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The early detection of health disorders is a central goal in livestock
production. Thus, a great demand for technologies enabling the automated
detection of such issues exists. However, despite decades of research,
precision livestock farming (PLF) technologies with sufficient accuracy and
ready for implementation on commercial farms are rare. A central factor
impeding technological development is likely the use of non-specific
indicators for various issues. On commercial farms, where animals are
exposed to changing environmental conditions, where they undergo differ-
ent internal states and, most importantly, where they can be challenged by
more than one issue at a time, such an approach leads inevitably to errors.
To improve the accuracy of PLF technologies, the presented framework pro-
poses a categorization of the aim of detection of issues related to general
welfare, disease and distress and defined disease. Each decision level pro-
vides a different degree of information and therefore requires indicators
varying in specificity. Based on these considerations, it becomes apparent
that while most technologies aim to detect a defined health issue, they facili-
tate only the identification of issues related to general welfare. To achieve
detection of specific issues, new indicators such as rhythmicity patterns of
behaviour or physiological processes should be examined.
1. Introduction
The early detection of health disorders is one of the paramount aims in today’s
livestock industry, as it is a key factor for reducing the suffering of animals.
On-farm assessment is generally accomplished by observing the animals directly
by farm staff. However, direct observations are time-consuming, subjective and
at risk of delayed detection. Another obstacle might be posed by the presence of
humans during the inspection as the probability of animals trying to mask any
vulnerability also increases [1]. The use of automated technologies enabling
the real-time monitoring of animals can provide support in this matter.

Such technologies are subsumed under the term precision livestock farming
(PLF) and are composed of hardware and intelligent software, which collect
and analyse data of animals and/or their environment [2]. However, despite
years of research and numerous studies focusing on the development or vali-
dation of PLF technologies for the assessment of health-related changes, to
date only a few systems are commercially available [3]. Further, the implemen-
tation rate of the available systems on commercial farms is in some countries
strikingly low [4,5]. The discrepancy between commercialization, implemen-
tation and research can be largely attributed to the missing breakthrough in
reliable predictive models and a sound return on investment.

This statement seems to contradict the seemingly sufficient performance of PLF
technologiespresented inmanystudies [6]. Theuppervalues obtained for specificity
(model’s ability to detect negative outcomes) found in the literature range around
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Table 1. Search terms used in the present review to identify literature on
the automated assessment of health-related issues in livestock.

enterprise
terms

precision livestock
farming terms

type of issue
terms

dairy cow smart sensor disease

cattle smart farming health disorder

calves automated monitoring stress

pig precision livestock farming behaviour

sow

broiler

laying hen

goat

sheep
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88.8% for lameness [7], 97.4% for respiratory diseases [8], 87%
post-calving diseases [9] and 84.1% for mastitis [10]; for sensi-
tivity (model’s ability to detect positive outcome), they range
around 82.3% for mastitis [10], 100% for respiratory diseases
[8], 69% post-calving diseases [9] and for lameness 86.1% [11].
However, high values of specificity and sensitivity can be achie-
ved despite high error rates [6] and a considerable number of
false-positive alerts [12]. On commercial farms, a high number
of false-positive alarms is especially disadvantageous as it dis-
rupts the daily management routine and ultimately leads to the
non-compliance with alarms by the farmer [6]. As a result,
the performance of PLF technologies cannot be judged by the
values of sensitivity and specificity alone as these measures do
not properly reflect the suitability of PLF technologies for
implementation on commercial farms [6,12].

When aiming to develop PLF technologies for the assess-
ment of disease-related changes in livestock for commercial
farms, one faces numerous challenges related to data collec-
tion, data analysis and technological aspects. An important
consideration for data collection is the study design, which
usually implies a trade-off between controlled conditions
and a low external validity and uncontrolled conditions
characterized by a high variability and, in return, a high
external validity. In addition, the identification of suitable indi-
cators for the respective purpose is another crucial factor. For
data analysis, a variety of approaches (e.g. multivariate cumu-
lative sum control charts [13], wavelet filtering analysis [14],
time series analysis [15] or fuzzy logic [10]) and performance
measures (e.g. specificity, sensitivity, success rate, receiver
operating curve or area under curve [6]) are available, and
the most appropriate ones need to be determined. Further, in
the scope of development, one also encounters technological
difficulties. For example, PLF technologies have to function
in a harsh and unfavourable farming environment, coping
with dust, high ammonium concentrations, humidity or
rough physical impact from animals.

To accelerate development and increase the adoption rate
of suitable PLF technologies, new approaches are needed to
overcome all the mentioned challenges. In this paper, we pre-
sent a framework for the development of PLF technologies
for the early detection of issues in livestock by focusing on
the decision process related to data collection. On the basis
of recent studies, underlying questions regarding the aim of
detection and the suitability of variables serving as indicators
in view of a commercial farm setting will be critically
reviewed. Then a decision pathway will be proposed,
which detangles the aim of detection and guides the user
through the different decision levels and their options by
pointing out the benefits and disadvantages of each.
2. Methods
(a) Literature research for identifying challenges in

studies on precision livestock farming technologies
for the automated detection of health-related
issues in livestock

To identify the obstacles and challenges in the development and
validation of PLF technologies for the automated assessment of
health-related issues in livestock, we reviewed the methodological
approaches linked to data collection, which have been used so far.
To do so, we have conducted a systematic literature search based
on the PRISMA guidelines [16]. Two databases have been used,
PubMed and Scopus. The search fields were ‘article title, abstract,
keywords’ in Scopus, and ‘all fields’ in PubMed. In addition, to
exclude human studies, the category ‘other animals’ was chosen
in PubMed. Fourteen search terms were used in total (table 1).
Each search string was composed of an ‘enterprise’ term, a ‘pre-
cision livestock farming’ term and a term for the ‘type of issue’.
Between each of the terms, the Boolean operator ‘AND’ was set;
for example, ‘dairy cow’ AND ‘automatic monitoring’ AND ‘dis-
ease’. The combinations of the different terms of the three groups
resulted in 144 search strings. The search protocols can be found
in the electronic supplementary material, table S1.

In addition, Google Scholar was used to find studies that were
identified based on the reference hits but could not be found in the
other two databases. Most full texts have been retrieved via Science
Direct. The related article suggestions provided by Science Direct
resulted in the identification of further literature.

To identify relevant studies within the hits, an eligibility
screening was conducted using the following inclusion and
exclusion criteria.

Inclusion criteria:

— Studies focusing on the development or validation of tech-
nologies or models for the automatic assessment of the
animal’s state or an issue, including oestrus, parturition,
defined and general diseases, distress and abnormal beha-
viours for the enterprises of dairy cows, cattle, calves, pigs,
sows, broilers, laying hens, goats and sheep.

— Studies with positive and negative results.
— Studies written in English.
— Studies published at any time.

Exclusion criteria:

— Studies focusing solely on the technical performance of PLF
technologies or in other words studies that tested the feasi-
bility to record the aimed variables, without aiming to link
the recorded variables to the animal’s state or issue.

— Studies looking for a relationship between stressors and the
animals’ responses, but again without the intention to use
the variables for issue detection.

— Reviews.

The literature screening was done based on the titles and
abstracts. To reduce the risk of inconsistent interpretation of the
inclusion and exclusion criteria [17], one researcher performed
the screening.



Table 2. Number of publications by year, includes publications up to the
end of April 2020.

year published number of publications

1999 1

2005 1

2007 4

2008 2

2009 4

2010 1

2011 2

2012 3

2013 8

2014 2

2015 6

2016 10

2017 21

2018 12

2019 19

2020 4
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(b) Developing a guide for the automated assessment
of issues in livestock

After the identification of the obstacles and challenges in the
development and validation of PLF technologies for the auto-
mated detection of health-related issues, in the next step, the
aim was to detangle the aim of detection based on the degree of
information. Three decision levels of issue detection were pro-
posed. For each decision level, a separate literature review was
conducted by screening the previously mentioned databases.
Because the three proposed decision levels cover a range of disci-
plines, as a final but essential step, a focus group consisting of six
experts specialized in the fields of agricultural engineering, animal
behaviour, applied animal behaviour and veterinary science was
held with the purpose of critically discussing and verifying the
proposed framework. At first, each of the experts reviewed the
manuscript on its own and then all comments and suggestions
were discussed with all experts in a meeting. Based on the discus-
sion, three major adjustments were decided for the manuscript. (i)
To provide a wider overview of the different challenges in the
development of PLF technologies in the introduction, including
technical difficulties and methods for data analysis. (ii) To improve
the terminology of veterinary terms in the ‘Defined disease-related
issues’ section. (iii) To add a discussion to the synthesis about the
current expectation towards PLF technologies and what actually
can be accomplished to date, under consideration of the criteria
proposed in the framework.
3. Results
For qualitative synthesis, 100 articles were found. The screen-
ing and selection process is shown in figure S1, in electronic
supplementary material. The identified literature represents a
sample of evidence composed of peer-reviewed studies (n =
80) and conference proceedings (n = 20). In 64 cases, the
aim of detection was disease related, whereas 36 studies
focused on the detection of thermal and behavioural issues.
More than half of the studies (n = 57) used a non-specific
approach for the detection of a specific issue, 12 studies
used an intermediate and only 18 followed a more specific
approach. The distribution of studies based on the year of
publication is presented in table 2. The full list of studies is
provided in electronic supplementary material, table S2.
4. Framework
(a) Identifying challenges in the development of

precision livestock farming technologies for
assessing issues in farm animals

PLF technologies can support animal health provided the sys-
tems reliably identify any related changes [6]. Thus, over the
last decades, a growing number of studies have focused on
the development or validation of PLF technologies for the
detection of health-related issues in livestock e.g. [18–21].
Some studies intended to identify a general health disorder
[22–24]; some concentrated on defined health disorders, such
as mastitis [25] or ketosis [26], while others focused on clinical
signs of disease, such as lameness [27] or coughs [28]. How-
ever, despite the different aims, in many cases, the same
variables were arbitrarily applied, which is illustrated in the
following examples. Timsit et al. [29] used reticulorumen
temperature as an indicator for respiratory disease in young
bulls, while Adams et al. [19] used it for the detection of mas-
titis, pneumonia, metritis and lameness in dairy cows.
Changes in milk yield, rumination and neck activity were
shown to serve as early signs of lameness [30], whereas, rumi-
nation and activity served also for the identification of metritis
[31], metabolic digestive disorders [32] and mastitis [25].
Moreover, changes in activity also indicated the occurrence
of lameness in broilers [18] and in sheep [33]. Lowe et al. [34]
found that milk consumption, body temperatures of the side
and shoulder and number and duration of lying bouts have
the potential to be suitable measures of neonatal calf diar-
rhoea. And Steensels et al. [9] used rumination, activity, milk
yield, body weight and voluntary visits to the milking robot
to detect post-calving diseases. All the presented variables
are non-specific and can change under different conditions
and with various physiological states, health- and behav-
iour-related issues. This becomes clear when looking at the
following studies. Abeni al et al. [35] used activity and rumina-
tion time to identify heat stress in dairy cows, while Rutten
et al. [36] used activity, rumination and ear temperature to pre-
dict the start of calving. Further, Wallenbeck & Kneeling [37]
used the frequency of visits to the electronic feeders and feed
consumption to indicate tail-biting outbreaks in pigs. Finally,
sensors recording activity, rumination and reticulorumen
temperature were also applied to detect changes around
oestrus [38],

Thus, using non-specific indicators for a specific issue
such as a defined disease or a symptom should have a nega-
tive impact on the accuracy of the predictive value. Although
many of these studies could prove the value of the variables
used as reliable indicators for the detection of the issue in
focus, it stands to reason that the results might be misleading
as it is unlikely that such relationships can always be estab-
lished under on-farm conditions. This is because in a
commercial farm setting animals can experience more than
one state at a time, and using non-specific variables could
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Figure 1. Overview of the three decision levels (i–iii) based on the degree of
information.
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lead to a high number of false-positive results. In fact, Domin-
iak & Kristensen [6] stated that for two decades, no predictive
model has reached the performance demands needed to gen-
erate a satisfactorily low number of false-positive alarms. As
the development of suitable PLF technologies begins with
appropriate measures [39], it is essential to consider exactly
what particular issue is to be detected and which variables
are suitable as indicators for the respective purposes. The
more specific the aim is, the more precise the variables or
combination of variables need to be to improve rates of suc-
cessful detection. Although this conclusion seems to be
obvious and therefore redundant, the minority of studies fol-
lowed this approach. For example, a few of the exceptions are
the studies by Maselyne et al. [40], who used feeding-related
variables for detecting any kind of issue (health-, welfare- or
production-related) in pigs, by Silva et al. [20] who investi-
gated cough sounds of infected and non-infected pigs and
by Villot et al. [41] who used reticulorumen pH as an indi-
cator for subclinical rumen acidosis. There are also studies,
which used an intermediate approach in regard to the speci-
ficity of indicators. For example, Viazzi et al. [42] tried to
identify lameness in cows based on the back posture. While
an arched back can be also a sign of general pain [43] or
for other health disorders such as traumatic reticuloperitoni-
tis and abomasal ulcers [44], it is at least a good indicator for
health-related issues and unlikely caused by other stressors
such as social or thermal stress.

One reason for the use of variables that are not exclusively
related to the issue in focus is that the application of specific
variables is limited by technological development. In fact,
besides a few systems, such as SoundTalks (SoundTalks
NV, Leuven, Belgium), which monitors respiratory issues by
recording cough sounds, or rumen boluses (pH Plus Bolus,
smaXtec, smaXtec, Graz, Austria), which can potentially
identify rumen acidosis based on rumen pH, most other
animal-based sensors are able to record only basic variables,
such as feeding, activity, body weight or the temperature of
the animals [3]. However, in such cases where only non-
specific variables are available, the aim of detection should
be restricted to whether or not an issue exists without
specifying the issue as this increases the error rate.

Consequently, in the scope of development, aspects such
as the exact aim of detection and the specificity of indicators
should be considered. Only then, one will be aware of the
restrictions of the model or system and of the results which
can be truly expected. In addition, it might be possible to
minimize errors, reduce false-positive alerts and increase
the accuracy of the predictive models.

To improve the performance of PLF detection, first, it is of
utmost importance to precisely define the aim of the system to
be developed. We propose a categorization of the aim into the
following three levels of detection based on their degree of
information: general welfare-related issues represent the first
level of detection as it embodies all kinds of health- and dis-
tress-related issues (figures 1 and 2). The aim of the second
level is to differentiate between health- and distress-related
issues (figures 1 and 3). And finally, the third level of detection
aims to identify disease-related issues and, thus, presents the
most specific aim (figures 1 and 4). For each decision level,
different considerations have to be factored in, leading to
different decision pathways. Hence, in the next section, we
will reflect on the particular challenges of each decision level
and discuss the sub-levels of their respective pathways.
A scheme of the proposed decision pathway with its different
levels is depicted in figure 1. It has to be noted that the sub-
levels of the three decision levels are interchangeable and do
not follow a strict order (figures 2–4).

(b) A guide to the automated assessment of issues in
livestock at different levels of specificity using
precision livestock farming technologies

(i) General welfare-related issues
The first decision level deals with the detection of ‘general
welfare-related issues’ (figures 1 and 2). Animal welfare is a
multidimensional concept, implying that an animal is in
good health, in a positive affective state and able to perform
natural behaviours within its repertoire [45], which are plea-
surable and promote biological function [46]. Here, the use of
non-specific indicators is justifiable. That is because a non-
specific indicator changes due to varying conditions and var-
ious issues and thus cannot be used on its own to detect
disease-related changes, but it may be suitable to detect any
disturbance may it be health- or distress-related. However,
due to the non-specificity, the interpretation is only limited
to whether there is a potential issue or not. Which variables
are available and could potentially be used in the future
will be discussed in the next sections.

Indicators for the assessment of welfare-related issues
For the automated detection of welfare-related issues in
livestock, two sets of indicators can be used, namely environ-
ment- and animal-based indicators. Environment-based can
be collected using sensors, which are usually placed in the ani-
mal’s environment. Their advantage is that the interpretation is
straightforward because the sensors directly provide the vari-
able(s) of interest [47]. However, they do not reflect the
animal’swelfare status and thus can only be seen as risk factors
for welfare impairment. Nevertheless, because environmental
indicators are known to influence animal-based indicators
greatly [48–50], they can complement the animal-based
indicators [51].

Animal-based indicators can be recorded with animal-
borne sensors, such as accelerometers or RFID tags or with
strategically placed systems, such as weighing systems,
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cameras or sensors integrated into the milking parlour. How-
ever, outcome interpretation can be difficult due to the
complexity of physiology and behaviour, variation over the
course of time [52], the considerable intra- and inter-variabil-
ity [11,53] and bidirectional changes [54–57]. Despite the
potential of ambiguity, animal-based indicators are generally
better measures for the detection of welfare-related issues
than environment-based ones as they represent the direct
responses of the animal [51].

Animal-based indicators can be further divided into
behavioural and physiological indicators. The main advan-
tage of physiological indicators is that they respond very fast
to change, especially on the molecular level. This is because
a reaction to any kind of stressor, be it physical or psycho-
logical, usually starts with a molecular cascade [58,59].
Unfortunately, the real-time collection and analysis of physio-
logical indicators on the molecular level (e.g. hormones) are
not yet feasible. Despite ongoing research on biosensors for
the identification of definite biomarkers, such as pathogens
[60–62], cytokines [63] and glucocorticoids (GCs) [64,65], the
adoption of point-of-care diagnostics in livestock, which
allows the rapid detection of analytes in animals, is still a con-
cept of the future. There are other physiological indicators
though, such as body or rumen temperature, which nowadays
can be measured through sensors integrated into ear tags or
rumen boluses [3].

In terms of behavioural indicators, feeding, rumination
and activity are most frequently used. As these behaviours
serve an immediate function and thus provide short-term
value [1], they are considered core behaviours [66]. The
advantage of using core behaviours as indicators is that ani-
mals can express them under most circumstances, regardless
of the husbandry system or environmental or group effects;
only the extent and pattern of occurrence might vary between
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conditions. The disadvantage is that a change in core
behaviours is likely to occur later than e.g. grooming,
exploration and play [1,67], which are often referred to as
luxury behaviours. Luxury behaviours are considered to pro-
vide long-term benefits and thus are neglected when an
animal is challenged by a stressor [66,68–70]. However, to
date, they have received less attention as potential indicators.
In fact, to our knowledge, there is not one commercially avail-
able PLF system, which uses luxury behaviours as indicators
for the detection of welfare-related changes [3].

Recording of indicators
Another important consideration is whether to use a single
variable or multiple variables as indicators. For example, in
instances where variables show an inter-correlation, such as
feeding and rumination [71], or where one variable is indica-
tive of an issue, using several might be redundant. However,
there is accumulating evidence that multiple variables are
likely to provide a clearer picture as to whether an issue
exists [72,73]. For the application of a variety of sensors, it
is a prerequisite that the sensors are affordable and that man-
agement systems are available that are capable of integrating,
analysing and interpreting the data from the various sensors.

Sensors for the assessment of behavioural changes usually
record different features of a given parameter, such as the fre-
quency, duration or the occurrence during the time of day. The
simultaneous recording of different characteristics has proven
to be advantageous in cases where, for example, a change in a
variable occurs in one feature but not in another. For instance,
in cattle, a change was visible in the bout frequency and dur-
ation of lying and standing after a gastrointestinal parasite
infestation but not in total duration [74]. In addition, over
the years, the complexity of behaviours has been recognized,
and it was postulated that detecting temporal or directional
patterns [75] and sequences [76] might be more meaningful
than just quantifying the frequency and duration of a given
behaviour. For example, in mice, specific characteristics such
as when, how long and in which direction grooming was
performed could be assigned to comfort or to distress [75].
Further, Veissier et al. [77] found that, based on circadian vari-
ation, it was possible to characterize the physiological and
pathological states of a cow, such as oestrus, lameness and
mastitis. The authors even concluded that circadian variation
appears to be an earlier sign of an issue than changes in
activity or feeding behaviour. Yet, despite the potential,
particularly for the differentiation between positive and nega-
tive states, specific patterns of behaviour and rhythmicity
remain largely overlooked in research to date.

To sufficiently detect changes in variables, it is also necess-
ary to define a sampling rate. The appropriate interval
depends on whether a slow (e.g. weight) or a fast (e.g. feeding,
activity) changing parameter is going to be recorded. Weigh-
ing systems often record the weight of an individual once per
day, whereas the sampling interval of acceleration (e.g. 4 Hz
ICECUBE or 16 Hz ICETAG, IceRobotics Ltd, Edinburgh,
UK) or temperature sensors (e.g. 0.001 HzCalf Tag, FeverTags,
Amarillo, USA) is much higher.

External and internal influencing factors
Animals continuously adjust their physical and behavioural
processes in response to changing external but also internal
conditions [52]. For example, female cows are known to
alter their behaviour when in oestrus [78], during different
lactation states [40] and before parturition [71]. Depending
on age, animals also vary in their general activity [79] and
in their body temperature [80]. In addition, environmental
factors, such as seasonal effects have an impact on the behav-
iour and physiology of animals. As reported by Yalcin et al.
[81], the feed consumption of broilers was reduced by 23%
in summer conditions when compared with autumn con-
ditions. Further, an increase in body temperature of cows
before the onset of heat was detectable in winter but not in
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summer [82]. Depending on the husbandry system, animals
may also vary in the strength of their responses, allowing
the identification of physiological states or issues more
easily in one than in another. Free-ranging hens, for example,
exhibited a higher variety of sickness behaviour than hens
raised in cages [83]. Since all the external and internal factors
mentioned are associated with physiological changes and the
expression of behaviour, it is important to take these into
account when selecting indicators.

In summary, the detection of welfare-related issues
requires a variety of considerations. The main advantage at
this level of issue detection is that animal welfare is a multi-
factorial concept and therefore a wide range of variables can
act as indicators. However, the appropriate indicators need to
be assessed in terms of their ambivalent meanings, their suit-
able combinations and their characteristics, which are going
to be recorded. By considering all the presented aspects, the
reliability of the detection of welfare-related changes can be
enhanced. Most importantly, it can be concluded that at this
decision-making level, the focus is on whether or not there
is a welfare-related issue.
0190
(ii) Health- and distress-related issues
In the previous level of detection (figures 1 and 2), a variety
of welfare-related issues were included and thus a large
number of non-specific variables could be used. The aim of
the second decision level is to retrieve a higher degree of
information about the cause of an issue and the required
interventions by differentiating between different stressors
(figure 3). While the same decision pathway can be followed
as in section ‘(i) General welfare-related issues’, appropriate
indicators need to be chosen, which allow discriminating
between different states. To do so, we will look at the main
adverse states an animal can experience in intensive housing
and what potential markers might allow us to differentiate
between them.

Animals in husbandry systems face a range of physical
and psychological challenges. On a regular basis, they have
to undergo different management procedures usually invol-
ving some kind of handling, which can elicit fear [84].
Further, animals often suffer from health disorders [85,86],
can be exposed to unfavourable thermal conditions [87] and
can frequently be subjected to aggressive encounters with
conspecifics [88,89]. All of these challenges act as stressors
as they pose a threat to the animal’s homoeostasis, which is
defined as the balance of bodily states [90].

Since some stress responses can mask or influence each
other, distinguishing between different stressors should be
beneficial. For example, chronic psychological challenges are
known to increase susceptibility to infections but also nega-
tively affect their progression and the recovery process
[91,92]. Thus, by identifying issues elicited by distress, it
might be even possible to prevent the development of some
diseases. In addition, although considered beneficial, intense
short-termpsychological challenges canmask signs of diseases
[93] or lead to false-positive health alarms when ignored. In
turn, signs accompanying diseases such as pain or malaise
might themselves be stressful for the animals. Finally, issues
arising from different stressors may require different inter-
ventions. While adjusting management could be necessary
for all stressors, health disorders additionally require medical
treatment. Thus, in the present framework, we will refer to
responses caused by negative experiences that are emotionally
(social separation: [94]; handling: [84]) or thermally [87] chal-
lenging as distress. Physiological challenges, which directly
affect animal health, such as infections, traumata or inflam-
mations, are referred to as diseases. Despite the intertwined
nature of distress and disease, surprisingly, there are only a
few studies focusing on the detection of distress-related
changes, and there are hardly any studies that have tried to dis-
tinguish between health- and distress-related issues. In the
following sections, we will look at some potential indicators,
which may help to differentiate between distress and disease.

Indicators for health and distress-related issues
To be able to distinguish between health and distress-related
issues, it is important to define adequate indicators. To date,
GCs are used as standard biomarkers for distress [95,96].
However, due to the dual participation of GC in distress
[97] and immune responses [98], and also because GC release
can be triggered by a disease [99], it might not be feasible to
clearly identify whether an animal is facing a distress or a dis-
ease challenge in the first place based solely on GC values.

One encounters a similar problem when trying to apply
cytokines or acute phase proteins (APPs) as indicators for
some infectious diseases or inflammation. Although there is
accumulating evidence that APPs are valuable tools for the
diagnosis of inflammation and infection, because they are a
core part of the innate immune system, their release can
also be triggered by distress [98]. Bürger et al. [100] suggested
that in the absence of disease, APP might even serve as mar-
kers for distress, which supports the conclusion that they
cannot be seen exclusively as signs for diseases. Both GC
and APP undoubtedly have the potential to provide useful
information about whether or not an issue exists. Neverthe-
less, because of their non-specificity and their intertwined
relationship, based on their use alone, it might not be feasible
to distinguish between disease and distress-related changes
without a doubt. It is possible that specific release patterns
or different concentrations of GCs and APPs related to a dis-
ease or distress response exist; however, to our knowledge,
such explicit indications have not been discovered yet.
In addition, the development of point-of-care diagnostics
has not progressed enough to use molecular components as
indicators. Nevertheless, wearable or implantable biosensors
for the analysis of blood, saliva, or sweat [101] may
have the potential to facilitate on-farm assessments of such
components in the future.

However, distress and diseases also manifest on the non-
molecular physiological and behavioural levels. On the clini-
cal level, cytokine release causes changes in behaviour, which
are collectively termed sickness behaviour [102]. Among
lethargy and lack of appetite, increased and prolonged
sleep is another characteristic of sickness behaviour [103].
Particularly, an increase in the slow waves during the non-
rapid eye movement (NREM) sleep was observed in animals
experiencing a health challenge [104]. By contrast, intense dis-
tress usually causes sleep disruption [105] and results in an
overall reduction in sleep efficacy and the duration of slow-
wave sleep [106]. Devices that monitor sleep-related changes,
such as activity, heart rate or breathing [107], might facilitate
the determination of the definite state an animal is experien-
cing. In addition, cytokines such as interleukin-1 elicit fever
[103]. Although an increase in body temperature can also
result from a distress response caused by heat or physical
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activity, an increase over a prolonged period should be a
good indicator for a disease-related change. By simul-
taneously monitoring environmental factors and e.g.
activity, a reliable prediction could be made about the cause
for the rise in body temperature. Finally, more specific clinical
signs such as coughs are also good indicators for a disease-
related challenge.

Another potential non-specific indicator could be
grooming. Besides potentially allowing the characterization
of ambivalent changes, as discussed in Recording of indi-
cators, it might also facilitate the differentiation between
distress- and disease-related changes. While grooming is
markedly reduced during sickness [104], it can increase
under distress due to its coping function [108,109]. These
results encourage further studies on grooming, for example,
in respect to the total amount of time spent grooming or to
specific patterns related to e.g. the time of day or how the
grooming is performed. Sensors such as brush monitoring
systems [110,111] or cameras could enable the monitoring
of grooming behaviour in animals. Finally, as previously
discussed in the section ‘Indicators for the assessment of
welfare-related issues’, changes in rhythmicity patterns of
behavioural or physiological responses could also facilitate
the differentiation between health and distress-related
issues. Harper [112] showed that particularly the ultradian
temperature rhythms at the third and fifth cycle per day
exhibit a different pattern upon a social and a surgical chal-
lenge. Naturally, there might be countless other indicators
for distress and disease, but as this would require a review
of its own, it is beyond the scope of the current framework.
Nevertheless, although the significance of new and pre-
sented indicators still needs to be investigated, it can be
assumed that such indicators could complement the
interpretation of molecular ones.

In summary, because the effects of disease and distress
can affect or mask one another, differentiating between
them is advantageous. Nonetheless, despite their intertwined
relationship, distress is almost completely disregarded in
studies on PLF technologies. Thus, there are hardly any
defined indicators nor are there commercially available tech-
nologies, which allow the reliable identification of distress-
related issues. Hence, we would like to encourage future
research in this direction as we strongly believe that the
differentiation between distress and disease is an important
basis for the early detection of issues in livestock.
(iii) Defined disease-related issues
Cause of disease
In the final and most specific decision level, the aim is to
automatically detect signs related to defined diseases
(figures 1 and 4). To do so, first, the determinants of the dis-
ease need to be identified. A very basic categorization can
be made into infectious and non-infectious diseases. Inju-
ries, intoxications, metabolic (e.g. ketosis) and genetic
diseases are considered, among others, to be non-infectious
diseases. By contrast, diseases elicited by pathogens such as
bacteria, parasites or viruses are regarded as infectious dis-
eases. For some defined diseases, such as mastitis, the
identification of the causative agent is an important prere-
quisite for the instigation of the appropriate treatment
[113]. Point-of-care diagnostics allowing the on-farm deter-
mination of the causative organism [62] will offer a great
advantage in the diagnosis of defined diseases, though
they are still under development.

Course of disease
Two major courses of disease exist, namely the acute and the
chronic form [114]. An acute form is characterized by severe
signs and a timely end of the disease and lasts approximately
around 12–24 h [115] or 3–14 days [114]. The course of a
chronic disease lasts around three months or more [115]. Dif-
ferentiating between the two courses can be beneficial as they
might require different medical treatments, which can vary,
for example, in terms of frequency of drug administration
or type of medication [116]. Acute and chronic diseases can
exhibit clinical cases with clear recognizable signs [116] or
subclinical cases generally without any clinically detectable
signs [117]. A clinical disease has a considerable impact on
productivity [118] and is related to an overall feeling of
malaise [119,120]; therefore, the need for an early diagnosis
is unquestionable. Although subclinical cases represent the
light form of a disease, they can still negatively affect pro-
ductivity [121] and the animal’s welfare [122]. In addition,
in the case of infectious diseases, the animals can still be con-
tagious while lacking clear clinical signs. Further, over the
course of time, a subclinical form can evolve into a clinical
form [123]. All this makes the identification of subclinical dis-
eases crucial. Of course, the detection of a subclinical disease
is only possible in enterprises where an animal has a longer
production life span and its health status is evaluated on an
individual level.

Signs of disease
A variety of medical signs can be used for the evaluation of
an issue related to a defined disease. Depending on which
form of the disease is in focus, detection occurs at different
levels. For clinical cases, the diagnostics are more straightfor-
ward because they can be determined by changes in the
physical appearance of certain body regions (e.g. digestive
system, eyes, ears, locomotor system) or tissues (e.g.
mucosa). There is a range of PLF technologies commercially
available, which are supposed to detect clinical signs. For
example, some of the standard cardinal clinical signs for mas-
titis, such as redness and heat in the udder, can be recorded
with thermal imaging systems (thermal camera, Agricam
AB, Linköping, Sweden). In addition, sound analysis systems
for cough detection (SoundTalks, SoundTalks NV, Leuven,
Belgium) can nowadays be purchased. By contrast, subclini-
cal cases can often be detected solely at the molecular level
by taking and analysing samples of, for example, blood,
milk or tissue, which is in most cases technically more chal-
lenging. For subclinical mastitis biochemical variables, cell
count or bacteriological examinations serve as common indi-
cators [124]. Also, APPs were proposed to reflect the presence
of subclinical diseases [125]. While the development of bio-
sensors such as for bacteriological or APP examination is
still in progress, some milking systems for cows are able to
analyse biochemical variables and determine the somatic
cell count in the milk [3] and thus possibly also identify sub-
clinical cases of mastitis or ketosis.

Regardless of which form of the disease should be
detected, the focus in this decision level should primarily
be on specific signs. The advantage of specific signs lies in
their distinct nature, which might allow for the use of just
one pathognomonic or a small number of meaningful signs
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for diagnosis. Another advantage is that often a distinct
threshold exists, which indicates a pathological state and
makes calculating a reference value redundant. As an
example, for subclinical ruminal acidosis, a pH value
between 5.5 and 5.0 [126] and for acute ruminal acidosis a
pH value < 5.0 [127] are seen as critical limits in the veterin-
ary diagnosis. Further, the abundance of pathogens in the
organism is a clear sign of disease. Despite the fact that
only specific signs can clearly identify a distinct issue, they
are usually accompanied by general systemic signs such as
reduced feeding or activity. There are reported cases where
specific signs appeared later than changes in general ones
[29]. Further, changes in non-specific signs can even represent
crucial alarm signs; for example, in ruminants, a stop in feed
intake and rumination is dangerous and indicates a severe
issue. However, despite these possible advantages and their
function as supporting signs during a regular veterinary
diagnosis, they are weak indicators for issues related to a
defined disease. Additionally, in contrast to specific signs, a
distinct threshold indicating pathological states rarely exists,
hence calculating a reference value is here necessary to ident-
ify adverse states.

In summary, an important aspect to consider in this
decision component is the type, course and form of disease.
Further, the focus in this decision component should be
placed on specific signs, which clearly indicate an issue
related to a defined disease. Non-specific signs should only
be taken into account, if at all, as supporting tools, which
comply with the standard veterinary approach. Thus, on
one hand, the last decision component is tied to the highest
restrictions in terms of indicators. On the other hand,
knowledge about the course or form of disease embodies
the highest degree of information and might facilitate early
initiation of the appropriate treatment.
5. Synthesis
Based on the requirements for each decision level presented
in this framework, it becomes clear that most of today’s
available technologies, including those under development,
are able to detect issues only related to (i) General welfare,
which represents the first and broadest level of issue detec-
tion. Although distress is an important issue in livestock due
to its effects on disease development and progression
[91,92], and also due to its potential to mask signs of disease
[93], there are hardly any systems which allow a clear differ-
entiation between disease and distress-related changes.
Finally, there are also just a few technologies available for
the detection of signs related to a defined disease. In gen-
eral, this shows that in many cases the expectations
towards the technologies regarding outcome interpretation
are actually too high as most systems only facilitate the
detection of changes without knowing whether issues
related to distress, general health or a defined disease are
responsible for the changes. As a result, the term ‘health
alert’ in PLF systems [3] is often misleading and raises
expectations which might not be met, provided it is gener-
ated solely based on non-specific indicators, such as
activity, feeding or weight.

Further, when looking at the potential indicators dis-
cussed in this framework that might be useful or necessary
for distinguishing between the three proposed decision
levels, another question arises, namely whether the proposed
indicators can be applied under current husbandry systems.
Rhythmicity presents a good example for this point. A
prerequisite for the function as an indicator is that disturb-
ances such as management procedures or husbandry
conditions do not considerably disrupt the rhythm of the
animal, or even disrupt it to such an extent that a rhythm
is no longer apparent or artificially imposed on the animals.
Further, appropriate conditions such as a high space allow-
ance or enrichment items might be required if luxury
behaviours are going to be used. As a result, to reach the
next level of PLF technology development, which would be
characterized by enhanced and specified information, it
might be necessary to rethink and adapt the concept of the
present husbandry systems. Importantly, such a change
might even reduce the occurrence and in turn the overlap-
ping effects of issues and thereby make the distinction e.g.
between disease- or distress-related issues more feasible
6. General conclusion
The presented framework emphasizes the need to specify the
aim of detection and to choose appropriate indicators related
to the purpose. Further, the framework highlights the key
considerations, requirements and challenges regarding data
collection for each decision level and can thus be used as a
practical guide for the development of PLF technologies for
the early detection of issues in livestock. Looking at the cri-
teria proposed in the framework for the three decision
levels and the detection targets set in commercially available
technologies and studies, there seems to be a significant gap
between the expectations for PLF technologies and the actual
possibilities. Thus, it is of great importance that researchers
and engineers carefully reflect on what conclusions can
really be drawn from the collected data. In addition, it is
also necessary to clarify the possibilities and restrictions of
technologies during the commercialization process so that
the end users are aware of how the outputs and alarms
need to be interpreted. This is a crucial aspect if the technol-
ogies are applied on commercial farms or by policymakers to
automatically examine the compliance of welfare regulations
in livestock production. Finally, new indicators or indicator
combinations that are on the horizon were discussed and
should be explored to drive progress in the development of
PLF technologies and enable more precise issue detection as
proposed by the presented framework.
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