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Summary

Massive metagenomic sequencing combined with
gene prediction methods were previously used to
compile the gene catalogue of the ocean and host-
associated microbes. Global expeditions conducted
over the past 15 years have sampled the ocean to
build a catalogue of genes from pelagic microbes.
Here we undertook a large sequencing effort of a
perturbed Red Sea plankton community to uncover
that the rate of gene discovery increases continu-
ously with sequencing effort, with no indication that
the retrieved 2.83 million non-redundant (complete)
genes predicted from the experiment represented a
nearly complete inventory of the genes present in the

sampled community (i.e., no evidence of saturation).
The underlying reason is the Pareto-like distribution
of the abundance of genes in the plankton commu-
nity, resulting in a very long tail of millions of genes
present at remarkably low abundances, which can
only be retrieved through massive sequencing.
Microbial metagenomic projects retrieve a variable
number of unique genes per Tera base-pair (Tbp),
with a median value of 14.7 million unique genes per
Tbp sequenced across projects. The increase in the
rate of gene discovery in microbial metagenomes
with sequencing effort implies that there is ample
room for new gene discovery in further ocean and
holobiont sequencing studies.

Introduction

The application of massive metagenomic sequencing
approaches combined with efficient gene prediction
methods opened the path to compile the gene catalogue
of the ocean and host-associated microbes (Rusch et al.,
2007; Gianoulis et al., 2009; Qin et al., 2010). The
pioneering effort of the Sorcerer II Global Ocean Sam-
pling (GOS) expedition in applying massive metagenome
DNA shotgun sequencing to explore the global diversity
of microbial genes in the ocean, one of the largest micro-
biome in the biosphere (Whitman et al., 1998), reported
over 6 million unique genes of microbial communities
from the upper ocean (Rusch et al., 2007; Yooseph et al.,
2007, 2010) and suggested the existence of a much
larger pool of genes from pelagic microbes yet to be dis-
covered (Yooseph et al., 2007). This provided a stimulus
for the Tara Oceans Expedition, aiming at integrating
microbial genetic, morphological and functional diversity
at a global ocean scale (Karsenti et al., 2011). Tara
Oceans released the Ocean Microbial Reference Gene
Catalogue (OM-RGC) reporting about 40 million unique
predicted genes (from viruses, prokaryotes and
picoeukaryotes) based on shotgun Illumina sequencing
of 243 ocean microbial metagenomes collected from
68 locations sampled around the globe between 2009
and 2013 (Sunagawa et al., 2015). Only 5.1% of the
predicted genes found were redundant with those in the
GOS catalogue. Rarefaction analysis of the OM-RGC led
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to the inference that the abundant microbial sequence
space appeared well represented for the sampling loca-
tions, as the rate of new gene detection was reduced to
0.01% with each additional sampling (Sunagawa
et al., 2015).
The strategy of GOS, Tara Oceans and other efforts

that catalogue microbial genes from the pelagic ocean,
including the Malaspina Expedition that sampled also the
dark ocean (Duarte, 2015), involved sampling along
ocean circumnavigations in an effort to capture the global
microbial diversity. Initial sequencing efforts, such as
GOS, were based on Sanger sequencing technology,
offering longer read length but with a higher cost. How-
ever, the increased sequencing depth enabled by ultra-
high-throughput short-read sequencing technologies
(e.g., Roche 454, Illumina and Ion Torrent) and an asso-
ciated 4000-fold decreased cost per megabase pair
sequenced (https://www.genome.gov/sequencingcostsda
ta/), allowed global efforts to yield impressive gene cata-
logue (Sunagawa et al., 2015). In parallel, similar meta-
genomics efforts applied to other microbiomes have also
yielded impressive gene catalogues. For instance, the
human gut microbial gene catalogue established by
metagenomic sequencing yielded 3.3 million unique
genes derived from about 0.6 Tbp (Qin et al., 2010).
Although GOS sequenced 0.14 Giga base-pairs (Gbp)
for each microbial metagenomic sample, Tara Oceans
exceeded 200-fold this sequencing effort, sequencing
30 Gbp per sample, covering prokaryotic, viral and
picoeukaryote-sized plankton (Sunagawa et al., 2015).
Although the focus of these ocean metagenomic efforts
has been on the geographic coverage of the sampling
effort, the role of increased sequencing depth in building
the ocean microbial gene catalogue has not yet been
examined. If a sequencing effort of 30 Gbp per microbial
metagenome already appears to reach the point of
diminishing returns (Sunagawa et al., 2015), then further
sequencing of the same community should not result in
sizeable additions of unique predicted genes from individ-
ual metagenomes, an assumption that has not yet been
tested.
Here, we examined the role of sequencing effort in

uncovering the inventory of gene and protein sequence
clusters contained in marine microbial communities by
applying massive metagenome DNA shotgun sequencing
to a Red Sea community. Perturbations were used to
alter the abundance of organisms possessing different
gene sets in the community in an effort to maximize the
number of genes present above the thresholds of detec-
tion (cf. Supplementary Information). Specifically, we
enclosed 80 000 m3 of surface (1 m depth) coastal Red
Sea water, distributed into 10 mesocosm bags (depth
2.5m). We then perturbed the plankton community by
adding, to each of duplicated mesocosm units, different

combinations of dissolved inorganic nutrients, including
nitrogen and phosphorus as a single pulse or continuous
additions (NPs and NPc respectively), and nitrogen,
phosphorus and silicate, as a single pulse or continuous
additions (NPSs and NPSc respectively), while keeping
two duplicate mesocosm unamended. These samples
are for the experiment described by Pearman et al. (2015).
Each of the mesocosms was then sampled eight times
during the 20-day duration of the experiment, by collect-
ing cells within 4 L from each of the mesocosms into a
0.22-μm filter (encompassing not only the majority of the
prokaryote–picoeukaryote size range of 0.1–3μm but also
larger planktonic organisms), for subsequent DNA extrac-
tion followed by next-generation metagenomic sequence
assembly and gene prediction. Major steps of data analy-
sis are presented in a flowchart (Supplementary Fig. S1).
Our strategy of single-sample assembly combined with
the co-assembly of unmapped reads across all the
assemblies aimed at maximizing the quantity of recov-
ered genes from the sequencing effort, while the strategy
of considering only complete genes with defined codon
boundaries maximized the quality of predicted protein-
coding genes. Our results indicate that gene discovery
increases with sequencing depth across microbial
metagenomes. While the yield of new (unique) genes
decreases with increasing sequencing depth, there is no
evidence of reaching saturation.

Results

Gene sequences

Following our workflow (Supplementary Fig. S1), a total
of 65 independent, high-quality (Illumina) metagenomes
with a sequencing effort averaging (± SD) 2.5± 1.1 Gbp
per assembly were produced (Supplementary Data 1).
The resulting sequencing depth applied to the enclosed
community, totalling 163.4 Gbp when all 65 metagenomes
are combined, is several times larger than that applied to
individual plankton communities sampled in Tara Oceans
(fivefold) or the entire collection of GOS microbial
metagenomes (28-fold). The microbiome enclosed in the
individual mesocosms generated a total 3 802 525 redun-
dant gene sequences in addition to the 1.29 million
genes arising from the co-assembly of unmapped reads
across all samples. Non-redundant genes are defined as
nucleotide sequence clusters at 95% identity over 80% of
the length, whereas non-redundant protein sequence
clusters are defined at 90% identity over 80% of the
length (Supplementary Fig. S1 and Data 1), which is con-
sistent with the concept of UniRef protein families (Suzek
et al., 2014). Unsurprisingly, the inclusion of partial gene
sequences—lacking a start and/or stop codon—into the
corresponding catalogue of non-redundant genes
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significantly (two-tailed paired t-test P< 0.0001) increased
the resultant gene sequence clusters independent of the
sample by about twofold (Supplementary Data 1). How-
ever, the partial (incomplete) genes likely inflate the gene
diversity space. Therefore, the subsequent inquiries
focused on the catalogues of complete genes as the
basis for more in-depth analyses, including that of other
microbial metagenomes derived across different pro-
grams (both ocean and host associated).

The number of genes (and corresponding protein
sequences) retrieved per metagenome sampled aver-
aged 58 500 ± 32 079 (mean ± SD; n= 65 samples; Sup-
plementary Data 1). The final count of sample-specific
redundant genes (adding up to 3.8 million genes) and
their corresponding contribution to the total are broken
down as follows: CONTROLS (590 056 genes; 15.5% of
total; n= 12), NP (1 089 625 genes; 28.7% of total;
n= 15), NPc (616 236 genes; 16.2% of total; n= 13), NPS
(631 520 genes; 16.6% of total; n= 11) and NPSc
(874 088 genes; 23.0% of total; n= 14). Together with the
gene sets from the co-assembly of unmapped reads of
1 288 709 genes (Supplementary Data 1), yields a total
of 5 091 234 redundant genes. The clustering of the
nucleotide gene sequences at 95% global identity and
80% overlap over the length of the shorter gene gener-
ated a catalogue with 2.8 million non-redundant genes.
The corresponding non-redundant protein sequence clus-
ters (90% identity and 80% overlap) were 2 626 523.

Remarkably, 92.6% of the protein sequence clusters in
the mesocosms community sampled (corresponding to
2.43 million genes) are not included in the Tara Oceans
protein catalogue (27.7 million, as re-analysed here; Sup-
plementary Data 2), despite the presence of 12 microbial
metagenomes sampled from the Red Sea by Tara
Oceans containing 2.82 million redundant genes in total
(Supplementary Data 2). Although the mesocosms com-
munity sampled was the same throughout, the different
nutrient additions applied allowed different taxa to prolif-
erate (Pearman et al., 2015), helping increase the num-
ber of gene clusters and families detected (see below).
Hence, differences in the number of genes retrieved
among treatments for the same community may reflect
the abundance and diversity of organisms together with
the different genome sizes of the dominant organisms.
Relatively large eukaryotic microorganisms (diatoms)
were prevalent in the mesocosms receiving nitrogen,
phosphorus and silicon, while small picoautotrophs and
prokaryotes were dominant in the control treatments
(Pearman et al., 2015).

Gene abundance distribution

The abundance of each gene found followed a Pareto-
type distribution (Vidondo et al., 1997) with a power-law

decay, F(S) � S−α, where F(S) is the probability to find a
gene with abundance S and α is the scaling exponent
(Fig. 1). The distribution of genes is characterized by a
highly skewed distribution in the number of copies among
different genes, resulting in the presence of a very long
tail of rare genes, which is reflected in the large scaling
exponent (α) of 2.43 represented by only a few gene cop-
ies in the sequencing (Fig. 1). For instance, the rarest
91% of the genes accounted close to 66% of the total
sampled gene catalogue, capturing the largest diversity
of microbial genes in the system. A modest sequencing
effort, such as that applied to individual metagenomes
sampled here, would thus be unlikely to retrieve one copy
of genes contained in the large pool of rare genes pre-
sent in the community. The consequence of this Pareto
power law of rank-abundance distribution of non-
redundant genes in the community is that, remarkably,
the number of new gene and protein sequence clusters
found increased linearly with additional sequencing effort,
with no evidence of saturation (Fig. 2). This occurred
irrespective of whether the data were combined across
the experiment (Fig. 2) or analysed separately for individ-
ual treatments or the control (Supplementary Figs. S2
and S3). The best-fit linear regression suggests that
roughly 10 000 novel gene (or protein) sequence clusters
were discovered for every additional Giga base-pairs
sequenced (Fig. 2). Indeed, all perturbations contained a
significant number of unique gene (32± 11%) or protein
(28± 11%) sequences irrespective of whether the novelty
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Fig 1. The abundance distribution of non-redundant genes in the
Red Sea community examined here. The red line shows a
maximum-likelihood estimate fit power-law decay (F(S) � S – α;
R2 = 0.99; P< 0.0001), with an exponent α of −2.43. An amplitude
larger than 2 suggests the prevalence of rare genes in the micro-
biome. Further details are summarized in Supplementary Data 1.
[Color figure can be viewed at wileyonlinelibrary.com]
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of genes is defined by the presence of a copy in a sam-
ple or a minimum conservative mapping rate (coverage)
to the gene catalogue (Supplementary Data 1), indicating
the importance of perturbations in promoting rare genes
from under-represented communities.
The ratios of non-redundant gene clusters and total

retrieved genes indicated that the experimental perturba-
tions steadily reduced gene sequence redundancy, par-
ticularly for samples receiving continuous nutrient
additions (Fig. 3), suggesting increasing gene novelty
over the sampling period. Noteworthy, as much as half of
the total predicted unique genes across all samples
(58± 7%; n= 65) were deduced to have a function

(Supplementary Fig. S4). A similar proportion was
assigned a taxonomic label (53 ± 8%), predominantly
from Proteobacteria (51± 14%), Bacteroidetes (16± 9%)
and Cyanobacteria (5± 6%; Supplementary Fig. S4).

The rank-abundance plots of unique gene sequence
clusters on the basis of KEGG Orthology (KO)—a func-
tional orthologue of gene and protein families (Kanehisa
et al., 2013)—shows a multimodal distribution of KOs
(Fig. 4A), implying that rare gene families follow a distinct
distribution from the abundant families. The most
sequence diverse gene families—that is, KOs accompa-
nied by distinct gene sequence clusters, averaged �700
per sample for the top five largest gene families (Fig. 4B).
Overall, the retrieved unique gene clusters across all
samples (n= 65) comprised of 12 516 gene families;
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Fig 2. The relationship between the cumulative sequencing effort
applied to metagenome samples retrieved along the 20-day of the
experiment from the different mesocosms enclosing the same initial
Red Sea plankton community and the cumulative number of non-
redundant genes (A) as well as unique clusters of gene (B) and pro-
tein sequences (C) retrieved separately from each sample. The dot-
ted red line shows the first-order linear best-fit regression. [Color
figure can be viewed at wileyonlinelibrary.com]
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however, 66% of the KO entries were not represented
more than five times in half of the samples, suggesting
that the corresponding majority of the unique gene clus-
ters were rare. The alpha diversity of gene families
across experimental perturbations presented significantly
higher (one-way ANOVA, P< 0.0001) observed and esti-
mated (Chao1) richness metrics in perturbations that
received additional nutrients, particularly where nutrients
were continuously applied relative to un-amended
controls (Fig. 3C). The top five gene families encode
broad functions such as lipid metabolism, iron uptake
and nucleotide biosynthesis (Fig. 4). Their discovery
also increased with cumulative sequencing effort
(Supplementary Fig. S5). The examination of the taxa
encompassing these five top KOs indicated that much of
the sequence diversity accompanying the retrieved gene
families in amended perturbations resulted from changes
in the abundance of gene sequence clusters originating

from Alphaproteobacteria, Gammaproteobacteria and
Flavobacteria, with a clear increase of Alphaproteobacteria
in nitrogen, phosphate and silicate perturbations
(Supplementary Fig. S6).

Gene discovery across marine and host-associated
metagenomes

A critical question arising from the observed gene distri-
bution pattern over the sampling period in the meso-
cosms experiment of the same water mass is whether
the discovery of new genes (yield) increases with
sequencing effort distributed over a wider geographical
(latitudinal) sampling likely encompassing higher species
diversity (sf. Fuhrman et al., 2008). Normalized counts of
total non-redundant genes per Tera base-pair sequenced
in the mesocosm experiment yielded 17.4 million genes
Tbp−1 sequenced (Table 1). The recovery of novel genes
was significantly higher (one-way ANOVA P< 0.01) in
perturbations receiving continuous pulses of nitrogen,
phosphate and silicate (NPSc; 12.1± 6.1× 106 unique
genes Tbp−1) in comparison to those receiving only nitro-
gen and phosphate (NP and NPc; 6.3–7.3× 106 unique
genes Tbp−1) or without any amendments (5.7× 106

unique genes Tbp−1; Supplementary Fig. S7).
For comparison, we harmonized the metagenomic ana-

lyses (assembly, gene prediction and gene clustering) of
several published metagenomes following our workflow
(Supplementary Fig. S1 and Data 2–10), and used the
derived gene catalogues to interrogate the link between
sequencing effort and gene discovery (Table 1). Remark-
ably, the yield of non-redundant genes (per Tbp
sequenced) was even higher from the analysis of a
regional metagenomic-based survey along the Red Sea
(RSCK2011; Thompson et al., 2017) containing 2.03 mil-
lion redundant genes (n = 45 metagenomes), which pro-
duced an average (± SD) of 26± 8 million genes per Tbp
(Supplementary Data 3), with no significant differences in
yield by depth (one-way ANOVA P = 0.0584; Supplemen-
tary Fig. S8). Of note, is that 65% of the retrieved protein
sequence clusters in these metagenomes (total of 1.21
million at 90% identity over 80% of the length) were
unmatched with Tara’s 27.65-million prodigal-based
(complete) protein clusters retrieved following a re-
analysis of Tara Ocean metagenomes (Supplementary
Data 2) based on our workflow.

The recent sequencing of 60 deep-sea (�4 km depth)
metagenomes sampled by the Malaspina Circumnaviga-
tion Expedition (Acinas et al., 2019; Supplementary
Data 4) supported a yield 10-fold larger than that pro-
duced by Tara Ocean (5.7 vs. 55.4 million unique genes
Tbp−1) despite the 50-fold larger sequencing effort
applied in the Tara Ocean program (Table 1; Supplemen-
tary Data 2). The yield of Tara Ocean is, however, similar
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to that retrieved from a collection of 610 marine
metagenomes sampled across space (5–1000 m) and
time (Supplementary Data 5), encompassing samples
from the GEOTRACES cruises (2010–2011) and the
time-series data collection from the Station ALOHA and
BATS (Biller et al., 2018). The trend of higher yield, rang-
ing from 14.7 to 46.4 million non-redundant genes Tbp−1,
is also corroborated by the re-analysis of several marine
datasets conforming to our workflow (Supplementary
Fig. S1): (i) the Baltic Sea reference metagenomes
(BARM; n= 81) spanning both spatial and temporal
dimensions (Hugerth et al., 2015), (ii) the Malaspina Cir-
cumnavigation Expedition targeting the pelagic commu-
nity (Duarte, 2015, P. Sanchez et al. in prep.;
Supplementary Data 6) and (iii) the prokaryotic
metagenomes derived from recurrent sampling at a sin-
gle location (surface to a depth of 1km) in the North
Pacific Subtropical Gyre (Station ALOHA; n= 103; Sup-
plementary Data 7; Mende et al., 2017), all supported by

a much lower sequencing effort (threefold to 10-fold
lower) than that applied in the Tara Oceans program
(Table 1).

The re-analysis of host-associated microbial meta-
genomics gene sequence for human (Qin et al., 2010; Li
et al., 2014) and rat (Pan et al., 2018) microbiomes
(Supplementary Data 8–10) together with published pig
and mouse microbiome catalogues (Xiao et al., 2015,
2016) reveal a total of 2.6–18.5 million non-redundant
genes generated from 0.22 to 6.3 Tbp of high-quality
sequencing data (Table 1). Overall these enteric
microbiomes support yields ranging from 2.9 to 34.4 mil-
lion non-redundant genes Tbp−1 (Table 1), which is simi-
lar to the rate of gene discovery in the Tara Oceans and
the GEOTRACES program (Table 1).

A significant exception to the range of gene yield dis-
covered in Illumina-based marine and host-associated
metagenomes reported above (2.9–55.4 million non-
redundant genes Tbp−1; Table 1), is represented by the

Table 1. The number of non-redundant gene sequence clusters predicted in various metagenome projects exploring marine pelagic microbial
communities and mammalian enteric microbiomes and corresponding yield relative to the sequencing depth applied.

Sequenced
depth
(Tbp)c

Gene/protein sequences (×106)a Yield

Project (gene catalogue)
Analytical

proceduresb Redundant

Non-redundant (106 per Tbp)

Original data sourcefSamples Genesd Proteinse Genes Proteins

Marine
Global Ocean Sampling (GOS) GP + GC 44 0.00625 13.6 4.5 3.9 720.0 624.0 Rusch et al. (2007)
Baltic Sea reference

metagenomes
GP + GC 81 0.586 8.7 8.6 8.3 14.7 14.2 Hugerth et al. (2015)

Tara Ocean (OM-RGC) GP + GC 243 5.821 61.3 33.3 27.7 5.7 4.8 Sunagawa et al. (2015)
RSCK2011g,h AM + GP + GC 45 0.0483 2.0 1.3 1.2 26.9 24.8 Thompson et al. (2017)
Station ALOHA (HOTGC)g,i RAM + GP + GC 103 0.638 47.3 29.6 26.1 46.4 40.9 Mende et al. (2017)
GEOTRACES programg,j GP + GC 610 5.024 72.9 29.1 24.1 5.8 4.8 Biller et al. (2018)
MALASPINA-Deep (MDSGC)g RAM + GP + GC 60 0.121 11.8 6.7 6.3 55.4 52.1 Acinas et al. (2019)
MALASPINA-profiles (MRGC)g AM + GP + GC 116 1.714 61.6 32.7 29.0 19.1 16.9 P. Sanchez et al.

in prep.
MESOCOSMg AM + GP + GC 65 0.163 5.1 2.8 2.6 17.2 16.0 This study
Non-marine
Human gut microbiome Ig GP + GC 124 0.577 9.7 4.1 3.8 7.1 6.6 Qin et al. (2010)
Human gut microbiome II GP + GC 1267 6.298 121.3 18.5 16.0 2.9 2.5 Li et al. (2014)
Mouse gut microbiomek 184 0.781 22.2 2.6 n.d. 3.3 n.d. Xiao et al. (2015)
Rat gut microbiome GP + GC 98 0.222 26.8 7.6 6.9 34.2 31.0 Pan et al. (2018)
Pig gut microbiomek 287 1.761 62.9 7.7 n.d. 4.4 n.d. Xaio et al. (2016)

Abbreviations: OM-RGC, Ocean Microbial Reference Gene Catalogue; MDGC, Malaspina Deep-Sea Gene Collection; MPRGC, Malaspina Refer-
ence Gene Catalogue; Red Sea Centre Cruise 2011; HOTGC, Hawaii Ocean Time-series Gene Catalogue, AM, assembled; RAM, re-assembled;
GP, gene prediction; GC, gene cluster with mmseq2; n.d. not determined.
aBased on Prodigal and retaining only complete genes. However, PGM and MGM are based on MetaGene since no assemblies were available.
bUnless stated otherwise, all datasets were (re)analysed with the same procedures to minimize procedural artefacts.
cBased on high-quality read sequences except for the GEOTRACES program (raw sequencing depth) and GOS (total length of Sanger contigs
≥500 bp).
dDefined as sequence clusters with 95% global identity over 80% of the length.
eDefined as sequence clusters with 90% global identity over 80% of the length.
fReported values may differ from the original reference (when reported) since re-analyses were done in the context of this study.
gIncludes protein-coding genes from coassembly of unmapped reads. Details are provided in Supplementary Fig. S1.
hBased on the assembly of data from Thompson et al. (2017) under BioProject number PRJNA289734.
iBased on re-assembly of data from Mende et al. (2017) using metaSPAdes (see Supplementary Fig. S1).
jIncludes time-series data from BATS and HOT, with a total of 130 metagenomes.
kIncludes incomplete gene sequences (up to two-thirds), with clusters defined at 95% identity over 90% of the length. The minimum length was
100 bp.
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early GOS expedition, which despite a modest Sanger-
based sequencing effort of only 6.25 Gbp (Rusch et al.,
2007; Yooseph et al., 2010) delivered about 4.5 million
non-redundant genes, with a corresponding yield of
725 million non-redundant genes Tbp−1. The yield is
about 13–250 times larger than more recent state-of-the-
art metagenome-based sequencing efforts (Table 1).

The relationship of sequencing depth to non-redundant
gene counts or the yield of genes discovered approximate
a power law (Fig. 5; Supplementary Table S9); the recov-
ery of novel genes scales as the 0.64 power of sequencing
depth for marine metagenomic projects (Fig. 5A and B)
and somewhat lower, 0.53, for all metagenomic biomes
combined (Fig. 5B and C). However, the yield of novel
genes scales inversely with increasing sequencing depth
(Fig. 5B and D), showing that whereas gene discovery
continues to increase with increasing sequencing effort this
leads to diminishing returns on effort.

Discussion

The results presented here demonstrate that the gene
catalogue derived from marine microbial metagenomes is
strongly dependent on sequencing effort, as reinforced
by the linear increase in the number of unique genes
found with cumulative sequencing effort in the Red Sea
community sampled (Fig. 2). However, the relationship
between sequencing effort and yield may not be unique
to programs exploring the ocean microbiome.

A priori expectations would have suggested that the
number of unique genes per unit sequencing effort should
be lower for a single-community analysis, such as the
mesocosm studied here than when a comparable
sequencing effort is distributed across the global ocean,
expected to encompass a broader diversity of microbes.
Yet, this was not the case, with the yield per unit sequenc-
ing effort in the Red Sea community studied here being
about three times larger than that for the Tara Oceans
expedition, where the 36-fold greater total sequencing
effort was distributed across the global ocean (Sunagawa
et al., 2015). Possible reasons for the higher gene discov-
ery yield of unique genes in the mesocosm experiment
presented here compared with Tara Oceans include the
perturbations applied, which allowed rare genes to rise
above the detection limit in some treatments.

Additionally, different metagenomic analytic procedures
such as the selected sequence assembler (van der Walt
et al., 2017, Forouzan et al., 2018) or the gene prediction
software also likely affect the quality and quantity of
recovered genes (Suzek et al., 2014; Hauser et al.,
2016). Also the inherent richness of rare genes in an eco-
system might confound gene discovery metrics.

The median yield of non-redundant genes discovered
for every Tera base-pair of microbial metagenomic

community DNA sequenced was 14.7 million unique
genes per Tera base-pair (Fig. 5), but varied greatly (�3–
55 × 106 unique genes Tbp−1; Table 1), across microbial
metagenome projects using comparable next-generation
sequencing approaches encompassing a wide range of
scope and targets, including projects exploring regional
(e.g., Red Sea and Station ALOHA, Thompson et al.,
2017, Mende et al., 2017), global expeditions (Tara
Oceans, Sunagawa et al., 2015, and Malaspina, Duarte
2015, Acinas et al., 2019), and temporal and depth
changes (Biller et al., 2018) in microbial diversity, as well
as projects examining enteric mammalian microbiomes
(Qin et al. 2010, Li et al., 2014, Pan et al., 2018, Xiao
et al., 2015, 2016, 2015b; Table 1). A remarkable outlier
to the gene discovery yield is represented by the early
Sanger-based GOS sequencing effort of only 6.25 Gbp
(Rusch et al., 2007, Yooseph et al., 2010), with a yield
that is about 13–250 times larger than more recent state-
of-the-art Illumina-based metagenome sequencing efforts
(Table 1). Probably, this is due to improved gene predic-
tion associated with the higher precision and longer read
lengths obtained with Sanger sequencing in the GOS
expedition compared with more recent metagenome pro-
jects, all based on Illumina sequencing. In turn, this sug-
gests the need to improve sequence length and reduce
error rates in current high-throughput sequencing
technologies.

Our analysis shows that the yield of unique, non-
redundant genes in microbial metagenome sequencing
projects decreases with effort, with the rate of discovery
decreasing 10-fold from projects applying limited effort to
those deploying the largest sequencing effort (Fig. 5).
However, new genes continue to be discovered even at
projects deploying high sequencing depth, showing no
evidence of saturation. This suggests, in the case of
marine microbial metagenome sequencing projects, that
microbial communities present high connectivity across
the global ocean (Finlay, 2002), because circulation and
other transport processes (e.g., long-range air-borne
transport (Mayol et al., 2017) re-distribute microbial com-
munities across the ocean, while their very large popula-
tion size overcomes dispersal limitation (Finlay, 2002), as
indicated by relatively small differences in microbial com-
munities across ocean basins (Sunagawa et al., 2015;
Salazar et al., 2016). Our results suggest that the gene
discovery yield is higher, for a given sequencing effort in
the deep sea compared with the upper ocean, possibly
reflecting differences in diversity and dominance patterns,
biogeographic drivers, as well as global population sizes
among these two ocean realms (Sunagawa et al., 2015,
Salazar et al., 2016). The comparison among microbial
metagenome sequencing projects also suggests that the
gene discovery yield is higher, for a given sequencing
depth, for host-associated metagenomes compared with
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marine environments, likely reflecting the vast differences
in total population sizes among these environments.
Most importantly, our results suggest that, despite being

seemingly phenomenal compared with the sequencing
depth possible just a decade ago, the sequencing effort
applied by modern metagenomic projects is still very far

from that necessary to completely retrieve the enormous
pool of unique genes present in the rare microbial bio-
sphere. This suggests that those genes belonging to the
tail of the Pareto distribution are beyond the capabilities of
current metagenome sequencing projects and can only be
retrieved if a perturbation, such as the nutrient additions
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conducted here, allows them to become more abundant.
Indeed, recent analyses of power laws describing the rela-
tionship between sampling effort and the number of spe-
cies retrieved in microbial communities have extrapolated
the global number of microbial species on Earth from about
a few million to 1 trillion (1012) microbial species (Locey
and Lennon, 2016), largely resulting from the pool of rare
microbes concealed within the rare biosphere (Pedros-
Alio, 2012).

The OM-RGC, describing unique genes retrieved from
planktonic microbes, contained a phenomenal 40 million
non-redundant gene sequence clusters (Sunagawa et al.,
2015). Yet, this likely represents only the tip of the ice-
berg of microbial gene diversity in the ocean. Sequencing
efforts at least an order of magnitude greater per sample
than those used to-date applied along global and regional
expeditions, time-series sampling or perturbation experi-
ments are required to retrieve the large pool of
unreported genes, and hence novel functions, that still
remain untapped in the vast ocean.

Experimental procedures

Experimental design and procedures

A total of 10 mesocosm bags, each containing 8000 L
(depth: 2.5 m) were situated in the harbour of King Abdul-
lah University Science and Technology (KAUST),
Thuwal, Saudi Arabia (Lat: 22.304�N; Long: 39.103�E).
The bags were filled with harbour seawater and sub-
jected to one of five different nutrient treatments (each
with two biological replicates) as depicted below:

i. Control mesocosm: No addition of nutrients
ii. Nitrate (NaNO3) and phosphate (H2NaPO4P�H2O)

(NP) addition on day 1.
iii. Nitrate (NaNO3), phosphate (H2NaPO4P�H2O) and sil-

icate (Na2SiO3�9H2O) (NPS) addition on day 1.
iv. Nitrate (NaNO3) and phosphate (H2NaPO4P�H2O)

(NPc) addition each day for 2 weeks.
v. Nitrate (NaNO3), phosphate (H2NaPO4P�H2O) and sili-

cate (Na2SiO3�9H2O) (NPSc) addition each day for
2 weeks.

The concentrations of the nutrients in the experiments
were for the single additions: 16, 1 and 39 μM for nitrate,
phosphate and silicate respectively. For the continuous
treatments, they were 2, 0.12 and 3.75 μM for nitrate,
phosphate and silicate respectively. The ratios were
adapted from those published by Wyman et al. (2000).

Sample collection and sequencing procedures

Samples were collected at solar noon daily over a 20-day
period lasting from the 27th January to the 15th February

2013. Twenty litres of seawater was collected in a Niskin
bottle at a depth of 1 m. The water (4 L per replicate)
was prefiltered to remove debris and zooplankton, and
immediately filtered through a 0.22 μm CellTrap filter
(MemTeq) using a peristaltic pump at low speed (70 rpm)
so as to avoid the destruction of delicate cells. The cell
concentrate was eluted in 1.2 ml of filtered mesocosm
water (from the same mesocosm) and flash-frozen in liq-
uid nitrogen. The samples collected were then selected
for sequencing among the resulting set of 80 samples to
target specific aspects of the bloom (e.g., representing
pre-bloom, peak bloom and bloom decline), based on
flow cytometry data. As these stages were not observed
in all mesocosms, a total of 71 samples were selected for
sequencing. Since six samples failed to sequence, the
final sample set consisted of 65 metagenomes. DNA was
extracted using a phenol:chloroform:isopropanol and
bead-beating protocol as described in detail by Pearman
et al. (2015). Paired-end sequencing libraries (100 ×
2 bp) were prepared using the NEBNext Ultra DNA kit
(#E7370L) following the manufacturer’s protocol. Six
samples per lane were subsequently sequenced on an
Illumina HighSeq 2000 sequencer at the KAUST Biosci-
ences Corelab (BCL). The total raw sequencing effort
equals 185 Gbp, averaging 2.9 ± 1.2 Gbp (mean ± SD)
for each of the 65 samples (Supplementary Data 1).

Metagenomic assembly and protein-coding gene
prediction

Raw read sequences were quality filtered and trimmed
using Trimmomatic v0.32 (Bolger et al., 2014) to remove
adapter sequences and leading and trailing bases with a
quality score below 20 and reads with an average per base
quality of 20 over a 4-bp window. This pre-processing step
also included a mapping-based step to remove the phiX
reads (an internal standard) using BBmap v37.44 (http://jgi.
doe.gov/data-and-tools/bbtools/). Unless otherwise stated
all data generated in this study followed the workflow
described in Supplementary Fig. S1. Post-trimming quality
was assessed with FASTQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/).

For the mesocosm experiments, the total sequencing
effort after this procedure was 163.4 Gbp, averaging
2.5 ± 1.1 Gbp (n = 65 samples; Supplementary Data 1).
This was distributed across the five different treatments
as follows: CONTROLs (26.5 Gbp or 16.2% of total;
n = 12), NP pulse additions (42.4 Gbp or 26%; n = 15),
NP continuous additions (34.4 Gbp or 21.1%; n = 13),
NPS pulse additions (28.4 Gbp or 17.4%; n = 11) and
NPS continuous additions (31.6 Gbp or 19.3%; n = 14).
Another 89.8 Gbp dataset from the Red Sea, which is
already published (RSCK2011; BioProject number
PRJNA289734) (Thompson et al., 2017), comprising
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45 Red Sea metagenomes sampled across different
water column depths (from surface to 1000 m), averaging
2.0 ± 0.4 Gbp per sample (Supplementary Data 1) was
analysed similarly. The final high-quality (paired-end)
data used for downstream steps for the RSCK2011 com-
prised 48.3 Gbp (n = 45; average of 1.07 ± 0.22 Gbp per
sample; Supplementary Data 2).
The resulting high-quality reads for each dataset were

independently assembled with metaSPAdes v3.9.0 (Nurk
et al., 2017), which was ranked as the ‘best’ in recent
evaluations of metagenomic assemblers in terms of con-
tig lengths and reduced miss-assemblies (van der Walt
et al., 2017; Forouzan et al., 2018), employing the error-
correction mode, the preset metagenomic options and a
kmer range of 21–127 (Supplementary Fig. S1). Each
metagenomic assembly was quality controlled for mini-
mum contig length of 500 bp, generating sample-specific
assemblies that were individually mapped against the
corresponding error-corrected reads aimed at producing
additional contigs from all unassembled reads. Read
mapping was conducted using BBmap v37.44 (https://jgi.
doe.gov/data-and-tools/bbtools/) based on the default
settings and the option ‘pairedonly = t’. The resultant
unmapped paired-end reads from all samples were sub-
sequently co-assembled with MegaHit v1.1.2 (Li et al.,
2015), using the same kmer cutoff range as above and
setting the minimum contig length to 500 bp. This meta-
genomic workflow was also applied to the recently publi-
shed water column metagenomes (n = 45) from the Red
Sea (RSCK2011) (Thompson et al., 2017). In additions,
two datasets from the Malaspina Circumnavigation Expe-
dition (Duarte, 2015), namely MALASPINA DEEP
(n = 60) (Acinas et al., 2019) and the unpublished
MALASPINA PROFILE (n = 116; P. Sanchez et al. in
prep.), as well as the publicly available metagenomic
reads from station ALOHA (n = 103) (Mende et al., 2017)
retrieved from the NCBI short read archive under the
Bioproject number PRJNA352737 were similarly pre-
processed and assembled (Supplementary Fig. S1).
To improve our sampling size, the published assemblies

of seven additional datasets were also included,
encompassing marine and host-associated metagenomes
downloaded from various repositories (Supplementary
Data 3–10), including: (i) the Sanger-based contigs of the
GOS Expedition (Rusch et al., 2007) retrieved from the
NCBI (https://www.ncbi.nlm.nih.gov/books/NBK6855/); (ii)
the SOAPdenovo-based assemblies of Tara Ocean micro-
biome program (n = 242) (Sunagawa et al., 2015) retrieved
from the European Nucleotide Archive database (https://
www.ebi.ac.uk/ena/about/tara-oceans-assemblies); (iii) the
SPAdes-based microbial metagenomes (n = 610) sampled
across space and time from the GEOTRACES cruises and
two long-term sampling sites (HOTS and BATS) (Biller
et al., 2018) retrieved from the iMicrobe database under

project numbers 277, 271 and 276 respectively (http://
datacommons.cyverse.org/browse/iplant/home/shared/
imicrobe/projects/); (iv) the megahit-based co-assembled
contigs from the BARM database (n = 81 metagenomes)
encompassing 37 time-series datasets from the Linnaeus
Microbial Observatory (Hugerth et al., 2015), 30 transect
samples from the EU-BONUS BLUEPRINT project and
24 redoxcline samples from the Boknis Eck station down-
loaded from FigShare (https://doi.org/10.6084/m9.figshare.
c.3831631); (v) the SOAPdenovo-based assemblies of the
human gut microbiome (HGM) study of 124 individuals
(Qin et al., 2010) was obtained from the dedicated reposi-
tory (http://www.bork.embl.de/�arumugam/Qin_et_al_
2010/); (vi) the integrated microbiome of 1267 HGM sam-
ples (Li et al., 2014) retrieved from the GigaScience data-
base, GigaDB (http://gigadb.org/dataset/view/id/100064/
File_sort/type_id), and (vii) the recent Sprague–Dawley rat
gut metagenomic assemblies (n = 98 samples; Pan et al.,
2018) retrieved, also from GigaDB (http://gigadb.org/
dataset/100440). The analysis of these datasets included
gene prediction with prodigal (for complete genes only) and
gene/protein clustering with mmseq as shown Fig. S1.

For two additional host-associated microbiome data-
sets (also based on the SOAPdenovo assembler), no
assemblies were available. Accordingly, only the publi-
shed gene catalogues and corresponding sequencing
depths are reported here, including the mouse (n = 184
samples) and pig (n = 287 samples) gut microbiome pro-
jects (Xiao et al., 2015, 2016). The reported gene statis-
tics (Table 1) for these two datasets are based on the
prediction of open reading frames (ORFs) using
MetaGene2 and GeneMark software respectively, with
the clustering of ORFs done at a global sequence identity
of 95% and an overlap of 90% for the shorter sequence
using BLAT21.

With the assemblies at hand, contigs shorter than
500 bp were discarded prior to gene prediction. Putative
protein-coding genes were predicted from the size-filtered
contigs using the program Prodigal v 2.6.3 (Hyatt et al.,
2010) in the metagenomic mode (-p meta), retaining only
genes that were predicted to be complete (default mini-
mum size of 90 bp). Crucially, this workflow deviates from
the one applied in the majority of the published gene cat-
alogues that result in a large proportion of partial (in-com-
plete) genes (Qin et al., 2010; Xiao et al., 2015, 2016).
For instance, a gene catalogue of the HGM predicted
using the gene caller MetaGene revealed that nearly two-
thirds of the genes were incomplete (Qin et al., 2010).
Indeed, a comparison of the gene catalogue that includes
partial genes for the mesocosm datasets studied here
(Supplementary Data 1) reveals a twofold difference in
the number of non-redundant gene clusters when incor-
porating partial genes in the catalogues. In turn, this
emphasizes that the in-depth comparison of gene
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catalogues requires similar metagenomic procedures and
that, at a minimum, only complete genes are considered
(i.e., genes with defined codon boundaries), preferably
with the same gene caller (we used Prodigal).

The general statistics for these de novo (re)assembled
metagenomes and published assemblies used in this
study are provided in Supplementary Data 1–10. Unless
mentioned otherwise, values for protein-coding
sequences refer to predicted complete gene sequences
(or the corresponding protein sequences).

Use of a complementary approach that classifies contigs
as being eukaryotic or prokaryotic based on the sequence
signature (using EukRep, West et al., 2018) revealed that
only 3% of the assembled bases in the entire dataset are
potentially eukaryotic. However, gene catalogues refer to
prokaryotic genes, as prokaryotic gene prediction programs
are not suitable for predicting eukaryotic genes (West
et al., 2018), largely because of differences in gene struc-
ture, with eukaryotic gene prediction algorithms relying on
transcriptomic evidence (Mathé et al., 2002; Lomsadze
et al., 2018), which is absent from our data sets. Indeed,
there is no method to predict genes in eukaryotic
sequences available for application in metagenomic mode
(assuming mixed populations). Current eukaryotic gene
predictors assume the sequence signature is from a single
organism, which would lead to erroneous results.

Generation of gene and protein sequence catalogues

The redundant gene (nucleotide) sequences from individ-
ual samples or in combination with the redundant genes
from the co-assemblies of unmapped reads, where appli-
cable (Supplementary Data 1–7), were reduced into non-
redundant gene clusters with mmeqs2 v4.6.1 (Hauser
et al., 2016) based on the ‘easy-linclust’ workflow, applying
the default settings (including bidirectional coverage ‘--cov-
mode 0’ and greedy clustering ‘--cluster-mode 0’), but con-
sidering the following options for global sequence identity
(--min-seq-id 0.95) and sequence length overlap of the
shorter sequence (-c 0.80). Similarly, the corresponding
protein sequences were also clustered using a global
sequence identity cutoff of 90% and 80% overlap, consis-
tent with the sequence coverage concept of UniRef protein
families (Suzek et al., 2014). Indeed, the applied global
identity thresholds together with the 80% length overlap
allows maintaining the intra-cluster molecular function con-
sistency of protein sequences (Suzek et al., 2014), which
lends itself to the discovery of novel protein families, as
exemplified in our study (sf. Figures 3 and 4).

Protein family shared with Tara Ocean catalogue

The catalogue of non-redundant protein sequence clus-
ters from the mesocosm (2.63 million) and the Red Sea’s

water column (RSCK2011; 1.21 million) metagenomes
were compared against the Tara’s 27.65-million prodigal-
based (complete) protein clusters retrieved based on our
workflow using mmseq2 (Hauser et al., 2016). Compari-
sons were done using the ‘search’ module, applying a
minimum global protein sequence identity of 90% and a
minimum sequence length overlap of 80%.

Rank abundance analysis of gene families in the
mesocosm

A rank abundance curve of gene abundance was gener-
ated using the matrix of gene redundancy generated from
mmseq2 (Hauser et al., 2016), containing the gene
sequence catalogue from individual experiments (exclud-
ing the co-assembled dataset). Clusters were sorted by
an abundance from the highest to lowest, and the data
were visualized on a logarithmic plot of gene copies ver-
sus frequency (Fig. 1).

Prediction of sample-specific (unique) genes

We employed two procedures to generate unique gene
and protein sequences retrieved in every sample
sequenced (excluding the co-assembled dataset) relative
to the others. First, we produced representative se-
quence clusters using mmseq2 as described above. This
step yielded a total of 1 902 457 and 1 751 030 gene and
protein sequence clusters respectively out of 3.8 million
predicted protein-coding genes (Supplementary Data 1).
The resultant matrices of gene and protein sequence
clusters were subsequently parsed based on the
sequence-to-mapping information to score for presence–
absence of genes and protein sequences across sam-
ples, so that, a gene/protein was deduced unique if it
occurred only in a single sample (out of the
65 metagenomes). These results were then used to build
cumulative plots of sequencing depth versus the number
of unique genes or proteins retrieved (Fig. 2B and C;
Supplementary Fig. S3).

The second approach was tailored to account for
sequencing depth of the genes by including the co-
assembled dataset (Supplementary Fig. S1) containing
1 288 709 putative protein-coding genes in constructing
the gene catalogue (as above) and by applying a conser-
vative mapping rate of reads per gene cluster for defining
gene presence/absence in samples. Briefly, the high-
quality reads generated from the 65 metagenomes were
mapped against a catalogue of 2.83 million non-
redundant gene with BBmap (https://jgi.doe.gov/data-
and-tools/bbtools/). BBmap was performed using the fol-
lowing parameters: nodisk = t rpkm = $fpkm ambig = toss
idfilter = 0.9 tossbrokenreads. The resultant read counts
per gene across all samples were subsequently
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normalized to account for differences in sequencing
efforts among the samples with eXpress v1.5.0 (Suzek
et al., 2014), resulting in a common metric of reads per
million normalized abundance (RPM), commonly known
as Transcript Per Million. We then used this coverage
normalized gene dataset to create a binary matrix of
gene presence/absence based on a conserved minimum
RPM cutoff of 0.25 (equivalent to 2500 reads mapped
per gene). The ‘best’ RPM value of 0.25 was deduced
from the analysis of the effect of different RPM cutoffs on
the recovery of unique genes in different samples—that
is, by examining the average counts of unique genes
recovered at different RPM cutoffs (Supplementary
Fig. S3). In our normalized datasets, RPM values range
from 0 to �11 000, representing a gene that is completely
absent in a sample and one that is extremely highly
represented.
These analyses indicated, as expected, that increas-

ingly higher RPM cutoff values (above 0.25) impacted the
recovery of unique genes—that is, higher mapping rates
are associated with more prevalent genes
(Supplementary Fig. S9). However, RPM values ranging
from 0.005 to 0.25 (corresponding to 50–2500 reads
mapped per gene) were not statistically different regard-
ing the average counts of unique genes recovered (one-
way ANOVA, P > 0.05; Supplementary Fig. S9). The min-
imum RPM value (of 0.25) with no significant difference
in the global detection of unique genes is similar to the
mean RPM of 0.24 for the whole dataset. It is noteworthy
that the application of similar cutoffs on Tara Ocean’s
published matrix of normalized gene abundance (down-
loaded June 2018; http://ocean-microbiome.embl.de/
companion.html) indicated no significant differences
(Mann–Whitney U test, P > 0.5) in the retrieval of unique
genes among the 243 samples—whether an RPM of
0.0001 or 0.25 was applied (Supplementary Fig. S10).
However, it is likely that the functional diversity accompa-
nying the corresponding gene families differs signifi-
cantly, but this was not interrogated beyond the present
goal. Accordingly, we applied an RPM cutoff of 0.25 as
the conservative minimum coverage to designate the
uniqueness of genes in a sample. Subsequently, we gen-
erated a presence–absence scoring matrix, with samples
fulfilling this criterion receiving a score of one, indicating
the presence of a gene (out of 2.83 million genes). In
turn, a gene was defined as unique if it occurred only in a
single sample based on this matrix.
On this basis, a total of 137 482 sample-specific (com-

plete) unique genes were predicted, averaging (±SD)
2115 ± 1598 genes per sample (n = 65). This implies that
roughly 7.7% of the non-redundant genes were unique
only to one sample. Only 2142 genes (out of 5.1 million
non-redundant genes) were predicted as conserved
across all 65 samples, including the control and the

different nutrient perturbations. Counts of complete
redundant genes across samples significantly positively
correlated with counts that included partial genes
(R2 = 0.997, P < 0.0001). However, counts of unique
gene clusters from complete genes only (based on the
0.25 RPM criterion above) were ineffectively paired with
counts of unique gene clusters that included partial
genes (R2 = 0.019, P = 0.88). Together with the highly
significant differences (Two-tailed paired t-test
P < 0.0001; n = 65) in the average (±SD) counts of
unique gene clusters obtained from complete versus
complete plus partial gene catalogues (Supplementary
Data 1) suggests a strong effect of partial gene
sequences on gene diversity, and in turn, gene discov-
ery. Based on the complete gene catalogue, the resulting
cumulative count of unique genes recovered at increas-
ing sampling effort was plotted against the cumulative
sequencing depth of the same sampling over time
(Supplementary Fig. S11). The data show that unique
gene discovery is still at a linear phase even when apply-
ing a conserved sequencing depth to retrieve novel
genes.

Curve fitting

Non-linear regression analysis was conducted in R
v3.6.0 environment (https://www.R-project.org/). Linear
and non-linear (power, exponential and logistic) models
were fitted using the ‘curvefit’ function in the ‘REAT’
package v3.02 (Wieland, 2019). The goodness of fit was
tested using the one-way ANOVA comparing linear,
logistic, power and exponential models of distribution
(Supplementary Data 11). Graphs were plotted using
‘ggplot2’ v3.3.0 and ‘ggstatsplot’ v0.5.0 packages
(Wickham, 2016; Patil, 2018).

Functional annotation of gene catalogues

Functional annotation of gene catalogues (non-redundant
representative complete gene sequences) was con-
ducted in the Automatic Annotation of Microbial
Genomes pipeline (Alam et al., 2013) hosted at KAUST’s
Dragon Metagenomic Analysis Platform (http://www.cbrc.
kaust.edu.sa/dmap). Briefly, the protein-coding sequence
(CDS) is each catalogue were uploaded as input and
annotated in the metagenomic mode using the following
workflow. Briefly, gene annotations are performed by par-
allel Blast comparisons (minimum blast score of 40), first
against the complete UniProt KnowledgeBase (down-
loaded March 2017) and second against the KEGG data-
base (downloaded March 2018) with defined KOs groups
(Kanehisa et al., 2013). The UniProt KnowledgeBase
(UKB) is mainly used to obtain generic functional and tax-
onomic assignments, while KEGG is used to link
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predicted gene functions to KEGG pathways and mod-
ules. In addition, InterProScan is used to obtain gene
ontology assignments and to detect protein families and
signature domains from InterPro, Prosite, Pfam (Bateman
et al., 2004) and TIGRfam (Haft et al., 2003) databases.
The fraction of genes with predicted functions were then
calculated based on the combined annotation of these
databases.

Significant differences between the average count of
genes retrieved at different RPM cutoff thresholds were
tested by conducting a one-way ANOVA using GraphPad
Prism v8.0 (GraphPad Software, Inc.). Multiple compari-
sons for controlling the false discovery rate (α = 0.05)
were conducted with the Benjamini–Hochberg’s two-
stage step-up method (Benjamini et al., 2006). The rich-
ness of unique gene families (KOs) across perturbations
was calculated using the phyloseq R package (McMurdie
and Holmes, 2013).

Metagenomes from the MESOCOSMS experiment
are deposited at NCBI under BioProject number
PRJNA395437.
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Fig. S1 Metagenomic analysis work-flow employed in this
study.
Fig. S2. The relationship between the cumulative sequenc-
ing effort applied to metagenome samples retrieved from
mesocosms subject to different treatments (control, NP: sin-
gle nitrogen and phosphorus additions, NPc: continuous
nitrogen and phosphorus additions; NPS: single nitrogen,
phosphorus and silicon additions; and NPSc: continuous
nitrogen, phosphorus and silicon additions) along the 20-day
of the experiment, and the cumulative number of non-
redundant genes discovered. The red dotted lines indicate a
first-order linear best-fit regression.
Fig. S3. The relationship between the cumulative sequenc-
ing effort applied to metagenome samples retrieved from
mesocosms subject to different treatments (as in Fig. S2)
and the cumulative number of unique gene (a) and protein
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(b) sequence clusters retrieved. The red dotted lines indicate
a first-order linear best-fit regression.
Fig. S4. The annotation and taxonomic breakdown of the
unique gene sequences retrieved different perturbations and
the control.
Fig. S5. The relationship between the cumulative sequenc-
ing effort applied to metagenome samples retrieved from
mesocosms subject to different treatments (as in Fig. S2)
and the cumulative number of unique gene families retrieved
for the top five largest KEGG orthologue (KOs) groups. The
red dotted lines indicate a first-order linear best-fit
regression.
Fig. S6. The taxonomic breakdown of gene sequence clus-
ters corresponding to the top five largest KOs in different
perturbations and the control. Source data are provided as a
Source Data file.
Fig. S7. The yield of novel genes per Tbp of sequenced data
in different perturbations and the control. Pairwise multiple
comparisons with one-way analysis of variance (ANOVA)
(post hoc adjusted P < 0.05) reveal significantly higher aver-
age yields in perturbations receiving continuous amend-
ments of nitrogen, phosphorus, and silicate (NPSc).
Fig. S8. The yield of non-redundant genes per Tbp of
sequenced data across different depths in Red Sea
metagenomes (RSCK2011). Data are the mean (± SD) of
11 to 15 sampling points in each experiment (Supplemen-
tary Data 3). No significant difference in yield by depth was
detected (one-way ANOVA post hoc adjusted P > 0.05) for
the Red Sea metagenomes (n = 45; ≤ 0.1 to ≤1.2 μm size-
fractioned samples; 10–500 m depth). However, the red dot-
ted line shows that the average yield is six-folds higher than
the yield from the Tara Ocean (n = 242; ≤ 0.22 to ≤3 μm
size-fractioned samples; 5–1000 m depth) demarcated with
a blue dotted line.
Fig. S9. The relationship between mapping rates per gene
and the average number of unique genes recovered across
metagenomes. (Upper panel) Unique genes are defined as
those that are only present in a single sample after applying
a given read per million normalized abundance (RPM) cutoff.
The circular symbols indicate the mean (± SEM) of unique
gene counts from the 65 samples. Pairwise multiple compar-
isons with one-way ANOVA (post hoc adjusted P < 0.05)
were used to identify significant differences between the
average numbers of recovered genes at different RPM cut-
offs. Different letter codes above symbols indicate a signifi-
cant difference between data. (Lower panel) Shows the
proportion of unique genes at each RPM cutoff that could be

assigned a putative function and those predicted as
hypotheticals.
Fig. S10. Mapping coverage (RPM cutoff) effects on gene
discovery across Tara Ocean metagenomic datasets. The
original matrix of gene abundance (8) based on the reads
per million normalized abundance (RPM) metric was used.
Although the number of unique genes was significantly dif-
ferent between the data set obtained by the applied cutoff
0.0001 in the original data (n = 243) and our conserved
value of 0.25 RPM, no significant differences in the average
count of unique genes between these two cutoffs were
detected even by depth (Mann–Whitney U-test P > 0.5).
Fig. S11. The relationship between the cumulative sequenc-
ing effort applied to metagenome samples retrieved from
mesocosms subject to different treatments at an RPM cutoff
of 0.25 and the cumulative number of unique gene and pro-
tein sequence clusters retrieved. The circular symbols indi-
cate plots of the raw data, while the blue solid line and red
dotted lines indicate a first-order linear best-fit regression
and the 95% confidence interval for the fitted line respec-
tively. Source data are provided as a Source Data file.
Data 1. The general stats for metagenomic samples in the
different mesocosm experiments, receiving different nutrient
treatments (perturbations).
Data 2. General stats for the assembled 45 Red Sea
metagenomes.
Data 3. General stats for predicted genes in Tara Ocean
assemblies, including twelve metagenomes sampled from
the Red Sea highlighted in yellow.
Data 4. General stats for the assembled 60 MALASPINA
DEEP metagenomes.
Data 5. General stats for predicted genes in the published
GEOTRACES assemblies.
Data 6. General stats for the assembled 116 MALASPINA
PROFILE metagenomes.
Data 7. General stats for the assembled 103 ALOHA
metagenomes (Mende et al. 2017).
Data 8. General stats for predicted genes in Human Gut
Microbiome project 1 assemblies.
Data 9. General stats for predicted genes in Human Gut
Microbiome project 2 assemblies.
Data 10. General stats for predicted genes in Rat Gut Micro-
biome project assemblies.
Data 11. Curve fitting results for sequencing depth versus
number of non-redundant genes or gene yield.
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