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Abstract: The evidence that telomerase is overexpressed in almost 90% of human cancers justifies the
proposal of this enzyme as a potential target for anticancer drug design. The inhibition of telomerase
by quadruplex stabilizing ligands is being considered a useful approach in anticancer drug design
proposals. Several aromatic ligands, including porphyrins, were exploited for telomerase inhibition
by adduct formation with G-Quadruplex (GQ). 5,10,15,20-Tetrakis(N-methyl-4-pyridinium)porphyrin
(H2TMPyP) is one of the most studied porphyrins in this field, and although reported as presenting
high affinity to GQ, its poor selectivity for GQ over duplex structures is recognized. To increase
the desired selectivity, porphyrin modifications either at the peripheral positions or at the inner
core through the coordination with different metals have been handled. Herein, studies involving
the interactions of TMPyP and analogs with different DNA sequences able to form GQ and duplex
structures using different experimental conditions and approaches are reviewed. Some considerations
concerning the structural diversity and recognition modes of G-quadruplexes will be presented first
to facilitate the comprehension of the studies reviewed. Additionally, considering the diversity of
experimental conditions reported, we decided to complement this review with a screening where
the behavior of H2TMPyP and of some of the reviewed metal complexes were evaluated under the
same experimental conditions and using the same DNA sequences. In this comparison under unified
conditions, we also evaluated, for the first time, the behavior of the AgII complex of H2TMPyP. In
general, all derivatives showed good affinity for GQ DNA structures with binding constants in the
range of 106–107 M−1 and ligand-GQ stoichiometric ratios of 3:1 and 4:1. A promising pattern of
selectivity was also identified for the new AgII derivative.

Keywords: aromatic ligands; porphyrins; metalloporphyrins; H2TMPyP; AgIITMPyP; G-quadruplexes;
telomerase inhibition; selectivity

1. Introduction

The discovery of telomeres was reported first by H. Muller in 1938 and soon after,
in 1941, by McClintock [1–3]. In these earliest studies, both authors showed that each
chromosome end is limited by a structure called telomere. The main functions of this
type of structures are: (i) to maintain the stability of the structure of the chromosomes;
(ii) to ensure that the genetic information is perfectly copied when the cell duplicates and
(iii) to prevent the end junction between consecutive chromosomes which can lead to
deoxyribonucleic acid (DNA) degradation or genetic mutations and consequently to the
appearance of tumors [2].

Further studies demonstrated that during the process of cell division, telomeres un-
dergo shortening since interruptions in the DNA replication process occur. As a defense
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to the mechanism involved in telomeres shortening, the enzyme telomerase was iden-
tified [2,4]. Telomerase is an enzyme that consists of several components including an
endogenous ribonucleic acid (RNA) template of eleven nucleotides and a reverse transcrip-
tase that adds specific and repetitive DNA sequences to the 3′ end of the chromosomes,
preventing their shortening [2]. A requisite for telomerase activity is the existence of the
single-strand DNA, to which the RNA template is connected by complementarity and then
allows telomerase to perform its function of telomeric repeat addition (Figure 1).
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Figure 1. Telomerase function.

The proposal of the enzyme telomerase as a potential target for anticancer drug design
results from the evidence that this enzyme is overexpressed in almost 90% of human
cancers [5,6].

Other important targets for anti-cancer drug design are human oncogenes and tumor
suppressor genes due to their close association with the appearance of cancer cells. Onco-
genes can result from the mutation of proto-oncogenes, the genes responsible for normal
cell division, stimulation and death. Therefore, oncogenes involved in the initiation and
progression of tumors have also been recognized as targets for the development of new
anticancer drugs [7,8]. An interesting discussion concerning the challenges and potential
advantages of targeting telomeric G-quadruplex (GQ) compared to gene promoter G-
quadruplexes and to protein or enzyme targets was reported by Balasubramanian et al. [7].

The presence of repetitive sequences of the nucleobases thymine (T), adenine (A)
and guanine (G), in the sequence TTAGGG (abbreviated as T2AG3), and of secondary
structures, such as the G-quadruplexes (GQ) at the end of telomeres (whose function is to
protect telomere ends from nuclease attack) enables indirect targeting of telomerase [9–11].
GQ are higher-order DNA structures formed by the self-assembly of four guanine (G)
bases in a planar quadrangular arrangement via Hoogsteen hydrogen bonding, known as
G-quartets (Figure 2). The subsequent stacking of these quartets on top of each other via
π-π interactions can give rise to different GQ conformations, as is exemplified in Figure 2
for an intermolecular (bimolecular) GQ conformation [12].
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The stability of the GQ structures depends on the presence of cations, whose location
results from a balance between cation repulsion and attractive interactions with oxygen
atoms from carbonyl groups.

Ions such as NH4
+ and K+ with ionic radii (i.r.) of 1.43 Å and 1.33 Å, respectively, are

too bulky to coordinate within the plane of a G-quartet, thus their coordination occurs with
eight oxygen atoms between two stacked G-quartets (Figure 3A). In the case of cations with
a small ionic radius, such as Na+ (i.r. 0.95 Å), the coordination with four oxygen atoms
within the plane of a single quartet is possible (Figure 3B).
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Depending on the number of DNA strands involved in the GQ arrangement, confor-
mations mediated by intra- or intermolecular interactions are formed. Structures formed
from one, two or four separate strands of DNA give rise, respectively, to GQ in uni-, bi-
or tetramolecular conformations [13,14]. The GQ structures are also dependent on the
spatial orientation of the strands and are designated as parallel, antiparallel or hybrid
depending on the relative strand orientation (Figure 4A). The formation and stability of
all unimolecular (intramolecular) and bimolecular (intermolecular) GQ structures imply
the presence of three or four loops with different sizes and sequences. The single-strand
sections that are not involved in the G-quartet arrangement form loops that link the gua-
nines bases. These loops can adopt different geometries, namely edgewise (or lateral),
double-chain-reversal (or propeller) and diagonal (Figure 4B). The loop residues can further
stabilize GQ structures through hydrogen bonds and by stacking interactions.
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The relative strand orientation also influence the glycosidic bond angle of the guanines
involved in the quartets that can assume an anti and/or syn geometry (Figure 5). A
combination of syn and anti geometries is observed for antiparallel and hybrid structures,
while parallel topologies contain almost exclusively anti geometry (Figure 5) [15,16].

All the described structural properties of GQ concerning not only the length, base
composition and directionality of the loops, but also the size of the stabilizing metal cations,
contribute to the existence of four grooves surrounded by the guanine phosphodiester
backbone [17]; these cavities are similar to the minor and major grooves formed in the
well-known double-stranded structure. In the GQ grooves, large variations in the widths,
depths, inter-phosphate distances between the DNA strands and base orientations are also
found (Figure 5).
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Changes in strand direction also affect the guanine glycosidic torsion angles and will
further alter the relative position of the sugar ribose and the groove dimension. In the case
of parallel GQ, all the guanine glycosidic torsion angles are characteristic of an equivalent
anti conformation, thus the four grooves’ dimensions are all equivalent. If one of the strand
orientations changes to an antiparallel arrangement, changes in guanine glycosidic torsion
angles occur and adopt both syn and anti conformations. These changes will further alter
the groove dimensions, generating narrow, medium and wide grooves (Figure 5).

In the case of human telomeric DNA, the tandem repeats until the sequence T2AG3
form unimolecular intramolecular G-quadruplexes in the chromosomic end regions.

The recognition that GQ structures can be easily accessible in physiological conditions
in the presence of monovalent cations such as NH4

+, Na+ and K+ [19] was of particular
value in the wide range of studies involving the investigation of GQ as targets for drug
design [13,20–22].

It has been found that G-quadruplexes are recognized and partially unwound by
telomerase for 3′-end extension, thus the binding of stabilizing compounds to G-quadruplex
structures will “lock” the telomeres in the G-quadruplex configuration, preventing telomere
lengthening by telomerase (Figure 6) [23].

Telomerase inhibitors should present higher selectivity for GQ DNA structures when
compared with duplex DNA as the drug must be able to recognize GQ DNA in the presence
of a large amount of duplex DNA, in the cellular nucleus. The interaction of the ligand
with duplex will reduce its availability to bind GQ structures, resulting in a reduction of its
telomerase inhibitory function [24].

The importance of developing ligands with adequate structural features to selectively
stabilize GQ DNA structures in the presence of duplex DNA structures prompted us to
discuss some important achievements concerning this topic.
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Special attention will be given to the interactions of the positively charged ligand
5,10,15,20-tetrakis(N-methyl-4-pyridinium)porphyrin (H2TMPyP) with several DNA se-
quences able to form GQ and duplex structures. The impact of H2TMPyP complexation
with different metal ions (e.g., ZnII, CoIII, NiII, CuII, PdII, AuIII and MnIII) in the ligand
selectivity towards GQ structures will be also considered and, when adequate, the reference
to other studies concerning analogues to H2TMPyP will also be presented.

In the selection of this issue, we have our interest in the synthesis, functionaliza-
tion and characterization of porphyrins and analogues for different biological/medical
applications [25–29], namely as DNA stabilizing agents and telomerase inhibitors [30–37].

2. Interactive G-Quadruplex Ligands and GQ Recognition Modes

In 1997, Sun et al. reported [38], for the first time, the inhibition of telomerase by
interactive G-quadruplex ligands and, based on the results, anticipated the potential of the
approach as a novel research line for anticancer drug design. Since then, the search for GQ
interactive ligands with high specificity and affinity for GQ has become a central issue for
different research groups [9,12,18,22,23,38,39].

A large number of small ligands have demonstrated ability to bind non-covalently
to DNA and RNA GQ structures [9]. Most of these ligands contain several fused or non-
fused aromatic rings or are aromatic macrocycles. An interesting overview of the literature
highlighting structure–quadruplex interaction relationships of organic modular GQ ligands
was published by Alexandra Paulo et al. [40].

Different GQ recognition modes are possible: intercalation (Figure 7A), outside stack-
ing on the ends of the G-quartet core, also known as end-stacking (Figure 7B), and in-
teraction with the backbone (core and loop bases) known as groove or loop binding
(Figure 7C,D). Since the GQ structure is rigid and stable, the distortion triggered by the
intercalation of a ligand has an energetic cost. In this way, outside stacking (Figure 7B–D)
is seen as the more favorable binding mode [39].

Simple procedures using optical spectroscopic techniques like ultraviolet-visible ab-
sorption (UV-Vis), fluorescence and circular dichroism (CD) allow to evaluate the ligand
affinity and selectivity to DNA structures, while other spectroscopic methods such as
mass spectrometry (MS) and nuclear magnetic resonance (NMR) allow to obtain kinetic,
thermodynamic, stoichiometric and conformational data in structure-activity relationship
(SAR) studies [31,32,41–43]. The efficiency of several small molecules to inhibit telomerase
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by adduct formation with GQs has been studied using different methods with promising
results [30,31,44–48].
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Under the context of aromatic ligands containing fused rings, the dicationic an-
thraquinone derivative presented in Figure 8 was the first ligand reported to inhibit
telomerase function [38]. Many other small ligands were then reported to inhibit telom-
erase activity with small half-maximal inhibitory concentration (IC50) values, like tri-
substituted acridines (e.g., BRACO-19) [49], the perylene tetracarboxylic diimide derivative
(PIPER) [50], the fluorinated polycyclic quinoacridinium cation (RHPS4) (Figure 8) and
dibenzophenanthroline derivatives [51], among others [12,39,52].
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Amongst the aromatic macrocycles, porphyrins, such as the cationic H2TMPyP and
analogs appear as the most widely tested telomerase inhibitors [32,33,53–55].

Structural attributes such as the presence of an extended heteroaromatic moiety that
can interact on the G-quartet surface of a G-quadruplex by π−π stacking, and flexible
cationic charged terminal side chains are pointed as essential features for effective ligand
binding to a quadruplex and optimal inhibition of telomerase activity [9]. Other important
structural characteristics are the presence of bulky substituents to prevent intercalation with
double-stranded DNA and good solubility in aqueous media. In general, aromatic/planar
molecules such as porphyrins and analogs, especially if positively charged, present good
GQ stabilizing properties with high affinity for G-quadruplexes (Kb ≥ 106 M−1, where Kb
corresponds to the binding constant) [56–58].

Ligands containing metals present higher interaction with G-quadruplexes due to
stronger π-π interactions and/or coordination processes, thus being more selective for
GQ [42,59]. A metal center can be predicted as a structural region that sets ligands in
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specific geometries, thus optimizing their binding properties. Ligands with different metal
centers can assume different geometries. In addition to their structural characteristics, the
presence of metal centers can reduce the electron density on coordinated aromatic ligands,
increasing the strength of π-π interactions with G-quartets.

As mentioned above, in the following section special attention will be given to works
where the tetracationic H2TMPyP and related porphyrins were key players and how their
coordination with different metals affects the stabilization and selectivity for GQ over
duplex. Moreover, the wide range of small polycyclic ligands studied in this field has been
the subject of other excellent revisions [9,40,52].

Porphyrins and Metalloporphyrins as Interactive G-Quadruplex Ligands

The cationic H2TMPyP is one of the most studied porphyrins in telomerase inhibition
by adduct formation with telomeric GQ structures [38,56,60], and in the stabilization of
non-telomeric biologically relevant GQs from human oncopromoters, bacterial genomes
and viral genomes [8].

The structure of tetrapyrrolic macrocycles like porphyrins can be changed in the
periphery, at the meso or β-pyrrolic positions, with several types of substituents or at the
porphyrin inner core by metal coordination, affording stable metallo-based ligands [61,62].

The type of interaction between cationic porphyrins and DNA structures depends not
only on the location, size and charge of peripheral substituents but also on the presence
or absence of metal in the porphyrin core [14]. It has been reported that the presence,
at meso positions, of pyridinium substituents not only favors interactions with DNA by
π-π stacking but also improves its water solubility, thus being an important feature for
telomerase inhibition [31,39,63,64].

Cationic porphyrins are able to interact with negatively charged phosphate groups
of DNA structures, minimizing the electrostatic repulsions. Moreover, their diameter is
compatible with the diameter of the central channel of GQ, thus interaction by end-stacking
was described to be favorable [31].

As already mentioned, the H2TMPyP is one of the most studied porphyrins in this
field, and although reported as presenting high affinity to GQ, its poor selectivity for
GQ over duplex structures is recognized [60]. To increase its selectivity, porphyrin mod-
ifications, either at the peripheral positions or at the inner core, were envisaged. The
complexation of porphyrins and analogs with metals appears to be a strategy to increase
porphyrin selectivity.

Izbicka et al. [65] reported for the first time the ability of metalloporphyrins to interact
with G-quadruplex structures present in the telomeric sequence. These studies involved
cell-based biochemical assays and molecular modeling, namely using the InIII and CuII

complexes of H2TMPyP and QP4 (Figure 9). The binding mode of porphyrins and met-
alloporphyrins was proposed to be π-π stacking, specifically end-stacking on the top of
the G-quartets at the termini of the GQ structures. An enhanced binding affinity was
proposed for metalloporphyrins through an additional electrostatic interaction induced by
the presence of metal ions.

A study where the MnIII metal complex of the TMPyP was activated with the potas-
sium monopersulfate (KHSO5), an oxygen atom donor, forming a very reactive high-valent
porphyrin Mn(V)=O species was reported by Vialas et al. [66]. The authors reported that effi-
cient oxidative cleavage of the quadruplex could be mediated by this oxo-metalloporphyrin.
Using Polyacrylamide Gel Electrophoresis analysis (PAGE), the authors were able to iden-
tify the location of damage; the obtained results showed that the metalloporphyrin was
able to bind to the last G-quartet of the quadruplex structure via an external interaction. It
has been found that the high-valent oxo-metalloporphyrin was also able to mediate both
electron-abstraction or H-abstraction on guanine or thymine residues, respectively, within
the GQ target.

Later, Shi et al. [67] published a scientific paper revisiting the telomerase inhibiting
activity of H2TMPyP (or H2TMPyP4) and of a wide range of analogs such as TMPyP3,
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TMPyP2, QP4 and QP3, (Figure 9) among others. The authors were able to SAR rules
related to the importance of the presence of positively charged substituents, its position at
meso or beta positions and the influence of bulky substituents on the interaction with GQ.
The percentage of telomerase inhibition by several complexes of H2TMPyP, namely the
ZnII, CoIII, FeIII, NiII, MnIII, CuII, MgII, PtII and PdII ones, was also accessed using a primer
extension assay. The authors found that the square planar CuII complex and the pyramidal
ZnII were the better inhibitors and correlated this with the unhindered face for stacking
offered by these two metalloporphyrins.
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The interaction of the complex CuIITMPyP with tetramolecular GQ with general
sequence T4GnT4, (n = 4 and 8) was studied by Keating et al. [68] using the spectroscopic
methods UV-Vis, fluorescence, CD and electron paramagnetic resonance (EPR). A binding
stoichiometric ratio of 2:1 (CuIITMPyP-GQ) was described and end-stacking of CuIITMPyP
at each end of the G-quadruplex was proposed. Similar behavior has been described for
the same porphyrin complex CuIITMPyP and the T4GnT4 sequence, with n between 4 and
10 [69].

The CuII, NiII, ZnII and CoIIITMPyP derivatives were also explored in a study estab-
lished to understand the effect of the coordinated metal, its geometry and of an additional
positive charge (in the case of the CoIII) on the interactions of these metalloporphyrins
with human telomeric GQ [70]. This study points to the existence of two binding modes,
consistent with the coexistence of end-stacking and intercalation in the case of NiII and
CuII porphyrins in a stoichiometry of 4:1. For ZnII and CoIII, the presence of axial ligands
justifies the interaction occurring exclusively by end-stacking in a 2:1 stoichiometric ratio.

In 2005, Dixon et al. published a paper describing how the change in the metal co-
ordinated in the porphyrin core influences the kinetics and its mode of interaction [71].
Considering that, under physiological conditions, the nickel porphyrins are inert concern-
ing redox processes and are not photoactivable, it is expected that they interact with the
telomeres passively by stacking processes. On the other hand, the manganese derivatives
should be able to interact with telomeres and damage them by oxidative processes within
cells, but stacking interactions are impossible for MnIII derivatives due to the presence of
water as axial ligands.

Taking these facts into account, the binding properties of the NiII and MnIII metallo-
porphyrins owning one of the meso substituents with different length and bulky elements
(compounds 2 and 3, Figure 10) were studied by surface plasmon resonance (SPR), and
the capacity of the NiIITMPyP to inhibit telomerase was also evaluated by a telomeric
repeat amplification protocol (TRAP) assay. It has been found that the nature of the metal
influences not only the kinetics but also the ligand binding mode. Higher selectivity, a
tenfold preference for quadruplex over duplex, was observed for MnIIITMPyP [71]. The
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authors also showed that the kinetics of drug interaction with GQ DNA seems to depend
on the mode of binding—end-stacking vs. external binding—in the GQ grooves.
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The kinetic constants for the association and dissociation of different porphyrins with
duplex and quadruplex DNA were obtained and depending on the kinetic mode (slow or
fast) different types of interaction were proposed.

An aromatic moiety that can interact, by stacking, with DNA is present in the por-
phyrins that presented fast kinetics. The MnIII porphyrin derivatives (compounds 1, 2
and 4, Figure 10) showed slow kinetics that were explained either by the perturbation of
the coordination sphere of the metal ion upon interaction with DNA, or, more likely, by a
binding mode that is different from stacking (external binding).

Later, the same research group published a communication reporting the ability of a
MnIII pentacationic porphyrin to discriminate, by four orders of magnitude, the quadruplex
from the duplex structures, probably as a result of combining in its structure a central
aromatic core and four flexible cationic arms [72]. The study was performed using SPR to
measure the noncovalent equilibrium binding constants and the TRAP assay. The authors
suggested that the bulky cationic substituents surrounding the aromatic core of the ligand
could be responsible for its poor affinity for duplex DNA. The hypothesis of the occurrence
of interaction by stacking with the last tetrad of quadruplex DNA by loss of one axial
ligand or fitting of an axial water ligand within the central ion channel was also presented.

Another study involving NiIITMPyP, MnIIITMPyP, CoIIITMPyP and AuIIITMPyP was
later described [60]. H2TMPyP analogs with bulky substituents were also studied. From
the CD, fluorescence, SPR, telomerase assay and in vitro experiments, the authors revealed
that the porphyrins with MnIII and CoIII present lower stabilization properties towards
G3(TTAG3)3 when compared to the free base, NiII and AuIII porphyrins (Figure 11).
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The presence of water molecules on either side of the porphyrin core of MnIIITMPyP
and CoIIITMPyP (Figure 11B) was pointed out as a factor that prevents the porphyrin
intercalation between the base pairs of DNA and, consequently, decreases the porphyrins
binding affinity to double-stranded DNA. On the other hand, the authors revealed that
axial water molecules might hinder the initial stacking of the porphyrin molecule at the
G-quadruplex end. The in vitro cellular tests performed with free-base and MnIIITMPyP
analogs containing bulky substituents showed that these ligands can penetrate cells and
mediate some of the typical cellular effects of small GQ ligands.

A porphyrin scaffold, the 5,10,15,20-tetrakis(4-(1-methylpyridinium-2-yl)phenyl)-
porphyrin (H2TMPy2PP, Figure 12) and its metal complexes with NiII, CoIII and MnIII

were studied, aiming to evaluate the impact of the variation of the charge position and
axial coordination in the center of the porphyrin in the binding affinity of the selected
complexes. The MTMPy2PP derivatives were studied in the presence of GQ and duplex
DNA structures using fluorescence resonance energy transfer (FRET), CD, SPR and NMR
methods [73]. The authors conclude that the interaction with GQ of all the derivatives, even
of the CoIII complex coordinated with two water molecules, occurs by a π-stacking-like
mode with an external G-quartet. Later, Dejeu et al. [74] extended the previous study to
the NiII, CoIII and MnIII complexes of the 5,10,15,20-tetrakis(4-guanidinophenyl)porphyrin
(MTGP) (Figure 12).
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Figure 12. Structures of 5,10,15,20-tetrakis(4-(N-methyl-pyridinium-2-yl)phenyl)-porphyrin
(MTMPy2PP) and 5,10,15,20-tetrakis(4-guanidinophenyl)porphyrin (TGP) derivatives, studied by
Sabater et al. [73].

The results obtained for these two series of metalloporphyrins based on the ligands
MTGP and MTMPy2PP were then compared with those reported for the corresponding
H2TMPyP. The authors noted that, when compared to the metalated MTMPyP porphyrin
series, it is striking that the influence of the metal is completely different. From this study,
the authors conclude that the MTGP and MTMPy2PP porphyrins were better GQ ligands
than their MTMPyP counterparts and, on the contrary to the H2TMPyP metal derivatives,
the metal had no influence on the observed dissociation constant (KD) values.
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ZnIITMPyP was also explored in an interesting work where its interaction with a
quadruplex structure stabilized by the unusual presence of lead ion (Pb-GQ) (Figure 13)
was evaluated using CD and UV-Vis spectroscopy and mass spectrometry [75]. The Pb-GQ
structure was found to be formed in a 1:1 stoichiometry (PbII-GQ). The ZnIITMPyP was
described as a Pb-GQ structure-stabilizing ligand. The steric hindrance of the axial ligand
of ZnII and the relatively rigid structure of Pb-GQ was pointed out as factors that precluded
the ligand intercalation and an interaction exclusively by end-stacking was proposed.

Aiming to understand the mechanism of ligand-assisted GQ folding, the potential of
H2TMPyP, and of its ZnII, CuII and PtII complexes, to induce GQ folding from the single-
stranded sequence (TAGGG)2 in a buffer containing K+ was investigated [76]. The authors
demonstrated, using CD and UV-Vis experiments, that only ZnIITMPyP was able to induce
the folding of GQ structure of the studied sequence. A stoichiometry of 2:1 (ZnIITMPyP-
[(TAGGG)2]2 GQ) by end-stacking with an affinity constant (Ka) of about 106 M−1 was also
reported from UV-Vis and isothermal calorimetry (ITC) titrations. The order for the GQ stabiliz-
ing ability of the studied compounds was ZnIITMPyP ~ H2TMPyP > CuIITMPyP > PtIITMPyP.
PtIITMPyP was referred to as not owning GQ stabilizing properties.
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Later, the interaction of PtIITMPyP and PdIITMPyP complexes with quadruplex
structures present in telomeres and oncogene promotors was again described in a study
performed by Sabharwal et al. [77] using UV-Vis, fluorescence and CD spectroscopies,
FRET melting assays and resonance light scattering. The obtained results suggest that both
porphyrin complexes interact with telomeric quadruplex by π-π stacking with a binding
affinity of 106–107 M−1. A modest selectivity for quadruplex vs. duplex was described
for both metalloporphyrins. Interesting results about the aggregation of PtIITMPyP under
porphyrin excess conditions using Tel22 as a template were found. The authors noted the
dissolution of the aggregates at concentration ratios [PtIITMPyP]/[Tel22] ≤ 2, reaching
their maximum size at [PtIITMPyP]/[Tel22]~8.

The ZnIITMPyP and CuIITMPyP complexes were revisited in a study where the
interactions between the H2TMPyP (or H2TMPyP4) and the isomeric structure H2TMPyP2
were evaluated with the tetramolecular sequences T4G4 and T4G4T in the presence of buffer
solutions containing K+ or Na+ ions [54]. Using CD, UV-Vis and fluorescence spectroscopy,
the authors elucidate the effect of the 3′-T on the stabilization of porphyrins, binding
modes, affinities and stoichiometries. This study provides information about the influence
of metal center substitution and modulation of peripheral groups on porphyrin binding to
GQ structures and identifies ZnIITMPyP as a promising GQ ligand, its binding being once
again proposed to occur by end-stacking.

The interaction of the ZnIITMPyP with three different GQ structures, (TG4T4)4,
(G4T4G4)2 and AG3(T2AG3)3 with tetramolecular, bimolecular and unimolecular topolo-
gies, respectively, was also evaluated using transient absorption spectroscopy to monitor
the triplet decay dynamics of ZnIITMPyP [78]. The coexistence of different binding modes
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via π-π stacking of porphyrin macrocycle and the G-quartets was quantitatively identified
and described as being intercalation/end-stacking for (G4T4G4)2 and AG3(T2AG3)3 and
end-stacking/partial intercalation for (TG4T4)4. The authors reinforced that the interca-
lation process is undesirably affected by the steric hindrance of the axial water. Binding
stoichiometric ratios of 1:2 for (TG4T4)4 and AG3(T2AG3)3, and of 1:1 for (G4T4G4)2, were
reported for GQ/ZnIITMPyP adducts.

The GQ stabilization ability and selectivity of the gold(III) porphyrin AuIIITMPyP
was recently re-evaluated using biophysical and biochemical assay [79,80] and com-
pared with the behavior of other porphyrin derivatives (Figure 11A) already studied
by Romera et al. [60]; porphyrins were also tested as inhibitors of telomerase. The authors
showed an increase in the binding affinity of the porphyrin to the GQ target when a AuIII

ion was present in the porphyrin core. Modeling studies suggested that the insertion of the
square planar AuIII ion favors π-π staking with stronger electrostatic interactions, since
an extra positive charge is added to the porphyrin and a decrease in the electron density
is induced.

An overview of the main obtained data with the cationic porphyrins selected in the
studies reported here, like the DNA sequences used, binding mode, affinity, porphyrin:GQ
stoichiometry, experimental conditions and the most relevant techniques, can be found
below in Table 1. The structures of the porphyrins referred in Table 1 are resumed in
Figure 14.
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The analysis of a high number of scientific articles comprising the interaction of
H2TMPyP, its metal complexes and some analogues with different DNA sequences by
recurring to different methodologies and experimental conditions motivated us to comple-
ment this review with a screening where the behavior of H2TMPyP and of its ZnII, CoIII,
NiII, CuII, PdII and MnIII complexes as interactive GQ ligands was evaluated under the
same experimental conditions and using the same GQ sequences. It is important to high-
light that this evaluation allows comparing different complexes under unified conditions,
facilitating the clear identification of the most promising compound. Taking advantage of
the spectroscopic features of the porphyrins and metalloporphyrins, the possible impact of
the experimental conditions on the interaction mode of these ligands was evaluated using
readily accessible techniques such as UV-Vis and fluorescence spectroscopy. The screening
was extended for the first time to the AgII complex of H2TMPyP, and the selectivity of the
ligands for GQ vs. duplex DNA structures was evaluated by performing the studies also in
the presence of Salmon Sperm DNA.
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Table 1. Compilation of results obtained for the MTMPyP and analogues (vide infra Figure 14) by different selected authors (organized by alphabetic order), using different methodologies.

Reference Porphyrin * Metal DNA Sequence (5′-3′)

Major Findings Buffer Relevant
Techniques

Ka (M−1) or KD Binding Mode Porphyrin: GQ
Stoichiometry

Other
Parameters

Boschi et al. [54]

TMPyP4

Free-base

(T4G4)4 Ka = (3.7 ± 0.9) × 106

End-stacking and
possibly

intercalation
2:1

T1/2 = 312.6 ± 0.4 K;
%H = 35 ± 1;

∆λ = 13.4 ± 0.7 nm

K
PI

UV-Vis,
fluorescence, CD,

melting

(T4G4T)4 Ka = (3.0 ± 1.5) × 106
T1/2 = 317.7 ± 1.0 K;

%H = 36 ± 1;
∆λ = 15.4 ± 0.3 nm

Cu(II)

(T4G4)4 Ka = (1.4 ± 0.6) × 106

End-stacking and
possibly

intercalation
1:1

T1/2 = 310.1 ± 0.4 K;
%H = 22 ± 1;

∆λ = 7.1 ± 0.7 nm

(T4G4T)4 Ka = (1.1 ± 0.7) × 106
T1/2 = 315.7 ± 1.3 K;

%H = 26 ± 2;
∆λ = 8.3 ± 0.1 nm

Zn(II)

(T4G4)4 Ka = (16 ± 6.0) × 106

End-stacking and
groove- or

outside-binding

2:1

T1/2 = 324.6 ± 0.6 K;
%H = 33 ± 3;

∆λ = 11.5 ± 0.2 nm

(T4G4T)4 Ka = (11 ± 2.0) × 106
T1/2 = 336.2 ± 0.6 K;

%H = 32 ± 1;
∆λ = 14.2 ± 0.3 nm

TMPyP2 Free-base

(T4G4)4 Ka = (2.0 ± 1.0) × 106 1:1
T1/2 = 320.9 ± 0.3 K;

%H = 23 ± 4%;
∆λ = 5.7 ± 0.6 nm

(T4G4T)4 Ka = (6.3 ± 0.6) × 106
End-stacking and

groove- or
outside-binding

1:1
T1/2 = 329.8 ± 0.3 K;

%H = 22 ± 2%;
∆λ = 6.3 ± 0.6 nm

Dejeu et al. [74] TMPyP4

Free-base

(T2AG3T) KD = 62 nM

End-stacking
not available not available

H
EP

ES

SPR, FRET

(G3T2A)3G3T2 KD = 345 nM

(CG)4T4(CG)4 (duplex) KD = 345 nM

Co(II)

(T2AG3T) KD = 6600 nM

(G3T2A)3G3T2 KD = 5500 nM

(CG)4T4(CG)4 (duplex) n.b.

Mn(III)

(T2AG3T) KD = 9000 nM

(G3T2A)3G3T2 KD = 10,000 nM

(CG)4T4(CG)4 (duplex) n.b. n.b.
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Table 1. Cont.

Reference Porphyrin * Metal
DNA Sequence

(5′-3′)

Major Findings Buffer Relevant
Techniques

Ka (M−1) or KD Binding Mode Porphyrin: GQ
Stoichiometry

Other
Parameters

Dejeu et al.
[74]

TMPyP4 Ni(II)

(T2AG3T) KD = 59 nM

End-stacking

not available

(G3T2A)3G3T2 KD = 240 nM

(CG)4T4(CG)4
(duplex) KD = 200 nM

TMPyP2

Free-base

(T2AG3T) KD = 52 nM

(G3T2A)3G3T2 KD = 114 nM

(CG)4T4(CG)4
(duplex) KD = 404 nM

Co(II)

(T2AG3T) KD = 3.4 nM

(G3T2A)3G3T2 KD = 15 nM

(CG)4T4(CG)4
(duplex) KD = 417 nM

Mn(III)

(T2AG3T) KD = 4 nM

not available

(G3T2A)3G3T2 KD = 29 nM

(CG)4T4(CG)4
(duplex) n.b. n.b.

Ni(II)

(T2AG3T) KD = 29 nM

End-stacking

(G3T2A)3G3T2 KD = 5.4 nM

(CG)4T4(CG)4
(duplex) KD = 185 nM

TGP

Free-base

(T2AG3T) KD = 83 nM

(G3T2A)3G3T2 KD = 290 nM

(CG)4T4(CG)4
(duplex) KD = 16,000 nM

Mn(III)

(T2AG3T) KD = 20 nM

(G3T2A)3G3T2 KD = 24 nM

(CG)4T4(CG)4
(duplex) n.b. n.b.
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Table 1. Cont.

Reference Porphyrin * Metal
DNA Sequence

(5′-3′)

Major Findings Buffer Relevant
Techniques

Ka (M−1) or KD Binding Mode Porphyrin: GQ
Stoichiometry

Other
Parameters

Dejeu et al.
[74] TGP Ni(II)

(T2AG3T) KD = 18 nM

End-stacking not available
(G3T2A)3G3T2 KD = 53 nM

(CG)4T4(CG)4
(duplex) KD = 1030 nM

DuPont et al.
[70]

TMPyP4

Co(III) AG3(T2AG3)3 Ka = (1.2 ± 0.7) = × 105 End-stacking 2:1

∆H1 = −2.8 ± 0.1
kcal/mol;

−T∆S1 = −4.1 ± 0.1
kcal/mol

K
+

BP
ES ICT, CD,

ESI/MS

Ni(II) AG3(T2AG3)3 Ka = 7.4 ± 0.8) × 107

End-stacking and
intercalation 4:1

∆H1 = −3.2 ± 0.3
kcal/mol;

−T∆S1 = −7.6 ± 0.4
kcal/mol

Cu(II) AG3(T2AG3)3 Ka = (1.7 ± 1.1) × 1010

∆H1 = −4.2 ± 0.1
kcal/mol;

−T∆S1 = −9.2 ± 0.6
kcal/mol

Zn(II) AG3(T2AG3)3 Ka = (7.6 ± 0.6) × 105 End-stacking 2:1

∆H1 = −4.6 ± 0.4
kcal/mol;

−T∆S1 = −3.4 ± 0.4
kcal/mol

Keating et al.
[68]

TMPyP4 Cu(II)

(T4G4T4)4 Ka = 5.6 × 106 End-stacking 2:1 %H = 50;
∆λ = 9 nm

K
Pi

UV-Vis,
fluorescence,

CD, EPR(T4G8T4)4 Ka = 5.2 × 107 End-stacking and
intercalation 3:1 %H = 58;

∆λ = 12 nm

Romera et al.
[60]

TMPyP4 Free-base

(T2AG3T) Ka = 1.6 × 107

End-stacking not available not available

H
EP

ES SPR, FRET, CD,
TRAP assay

(G3T2A)3G3T2 Ka = 2.9 × 106

(CG)4T4(CG)4
(duplex) Ka = 2.9 × 106
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Table 1. Cont.

Reference Porphyrin * Metal
DNA Sequence

(5′-3′)

Major Findings Buffer Relevant
Techniques

Ka (M−1) or KD Binding Mode Porphyrin: GQ
Stoichiometry

Other
Parameters

Romera et al.
[60]

TMPyP4

Au(III)

(T2AG3T) Ka = 2.2 × 106

(G3T2A)3G3T2 Ka = 1.2 × 106

(CG)4T4(CG)4
(duplex) Ka = 4.3 × 106

Co(III)
(T2AG3T) Ka = 1.5 × 105

End-stacking not available not available
(G3T2A)3G3T2 Ka = 1.8 × 105

Mn(III)
(T2AG3T) Ka = 1.1 × 105

End-stacking
not available not available H

EP
ES

(G3T2A)3G3T2 Ka = 1.0 × 105

Ni(II)

(T2AG3T) Ka = 1.7 × 107

(G3T2A)3G3T2 Ka = 4.2 × 106

(CG)4T4(CG)4
(duplex) Ka = 5.0 × 106

Porphyrin 1 Mn(II)

(T2AG3T) Ka = 1.7 × 107

(G3T2A)3G3T2 Ka = 1.8 × 107

(CG)4T4(CG)4
(duplex) n.b. n.b.

Sabater et al.
[73] MA Co(III)

(T2AG3T) KD = (17 ± 0.4) nM

End-stacking not available not available

H
EP

ES FRET melting
assay, SPR, CD,

NMR

(G3T2A)3G3T2 KD = (60.2 ± 1.9) nM

(CG)4T4(CG)4
(duplex) KD = (3660 ± 13.4) nM
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Table 1. Cont.

Reference Porphyrin * Metal
DNA Sequence

(5′-3′)

Major Findings Buffer Relevant
Techniques

Ka (M−1) or KD Binding Mode Porphyrin: GQ
Stoichiometry

Other
Parameters

Sabharwal
et al. [77] TMPyP4

Pd(II) AG3(T2AG3)3 Ka = (1.0 ± 0.3) × 107

End-stacking

6.5:1 ∆T = 30.9 ± 0.4 ◦C;

K
Pi

UV-Vis,
fluorescence and

CD
spectroscopies,
FRET melting

assays, and
resonance light

scattering

Pt(II) AG3(T2AG3)3 Ka = (5.8 ± 0.8) × 106 7:1 ∆T = 30.7 ± 06 ◦C

Abbreviations: Ka = affinity (or binding) constant; KD = dissociation constant; n.b. = non-binding; T1/2 = temperature of half transition; %H = hipochromic percentage; ∆λ = red shift; ∆T—melting temperature
deviation * Porphyrin structures showed in Figure 14.
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3. Evaluation of the Interactions H2TMPyP and of Its Metal Complexes (M = AgII,
ZnII, CoIII, NiII, PdII, MnIII and CuII) with GQ and ds DNA Structures
3.1. UV-Vis Spectroscopy

The free-base H2TMPyP and the corresponding ZnII, NiII, CuII, AgII, PdII, MnIII and
CoIII metallo complexes were prepared according to literature procedures [25,81]. In the
selection of the complexes, we had into account several studies reporting that the ZnII and
CuII complexes are the better GQ stabilizers and telomerase inhibitors. The controversy
concerning the influence of the axial water in the interaction of the MnIII or CoIII porphyrin
complexes prompted us also to evaluate the behavior of these complexes. The AgII complex
of TMPyP was considered since, to the best of our knowledge, this is the first time that this
complex was evaluated as a GQ stabilizer.

The studies were undertaken using three different DNA sequences which give rise
to different GQ topologies (Table 2 and Figure 15), namely the tetramolecular sequence
(TG4T)4, the bimolecular Oxytricha repeat oligonucleotide (G4T4G4)2 [82] and the human
telomeric repeat (AG3(T2AG3)3) [83]. A long-chain DNA strand (salmon sperm) was also
used to compare the affinity and to evaluate the selectivity of the tested porphyrins for
G-Quadruplex structures.

The oligonucleotide (TG4T4)4 assumes a parallel tetramolecular topology with guanine
residues with glycosidic torsion angles in anti geometry, forming a right-handed helical
structure with four equivalent grooves. This GQ is a Tetrahymena telomeric repeat sequence
that results from the arrangement of four separate strands, thus not including any loop.

The oligonucleotide (G4T4G4)2 presents four stacked G-quartets and two groups of
four thymine residues involved in the formation of two diagonals loops, thus acquiring
a symmetrical antiparallel bimolecular GQ topology. Adjacent strands are alternately in
parallel and antiparallel orientations, the guanine residues being consecutively in syn and
anti geometries, in agreement with the syn-syn-anti-anti of the glycosidic torsion angles
around each G-quartet. The same topology in the presence of K+ and Na+ ions was found
in NMR solution studies [82].

Table 2. Sequence and topology of studied oligonucleotides.

Oligonucleotide Sequence Topology Abbreviation

5′-TGGGGT-3′

(Tetrahymena telomeric repeat) Tetramolecular G-Quadruplex (TG4T)4

5′-GGG GTT TT GGG G-3′

(Oxytricha repeat oligonucleotide) Bimolecular G-Quadruplex (G4T4G4)2

5′-AGG GTT AGG GTTAGG GTT AGGG-3′

(human telomeric repeat) Unimolecular G-Quadruplex AG3(T2AG3)3

long single strand Double-strand DNA Salmon-sperm DNA

The human telomeric sequence AG3(T2AG3)3 could adopt distinct topologies in
K+ buffer solutions, which are different from the ones reported in the presence of Na+

cation [83]. The crystal structure of the K+ form reveals that all GGG segments are in
parallel positions with guanine residues in the anti geometry [84]. TTA loops connect the
top and the bottom of two GGG strands and are in a double chain reversal conformation.
The loop residues are positioned next to the grooves rather than at the quadruplex ends.
The presence of these reversal loops limits the access to the grooves and so, the external
quartets expose their planar surface areas that become available to aromatic ligands binding.
The human telomeric sequence is also described as a mixture of antiparallel and hybrid
structures [15]. Structure and topology of the three studied GQ are represented in Figure 15.
In the case of the unimolecular GQ, the most common topologies are presented.

The typical electronic absorption spectra of porphyrins with a highly intense Soret
band ranging from 413 to 461 nm accompanied by less intense Q bands (four for the free-
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bases and two for metalloporphyrins) between 500 and 650 nm, prompted us to use UV-Vis
to obtain qualitative and quantitative information about GQ/porphyrin interactions [41,42].
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Under this context, when a ligand interacts with DNA structures, changes in its
characteristic absorbance bands, such as hypochromic/hyperchromic and bathochromic
(typically red shift) alterations, can occur depending on the type of interactions. The
bathochromic shift is associated with a decrease in the π-π* transition energy due to the
coupling of the π bonding orbital of the DNA base pairs with the empty π* antibonding
orbital of the ligand [32].

As a result of an intercalative binding process, typical values of hypochromicity higher
than 35% and bathochromicity (red shift) above 15 nm in the Soret band are expected;
it is important to take into account that these values were determined for long pieces of
duplex DNA where the end-stacking is not significant [32,67,85]. Due to the less direct
contact between π-systems, changes in the UV-Vis absorption spectra are less remarkable
for groove binding or outside binding, for which red shifts lesser than 8 nm have been
described [86,87]. Thus, by analyzing the batho- and hypochromic effects on the obtained
spectra at the end of the titrations, it is possible to evaluate the affinity, the selectivity and
to predict the type of interaction.

The UV-Vis titrations of the silver complex AgIITMPyP, the free-base H2TMPyP and of
the other MTMPyP complexes (M = ZnII, CoIII, NiII, PdII, MnIII and CuII) were performed by
adding aliquots of the selected GQ topologies, referred above in Table 2, and of the double-
stranded DNA structure in phosphate buffer saline (PBS) to each ligand; the titrations were
stopped after obtaining a constant absorbance during three successive additions of each
oligonucleotide (see details of the experimental procedures and of the structure, molar
extinction coefficient (ε) and absorbance maximum (λmax) of all the studied porphyrins in
Supplementary Materials as Table S1). Blank experiments were performed with PBS buffer
before the titration of each ligand with the selected DNA structures (data not shown).

The UV-Vis spectra obtained with H2TMPyP and with the metal complexes MTMPyP,
where M = AgII, ZnII, CoIII, NiII, PdII, CuII and MnIII, at the end of the titrations with each
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GQ structures are summarized in the Supplementary Materials, Figure S6. The results
of red shifts, hypochromism percentage, stoichiometry (L:DNA) and Kb values obtained
for H2TMPyP and for the metal complexes in the presence of each DNA structure are
summarized in Table 3.

As an example, the changes observed in the UV-Vis spectra of AgIITMPyP during its
titration with the different GQ structures AG3(T2AG3)3 (unimolecular), G4T4G4 (bimolec-
ular) and TG4T (tetramolecular) and with the salmon sperm double-stranded DNA are
presented in Figure 16 (see also Figures S1–S5, in Supplementary Materials).

From the data obtained it is possible to observe that the AgII derivative presents high
affinity and selectivity for all the GQ structures, since red shifts between 9 and 13 nm and
binding constants (Kb) in the range of 1.63 × 106–1.13 × 107 (Table 3, entry 1) were found.
In the case of double-stranded (ds) salmon sperm, a red shift of 7 nm and a Kb of 6.97×104

was observed.
The observed red shifts and hypochromism percentages between 18% and 22%, ob-

served in the titrations with GQ, are consistent with an external interaction, probably
by end-stacking [86,87]. The high difference observed between the unimolecular GQ,
AG3(T2AG3)3, (Kb = 1.13 × 107) and the ds DNA (Kb = 6.97 × 104) structures is highly
indicative of the selectivity of the AgIITMPyP ligand towards GQ structures. The binding
constant observed for AgIITMPyP is 10-fold higher than the one observed for the free-base
H2TMPyP (Table 3, entry 2) and it is the highest value obtained for the metalloporphyrins
(Table 3, entries 3–7). These results, along with the observed selective behavior, indicate
that AgIITMPyP can be a promising GQ stabilizing ligand. The 3:1 ligand-to-GQ (L:GQ)
stoichiometry obtained for the tetra and bimolecular topologies and 4:1 L:GQ for the
unimolecular one reinforces the ability of this ligand to interact with GQ structures.
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Table 3. Red shift, % hypochromism and Kb values obtained for H2TMPyP and its metal complexes.

G-Quadruplexes (GQ) Double-Stranded (ds)

Entry (TG4T)4 (G4T4G4)2
AG3

(T2AG3)3
Salmon Sperm Ligand (L)

Red shift (nm) 11 9 13 7

AgIITMPyP
(1) % Hypochromism 22 18 19 46

L:DNA Stoichiometry 3:1 3:1 4:1 n.a.
Kb (M−1) (1.63 ± 0.31) × 106 (6.72 ± 0.41) × 106 (1.13 ± 0.41) × 107 (6.97 ± 0.37) × 104

Red shift (nm) 11 3 16 12

H2TMPyP(2) % Hypochromism 23 41 28 36
L:DNA Stoichiometry 3:1 3:2 4:1 1:1

Kb (M−1) (1.66 ± 0.41) × 106 (6.43 ± 0.44) × 105 (2.57 ± 0.47) × 106 (1.49 ± 0.32) × 106

Red shift (nm) 13 8 14 2

ZnIITMPyP
(3) % Hypochromism 17 74.6 27 5

L:DNA Stoichiometry 3:1 3:1 4:1 2:1
Kb (M−1) (3.25 ± 0.38) × 106 (8.57 ± 0.76) × 105 (4.33 ± 0.43) × 106 (3.52 ± 0.74) × 105

Red shift (nm) 0 −3 12 1

CoIIITMPyP
(4) % Hypochromism 26 23 32 49

L:DNA Stoichiometry 3:1 3:1 4:1 1:1
Kb (M−1) (5.30 ± 0.89) × 105 (1.86 ± 0.58) × 105 (1.00 ± 0.39) × 106 (1.36 ± 0.40) × 105

Red shift (nm) 8 6 12 6

NiIITMPyP
(5) % Hypochromism 40 42 35 24

L:DNA Stoichiometry 3:1 3:1 3:1 1:1
Kb (M−1) (8.28 ± 0.39) × 106 (2.56 ± 0.41) × 106 (4.84 ± 0.44) × 106 (1.11 ± 0.39) × 106

Red shift (nm) 9 8 14 8

PdIITMPyP
(6) % Hypochromism 5 12 14 24

L:DNA Stoichiometry 4:1 3:1 4:1 2:1
Kb (M−1) (6.55 ± 0.38) × 106 (1.35 ± 0.41) × 106 (9.26 ± 0.36) × 106 (2.64 ± 0.44) × 106

Red shift (nm) 6 1 8 1

CuIITMPyP
(7) % Hypochromism 28 15 28 3

L:DNA Stoichiometry 4:1 3:1 3:1 1:1
Kb (M−1) (3.67 ± 0.42) × 106 (2.49 ± 0.41) × 105 (2.33 ± 0.44) × 106 (5.58 ± 0.79) × 105

n.a.—not available; DNA—GQ or ds.

The differences (lower red shift and hypochromic effect) observed between the bi-
molecular and the GQ in tetra and unimolecular conformations can be justified by the
presence of two diagonal loops in the bimolecular conformations (Figure 15) that can
difficult the ligand binding to the GQ structure in special if end-stacking is considered.

For the MnIII complex, the interaction with both the GQ tetramolecular and the double-
stranded salmon sperm was almost absent (Figure S6H; this lack of interaction was not
introduced in Table 3). These results confirm the previous reports, [60,71,72] pointing to
the poor stabilization and stacking interactions by MnIII complexes due to the presence of
water molecules as axial ligands; no more studies were performed with this complex.

Overall, from the data obtained it is possible to observe that, with exception of the
MnIII complex, the free-base H2TMPyP and the metalloporphyrins present good affinity
for both DNA structures. Higher affinity for the GQ structures, when compared to the
observed for double-stranded DNA, was observed when considering the unimolecular
conformation AG3(T2AG3)3, for which the Kb are in the range of 106–107 M−1.

For CoIIITMPyP (Table 3, entry 4 and Figure S6D) the most significant bathochromic
effect was observed for the unimolecular GQ (with a red-shift of 12 nm) while the bimolecu-
lar GQ structure showed a blue shift of 3 nm; the insignificant or absent bathochromic effect
observed in the spectra of the tetramolecular conformation (∆λ = 0 nm) and of the salmon
sperm (∆λ = 1 nm) can be associated with the presence of water molecules as axial ligands
confirming their negative influence in the macrocycle interaction with DNA structures, as
previously reported [71,72].

For the NiIITMPyP derivative (Table 3, entry 5), a Kb with 106 M−1 order was found
for the GQ and double-stranded structures, pointing to the low selectivity of this derivative
for GQ structures. This low selectivity for GQ structures was also observed for the widely
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studied H2TMPyP. In general, when compared with the free base, the NiII derivative
showed higher Kb values.

The PdIITMPyP (Table 3, entry 6) complex showed high affinity for the GQ structures,
especially for the unimolecular topology, and a pattern of selectivity was also identified,
especially when comparing unimolecular GQ and the double-stranded structure.

Similar behavior was observed for the CuIITMPyP (Table 3, entry 7) ligand, although
the obtained data points this complex to having lower affinity for DNA structures, which
is consistent with their lower binding constants when compared to the data here reported
for the other studied complexes, except for CoIIITMPyP (Figure 17).

Red shifts lower than 15 nm and hypochromic percentages, in general, lower than
35% were observed for all the studied complexes, except for the NiII complex that showed
hypochromic percentages around 40%, pointing to the occurrence of interaction by external
stacking of ligands in the GQ structure. The type of interaction of the free-base H2TMPyP
has been involved in controversy in the scientific community, with some authors pointing
to intercalation as the binding mode, while a higher number of authors point to interaction
as occurring via external binding [31,60,88].

It is interesting to note that, with exception of the AgIITMPyP derivative, when looking
to the obtained Kb values, the interaction of the MTMPyP derivatives with the studied
bimolecular GQ, (G4T4G4)2, is again weaker. As mentioned before, this fact could be related
to the presence, in the GQ structure, of two diagonal loops that can limit the access of the
ligands to the terminal tetrads. The high affinity of the AgIITMPyP for the bimolecular GQ
is evidence of the high affinity of this derivative for GQ structures.

For better visualization of the impact of the ligands in each GQ and double-stranded
DNA, the Kb observed at the end of the UV-Vis titration of the MTMPyP ligands and the
selected DNA sequences are compared in Figure 17A,B.
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When analyzing the obtained binding constants, Kb values in the range of
2.5 × 105−1.6 × 107 M−1 were obtained in general for the GQ structures, pointing to
high affinity for these structures; for the studied double-stranded DNA, Kb values in the
range of 6.7 × 104–2.6 × 106 M−1 were found, representing slight interactions and confirm-
ing ligands selectivity for GQ structures. The results obtained for the AgIITMPyP complex
are very important since they point to this ligand as a promising ligand for selective GQ
stabilization, since the obtained Kb values are higher for GQ and much lower (21- or 5-fold)
for the ds DNA than those obtained for the H2TMPyP or the ZnIITMPyP derivatives, both
described as promising GQ stabilizing agents.

In general, the obtained results (Table 3) are in good agreement with the previous
ones reported in literature (Table 1). The order of magnitude found for the Kb of free-base
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H2TMPyP with the tetramolecular structure (TG4T)4 is in accordance with the one reported
by Boschi et al. for a similar tetramolecular GQ sequence (106 M−1). In addition, the
observed hypochromism and red-shift values are close to the reported values.

Our results suggest that the introduction of Zn(II) increased the binding affinity of the
free-base porphyrin to all tested GQ sequences, just as observed by Boschi et al. Still, the
experimental Kb found for the unimolecular GQ AG3(T2AG3)3 (4.33× 106 M−1) was higher
than the one reported by DuPont et al. (7.6 × 105 M−1) using different techniques. The Kb
found for CoIIITMPyP with AG3(T2AG3)3 (1.00 × 106 M−1) was one order of magnitude
superior to the one described by DuPont et al. (1.2 × 105 M−1), while for NiIITMPyP it was
one order of magnitude lower (4.8 × 106 vs. 7.4 × 107 M−1, respectively). For PdIITMPyP,
a significant resemblance was observed between our experimental results (9.3 × 106 M−1)
and the value reported by Sabarwal et al., (1.0 × 107 M−1), for the AG3(T2AG3)3. The Kb
value of CuIITMPyP with the unimolecular GQ (2.3 × 106 M−1) is significantly inferior
to the one described by DuPont et al., (1.7 × 1010 M−1). Nonetheless, the red shift and
hypochormism values retrieved from the titrations with the tetramolecular GQ are in
proximity to the ones reported by Boschi et al., for similar GQ sequences.

3.2. Fluorescence Experiments

The G-Quadruplex fluorescent intercalator displacement (G4-FID) assay is another
well-established method to evaluate and confirm the affinity of a ligand for GQ and in
particular its selectivity for GQ. This assay is based on the loss of fluorescence of a probe,
the thiazole orange (TO), as a result of its displacement from DNA by a ligand [41,42,45].
The concentration of the ligands required to decrease the fluorescence of the probe (TO) by
50% is noted by DC50.

To validate the UV-Vis data obtained for the AgII complex, its ability to displace TO
from the unimolecular GQ structure AG3(T2AG3)3 and from the double-stranded salmon
sperm was evaluated by fluorescence spectroscopy (Figure 18).
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Figure 18. G4-FID assay performed for the in PBS at 25 ◦C with the AgIITMPyP using the unimolecu-
lar GQ (AG3(T2AG3)3) and double-stranded salmon sperm. A comparison with the results obtained
with the H2TMPyP and the ZnIITMPyP is presented.

As can be seen, the results obtained for the AgIITMPyP, red line for the displacement
of TO from the GQ structure (DC50 = 0.99 uM) and green line for the displacement of
TO from the double-stranded structure (DC50 = 2.03 uM), point to a pattern of selectivity
already highlighted by the UV-Vis data. For comparison, the results with the H2TMPyP
and the ZnIITMPyP are also present, confirming the lack of selectivity of the free-base
porphyrin. Similar behavior of selectivity was observed for both the ZnII and the AgII

metal complexes.
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4. Conclusions

Overall, the reported data show that the free-base H2TMPyP, analogues and met-
alloporphyrin counterparts present good affinity for the GQ DNA structures, with the
exceptions of the MnIII and CoIII complexes, for which axial ligands are present. In general,
the authors reinforced that the intercalation process is undesirably affected by the steric
hindrance of the axial water in metal complexes, the external stacking being pointed as the
most probable binding mode.

The binding mode of porphyrins and metalloporphyrins occurs mainly by π-π stack-
ing, specifically end-stacking on the top of the G-quartets at the termini of the quadruplex
structures. An enhanced binding affinity was proposed for metalloporphyrins through
an additional electrostatic interaction induced by the presence of metal ions. It has been
found that the nature of the metal influences not only the kinetics but also the ligand
binding mode.

Complexes containing square planar (CuII) and pyramidal (ZnII) geometries revealed
to be the better inhibitors and their geometry was correlated with the unhindered face for
stacking offered by porphyrins owning these metal centers. In the case of the CuIITMPyP
complex, a binding stoichiometric ratio of 2:1 (CuIITMPyP-GQ) was described, and end-
stacking of CuIITMPyP in both G-quadruplex ends was proposed.

In the case of the MnIII porphyrin derivatives, slow kinetics were described. Per-
turbation of the coordination sphere of the metal ion upon interaction with DNA or a
binding mode that is different from stacking (external binding) were pointed to explain this
behavior. The presence of water molecules on its porphyrin core was indicated as a factor
that prevents the porphyrin intercalation between the base pairs of DNA and, consequently,
decreases the porphyrins binding affinity to double-stranded DNA. On the other hand,
the authors recognize that axial water molecules might hinder the initial stacking of the
porphyrin molecule on the G-quadruplex end, thus justifying their lower stabilization
properties. Similar behavior was described in the case of the CoIII complex.

The order for the GQ stabilizing ability was ZnIITMPyP~H2TMPyP > CuIITMPyP >
PtIITMPyP. PtIITMPyP was referred to as not owning GQ stabilizing properties. Modeling
studies suggested that the insertion of the square planar AuIII ion favors π-π staking with
stronger electrostatic interactions derived from the presence of an extra positive charge in
the porphyrin core that induces a decrease in the electron density and an increase in the
binding affinity of the porphyrin to the GQ target.

The collected data in the spectroscopic screening, performed under unified conditions,
suggests that the free-base H2TMPyP and the metalloporphyrins present good affinity
for both DNA structures, with the exceptions of the MnIII and CoIII complexes. In partic-
ular, higher affinity constants for the GQ structures, when compared to those observed
for double-stranded DNA, were obtained, especially for the unimolecular conformation
AG3(T2AG3)3, for which the Kb values are in the range of 106–107 M−1. In the case
of the MnIII and CoIII complexes, the lower stabilization properties, probably resulting
from the presence of water molecules as axial ligands, already observed by other authors,
were confirmed.

The new derivative AgIITMPyP showed good affinity for GQ-DNA structures, with
binding constants in the range of 106–107 M−1 and ligand-GQ stoichiometric ratios of 3:1
and 4:1.

The process of discovering ligands with high affinity and selectivity for GQ is chal-
lenging and could open new horizons on the anticancer therapies based on the detection
and stabilization of G-quadruplexes. Considering the affinity of the AgII complex for GQ
structures and a predictable pattern of selectivity, demonstrated out by the UV-Vis and
fluorescence screening presented herein, further studies must be performed to confirm and
complement the obtained data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11101404/s1, Table S1: Structures of the studied porphyrins, relevant photophysical
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parameters, Figure S1: UV-Vis spectra obtained from titration of AgIITMPyP with the tetramolecular
GQ DNA structure TG4T, Figure S2: UV-Vis spectra obtained from titration of AgIITMPyP with
the bimolecular GQ DNA structure G4T4G4, Figure S3: UV-Vis spectra obtained from titration of
AgIITMPyP with the unimolecular GQ DNA structure AG3(T2AG3)3, Figure S4: UV-Vis spectra
obtained from titration of AgIITMPyP with the double-stranded DNA structures from salmon
sperm, Figure S5: Mass spectrum of the AgIITMPyP derivative, Figure S6: Comparative UV-Vis
absorption spectra (350–650 nm) at the end of titration (1:3 L:DNA) of the solution of (A) AgIITMPyP,
(B) H2TMPyP, (C) ZnIITMPyP, (D) CoIIITMPyP (E) NiIITMPyP, (F) PdIITMPyP, (G) CuIITMPyP
and (H) MnIITMPyP (2.0 µM) with the selected unimolecular, bimolecular and tetramolecular GQ
structures and salmon sperm double-stranded DNA.
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