Science Foundation (U1908206). We thank all the
donors to this study.

Supplementary Materials

Library preparation and RNA sequencing RNA libraries were
constructed from total RNA using NEBNext® Ultra™ II
Directional RNA Library Prep Kit (New England Biolabs,
Inc.). The quality of the library was controlled and quantified
using a BioAnalyzer 2100 system (Agilent Technologies, Inc.,
USA). Library sequencing was performed on an llumina
Hiseq 4000 sequencer; then, paired-end reads were har-
vested. High-quality trimmed reads were acquired after qual-
ity control by Q30 and 3'-adaptor-trimming together with
removal of low-quality reads. Identification of RNAs and dif-

BioMed Research International

ferential expression analysis IncRNAs and mRNAs: high-
quality reads were aligned to the human reference genome
(UCSC HG19). The fragments per kilobase of exon per mil-
lion fragments mapped (FPKM) values of the IncRNA and
mRNA expression profiles were obtained under the guidance
of the GTF gene annotation file. The fold change and p values
of the EF and control groups were calculated and compared
to screen for differentially expressed IncRNAs and mRNAs.
Fold change > 2.0 (i.e., log 2 (FC) > 1.0, p value < 0.05) and
FPKM value of >0.1 in at least one sample were used as the
threshold values when screening of the differential expres-
sion. CircRNAs: high-quality reads were aligned to the refer-
ence genome/transcriptome. CircRNAs were detected and
identified. CircBase and Circ2Traits were used to annotate
the identified circRNAs. Then, edgeR was used for data stan-
dardization and differential expression of circRNAs. Differ-
ential expression of circRNA was determined as a fold
change of >2.0 and a p value < 0.05. MiRNAs: total RNA
was prepared to establish the miRNA sequencing library,
including 3'-adaptor ligation, 5'-adaptor ligation, cDNA
synthesis, and PCR amplification. The libraries were dena-
tured as single-stranded DNA molecules, captured on an
Mumina flow cell, amplified as clusters in situ, and then
sequenced. After sequencing, image analysis, base recogni-
tion, and quality control using Q30, raw data were generated.
The trimmed reads were aligned to the merged human pre-
miRNA databases (miRBase and the predicted pre-miRNAs)
with at the most one mismatch. After defining the raw
expression levels of the miRNA, the raw counts were normal-
ized by edgeR and filtered to find differentially expressed
miRNAs with a fold change of >1.5 and a p value of <0.05.
Table S1: the primer sequences of 21 validated RNAs.
(Supplementary Materials)
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