
SC I ENCE ADVANCES | R E S EARCH ART I C L E
CONDENSED MATTER PHYS I CS
1Department of Physics, Nagoya University, Nagoya 464-8602, Japan. 2Division of
Chemical Engineering, Graduate School of Engineering Science, Osaka University,
Osaka 560-8531, Japan.
*Corresponding author. Email: kawasaki@r.phys.nagoya-u.ac.jp (T.K.); kk@cheng.
es.osaka-u.ac.jp (K.K.)

Kawasaki and Kim, Sci. Adv. 2017;3 : e1700399 18 August 2017
Copyright © 2017

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

original U.S. Government

Works. Distributed

under a Creative

Commons Attribution

NonCommercial

License 4.0 (CC BY-NC).
Identifying time scales for violation/preservation of
Stokes-Einstein relation in supercooled water
Takeshi Kawasaki1* and Kang Kim2*

The violation of the Stokes-Einstein (SE) relation D ~ (h/T)−1 between the shear viscosity h and the translational
diffusion constant D at temperature T is of great importance for characterizing anomalous dynamics of supercooled
water. Determining which time scales play key roles in the SE violation remains elusive without the measurement of
h. We provide comprehensive simulation results of the dynamic properties involving h and D in the TIP4P/2005
supercooled water. This enabled the thorough identification of the appropriate time scales for the SE relation
Dh/T. In particular, it is demonstrated that the temperature dependence of various time scales associated with struc-
tural relaxation, hydrogen bond breakage, stress relaxation, and dynamic heterogeneities can be definitely classified
into only two classes. That is, we propose the generalized SE relations that exhibit “violation” or “preservation.” The
classification depends on the examined time scales that are coupled or decoupled with the diffusion. On the basis of
the classification, we explain the physical origins of the violation in terms of the increase in the plateau modulus and
the nonexponentiality of stress relaxation. This implies that the mechanism of SE violation is attributed to the attained
solidity upon supercooling, which is in accord with the growth of non-Gaussianity and spatially heterogeneous dynamics.
INTRODUCTION
For simple liquids, the Stokes-Einstein (SE) relation between the shear
viscosity h and the translational diffusion constant D is an important
characteristic of their transport properties (1). Specifically, this relation
implies that D ~ (h/T)−1, where T is the temperature. However, when
liquids are supercooled below their melting temperatures, the SE relation
is remarkably violated (SE violation), particularly near the glass transition
temperature (2–9). Despite extensive efforts, the origins of the SE
violation in supercooled liquids remain elusive.

Generally, transport coefficients such as D and h are mostly coupled
at high temperatures. The characteristic time scale is associated with the
structural a-relaxation time ta. By contrast, at supercooled states, the
SE violation implies that D and h are determined by different time
scales. Structural relaxations in supercooled liquids become spatially
heterogeneous, which is a different behavior than the homogeneous
dynamics observed in normal liquids (6, 10, 11). Thus, the physical
implication of SE violation is relevant to the question regarding which
time scales determine the transport coefficients in glass-forming liquids.
Alternative types of the SE relation D ~ ta or D ~ ta/T have been
controversially tested by assuming that ta is proportional to h/T (analogous
to the Gaussian approximation) or h (analogous to the Maxwell model),
respectively (7, 8).

For liquid water, various anomalies in both its thermodynamics and
dynamics have been observed upon supercooling (12–16). The SE vio-
lation is one of the important anomalies that has beenwidely reported for
supercooledwater (17–25). In the previous studies on supercooledwater,
eitherDta orDta/Twas tested for SE violation.However, the original SE
relation Dh/T has not been widely studied because of the high com-
putational costs for calculating h, particularly at low temperatures.
Therefore, to determine the origin of the SE violation, obtaining h is
important. Hence, the central aims of the present study are to obtain
h and to identify the time scales associated with h and D to reveal the
origin of the SE violation in supercooled water.
The outline of the present study is as follows. First, the SE violation
in supercooled liquid water is examined using molecular dynamics
simulations of the TIP4P/2005model (26, 27). In particular, comprehensive
numerical calculations with respect to shear viscosity are performed
on the basis of the shear stress correlation function, which are
comparable with recent studies for supercooled water using SPC/E
(simple point charge/extended) (28) and TIP4P/2005f (29). Our results
provide a more systematic examination of the SE violation in supercooled
water. The justification of the scenario h/T ~ ta is demonstrated, which
is consistent with the previous studies in simple liquids (7, 8, 30, 31).

Second, the role of the time scale associated with hydrogen bond
(HB) dynamics in the SE relation is investigated. The rearrangement of
the HB network in water is expected to play a critical role in determining
its dynamical properties (32–35). In addition, the tetrahedrality due to
the HB network increases considerably with decreasing temperature
(21, 36, 37). This highly structured tetrahedral network is associated
with the hypothesized liquid-liquid transition between a high-density
liquid and a low-density liquid (14, 38–44), although this scenario
is currently controversial (45–47). Thus, these facts necessitate an
investigation of the role of HB dynamics in the SE relation. We show
that the SE relation is preserved (SE preservation) when we use the
HB breakage time scales instead of ta, that is, the strong coupling
between the diffusion constant D and the HB lifetime tHB at any
temperature. This preservation is attributed to the activated jumps
of mobile molecules that characterize the translational diffusion.

Third, the origin of the observed SE violation [that is, the decoupling
between the diffusion constant D(~tHB

−1) and the a-relaxation time ta]
is elucidated. For this, non-Gaussian parameters and four-point dynamic
correlations are examined to probe the degree of dynamic heterogene-
ities in supercooled water. Here, the SE violation/preservation is addi-
tionally demonstrated in terms of other significant time scales, such as
the stress relaxation and the mobile/immobile contributions of the dy-
namic heterogeneities. From these classifications of various time
scales, the degree of the SE violation is explained by the increase in
the plateau modulus and the nonexponentiality of the stress correlation
function upon supercooling. This elucidation for the SE violation is
also correlated with the growing of non-Gaussianity and dynamic
heterogeneities.
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RESULTS
SE violation
The translational mean square displacement (MSD) was calculated at
different temperatures (see Materials and Methods). The results are
shown in fig. S1A. The diffusion constant was quantified from the
long-time behavior of the MSD (see Materials and Methods). In
Fig. 1A, we plot the temperature dependence of D. The overall behavior
is in good agreement with the previously reported result of the
TIP4P/2005 model (48). The shear viscosity h in the TIP4P/2005
supercooled water was investigated from the stress correlation
function Gh(t) (see Materials and Methods and fig. S1B). The shear
viscosity h was determined from the Green-Kubo formula (see
Materials and Methods). The temperature dependence of the viscosity
h is plotted in Fig. 1A along with that of D. At T = 300 K, the estimated
value is h ≈ 0.78 centipoise (cP), which is approximately the same as
the reported value for TIP4P/2005 (49–52). Furthermore, the structural
relaxation of supercooled water is identified by the incoherent intermediate
scattering function Fs(k,t) (see Materials and Methods). The time
evolution of Fs(k,t) at various temperatures is illustrated in fig. S1C.
As outlined in previous simulation studies (53–57), the behavior
of Fs(k,t) of supercooled water is characterized by a two-step and
nonexponential relaxation below the onset temperature TA ≈ 260 K.
Figure 1B shows the temperature dependence of the a-relaxation time
ta (see the definition of ta in Materials andMethods). In our calculations,
the fragile-to-strong crossover (FSC) weakly occurs at approximately TL≈
220 K. Around this crossover temperature TL, the temperature dependence
of h and ta changes from non-Arrhenius to Arrhenius behavior, as
shown in Fig. 1 (A and B). The FSC is expected as a sign of the
compressibility maximum locus (“Widom line”) originating from
the liquid-liquid transition (58, 59). The observed TL ≈ 220 K is in
accord with the crossing temperature at 1 g cm−3 of the Widom line
determined in recent TIP4P/2005 simulations (44, 60, 61).

The relationship between h/T and D is presented in Fig. 2A. The
SE relation D ~ (h/T)−1 holds at high T but obeys the fractional
formula of the SE relation D ~ (h/T)−z with z ≈ 0.8 below TX ≈
240 K. The crossover from z = 1 to z = 0.8 in the fractional SE relation
is similar to the recent experimental result (25). This onset temperature
appears to be above the FSC TL ≈ 220 K. As noted in Introduction, the
Kawasaki and Kim, Sci. Adv. 2017;3 : e1700399 18 August 2017
alternative expressions for the SE relation are conventionally examined
via D ~ ta

−1 or D ~ (ta/T)
−1. The former formula uses the Gaussian

approximation Fs(k,t) = exp(−Dk2t). If ta is characterized by h/T, then
Dta can play the role of the SE relation. Figure 1C shows the proportional
relationship h/T ~ ta, which is consistent with the previous results in
simple liquids (7, 8, 30, 31). The temperature dependence of Dta is
illustrated together with Dh/T in Fig. 2B. This shows that Dta is a
good indicator of the SE violation Dh/T below its onset temperature
TX ≈ 240 K.

SE preservation
We introduce the generalized SE ratio Dt with other significant time
scales in supercooled water. First, we focus on the dynamics of HB
breakage. The number of the nonbroken HBs for all molecules NHB(t)
was calculated in the time interval t, and then the average number frac-
tion CHB(t) was calculated. The results are shown in fig. S1D [see
the detailed definitions of the HB and CHB(t) in Materials and Methods].
The HB lifetime tHB was then determined from CHB(t) (see the definition
of tHB in Materials and Methods). Its temperature dependence is
displayed in Fig. 1B along with that of ta. Remarkably, both D−1 and
tHB exhibit a similar Arrhenius temperature dependence, which is differ-
ent from that of h or ta exhibiting the FSC. Thus, we obtain a marked
preservation of the SE relation (SE preservation) D ~ tHB

−1 at any
temperature, as evident in Fig. 2C. This SE preservation D ~ tHB

−1 implies
that the appropriate time scale associated with the translational diffusion
D is not ta but should instead be the HB lifetime tHB. The HB breakage
is commonly speculated to occur intermittently, inducing a markedly
large number of jumping water molecules, particularly in supercooled
states. Exploring how the HB dynamics are related to the translational
diffusion via the jumping molecules is worthwhile. This issue will be
discussed later in the paper.

Next, we examine the stress relaxation time th. The long-time
behavior of Gh(t) is well fitted by the stretched exponential function
Gp exp [−(t/th)

b] (see fig. S1B). Gp and th denote the plateau modulus
and the stress relaxation time, respectively. The exponent b (< 1) is the
degree of nonexponentiality. The temperature dependence of Gp and b
is illustrated in fig. S2A. Note that the stress relaxation time th differs
from the relaxation time of the Maxwell model tM = h/G∞ with the
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Fig. 1. Dynamical properties in the TIP4P/2005 supercooled water. (A) Temperature dependence of viscosity h and translational diffusion constant D. The blue dashed
curve is the fitting of the Vogel-Fulcher-Tammann law hº exp [(BT0/(T − T0)] with T0 = 170 K and B = 1. 79. The blue dotted line is the Arrhenius law for hº exp (EA/T) at lower
temperatures with an activation energy of EA = 52. 1 kJ/mol. Arrhenius behaviors D−1 º exp (EA/T) in both the high and the low temperature ranges are also shown as two red
dotted lines, with activation energies of EA = 19. 0 and 38. 6 kJ/mol, respectively. (B) Temperature dependence of the a-relaxation time ta and the HB lifetime tHB. The blue
dashed curve is the fitting of the Vogel-Fulcher-Tammann law ta º exp [BT0/(T − T0)] with T0 = 175 K and B = 1. 87. The blue dotted line is the Arrhenius law for ta º exp (EA/T) at
lower temperatures with an activation energy of EA = 47. 9 kJ/mol. Arrhenius behaviors tHB º exp (EA/T) in both the high and the low temperature ranges are also shown as two
red dotted lines, with activation energies EA = 26. 1 and 41. 2 kJ/mol, respectively. (C) Relationship between h/T and ta. The direct proportional relation h/Tº ta is obtained. The
dashed line is a guide to the eye.
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instantaneous shear modulus G∞ = Gh(t = 0). If the temperature
dependence of G∞ is negligible, then the viscosity h is identified by
tM. Furthermore, provided that tM equals ta, the linear relationship
h ~ ta is obtained. However, as seen in fig. S1B, G∞ and Gp increase
slightly with decreasing temperature. Instead of the Maxwell model,
the viscosity h is determined not only by the stress relaxation time
th but also by the plateau modulus Gp. This relationship will be clarified
later. We additionally obtained another preservation of the SE relation,
D ∼ t�1

h at any temperature, as evident in Fig. 2C. This observation
implies that the HB breakage is correlated with the relaxation process
of the local stress.

As mentioned in Introduction, the SE violation is possibly attributed
to the heterogeneous dynamics, that is, the coexistence of correlated
mobile and immobile motions. In this case, the distribution of the
single-molecular displacement becomes non-Gaussian at supercooled
states. When Fs(k,t) is described by the Gaussian approximation using
the MSD FGauss

s ðk;tÞ ¼ exp½�k2〈DrðtÞ2〉=6�, the relation ta = (Dk2)−1 at
the diffusive regime is obtained (1). Therefore, the non-Gaussian behavior
is directly linked with the SE violation. Analogous to the previous study
(54), the degree of the non-GaussianityDFsðk;tÞ≡Fsðk;tÞ � FGauss

s ðk;tÞ is
plotted in fig. S1C. We introduce the peak time of DFs(k,t) as tNG, which
characterizes the time scale of the maximum deviation from the Gaussian
behavior. As shown in Fig. 2C, the ratio DtNG represents the SE
preservation at any temperature. We also calculated the conventional
non-Gaussian parameter a2(t) and determined the peak time of a2(t)
as ta2 [see the definition of a2(t) in Materials and Methods and fig. S3A].
As demonstrated in Fig. 2C, the time scale ta2ð≃ tNGÞ is coupled with
D even at supercooled states. From the definition, the first correction
of cumulant expansion of DFs(k,t) is given by a2(t). Thus, tNG and ta2
exhibit similar temperature dependence. A similar observation has
been reported in Lennard-Jones supercooled liquids (62); however,
the SE ratio Dta2=T was used, contrary to our results.

The relationship between the non-Gaussianity and the HB breakage is
discussed next. The physical implication of the SE preservation
Dta2 is also given. Furthermore, the effects of characteristic time scales
of dynamic heterogeneities on the SE violation/preservation are examined.

Relationship between translational diffusion and
HB breakage
Let us examine how HB breakages are coupled with diffusion. To this
end, we introduce the jumping (jp) molecules with large displacements.
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Here, the jp molecules undergoing jumping motions are defined as those
O atoms that moved farther than an arbitrary cutoff length ℓm, DriðtÞ ¼
jriðtÞ � rið0Þj > ℓm during the time interval t. We calculate the MSD
due to the jp O atoms, 〈Drjp(t)

2〉 = (1/N)∑i∈jp〈Dri(t)
2〉. The summation

is over the jp molecule number Njp(t) at time t. In Fig. 3A, the jp
component of the MSD, 〈Drjp(t)

2〉, is plotted at several temperatures.
Because of the jp molecules, this restricted MSD exhibits the diffusive
behavior 6Dt even at short time regimes (t ≳ 1 ps). After a longer time,
the jp contributions to the MSD asymptotically reach the full MSD
curves at each temperature because all O atoms eventually move a dis-
tance greater than ℓm. In practice, the value of ℓm is adjusted to the long-
time regimes of the full MSD at each temperature. For the temperature T =
190 K, ℓm ¼ 1:9 Å is chosen corresponding to the position at the first
shoulder of the van Hove function Gsðr;tÞ ¼ 〈ð1=NÞ∑N

i¼1dðr � riðtÞþ
rið0ÞÞ〉 with r = |r|, which represents the distribution of single-molecular
displacement (see fig. S4, A to C). At the time scale of tNG ≈ 1 ns, Gs(r,t)

is largely deviated from the Gaussian formGGauss
s ðr;tÞ ¼ 1=ð4pDtÞ3=2

h i
exp ð�r2=4DtÞ. This deviation implies that the spatial distribution of
single-molecular displacement becomes heterogeneous. In particular, a
D
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Fig. 3. Diffusive properties of jump molecules. (A) Translational MSD 〈Dr(t)2〉 for
the O atom (solid curves), the MSD due to the jp O atoms 〈Drjp(t)

2
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Einstein relation 6Dt (black dashed lines). Here, D is determined by the long-time
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(B) Average number fraction of the jp molecules fjp(t). Dashed lines represent the
linear growth relations t/tHB at each temperature.
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double-peaked structure for Gs(r,t) indicates two distinct contributions
due to jumping and nonjumping molecules. This non-Gaussianity can
be clarified by the decomposition of Gs(r,t) due to the number of HBs
broken,BiðtÞ;during the time t for the molecule i [see the definition of
BiðtÞ in Materials and Methods]. The molecules having more than
three broken HBs [BiðtÞ > 3], which destroy the molecules’ local
tetrahedral structures, are entirely subjected to the jumping motions.
The displacements of these molecules exceed the cutoff length ℓm ¼
1:9 Å at 1 ns. As demonstrated in the study by Kawasaki and Onuki
(63), this cutoff length ℓm enables the selection of irreversible jumps as
a result of an activation process analogous to nucleation (64). The av-
erage number fraction of the jp molecules, fjp(t) ≡ 〈Njp(t)〉/N, exhibiting
activation jumps increases linearly over time. The jump rate is appro-
ximately given by tHB

−1, that is, fjp(t) ≃ t/tHB, which is demonstrated
in Fig. 3B. If the mean jump length ℓjp is assumed, then the jp component
of the MSD 〈Drjp(t)

2〉 increases linearly with time as ℓ2jpt=tHB from
short time intervals. As demonstrated in Fig. 3A, 〈Drjp(t)

2〉 exhibits
6Dt. Thus, these results clarify the correlation between translational
diffusion and HB breakage and agree with the demonstrated SE
preservation D ~ tHB

−1 (see again Fig. 2C). Furthermore, the mean
jump length can be estimated by ℓ jp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6DtHB

p
≈ 2:6 Å.

Mechanism of SE violation
The demonstrated SE violation indicates that the translational diffusion
constant D is not characterized by the a-relaxation time ta. The SE
violation is explained in terms of the peak height of DFs(k,t) at tNG,
which is represented by DFpeak

s . By using the SE preservation D ~ tNG
−1,

we can express the degree of SE violation in Dta by the temperature
dependence of DFpeak

s (see text S1 for details). That is, the increase
in the degree of non-Gaussianity is in accord with the degree of the
SE violation in Dta.

As mentioned above, the non-Gaussianity is directly relevant with
dynamic heterogeneities. The observed double-peak structure of Gs(r,t)
at lower temperatures is the main feature of dynamic heterogeneities (see
fig. S4, A to C). Note that ta2ð≃ tNGÞ strongly characterizes the contri-
bution of the mobile molecules that move faster than the Gaussian
distribution (65). The peak time ta2 of a2(t) becomes smaller than the
structural relaxation time ta, particularly at low temperatures. Up to the
time scale ta2, a tagged molecule is trapped by the surrounding cage,
which is observed as the plateau of MSD (see fig. S1A). The cage even-
tually breaks at ta2 , and then the tagged molecule begins to escape from
the original position due to the jump motion. This physical implication is
consistent with the demonstrated SE preservation DtHB.

The non-Gaussianity is additionally quantified by a new non-Gaussian
parameter g(t), which emphasizes the immobile and slower contribution
of dynamic heterogeneities [see the definition of g(t) in Materials and
Methods and fig. S3B] (65). The peak time tg of g(t) becomes slower than
ta2 with decreasing temperature. This indicates the decoupling between
mobile and immobile molecules in supercooled states. As demonstrated
in Fig. 2B, the SE ratio Dtg exhibits the SE violation, following the similar
temperature dependence of Dta. Another quantity to examine the
dynamic heterogeneities is the four-point correlation function c4(k,t)
that is defined by the variance of Fs(k,t) [see the definition of c4(k,t)
in Materials and Methods and fig. S3C] (66). The value of c4(k,t) is
related to the correlation length of dynamic heterogeneities at the time
scale t. As demonstrated in fig. S3C, c4(k,t) exhibits the peak value at
ta, which increases as the temperature decreases. Figure 2B shows that
the peak time tc4 of c4(k,t) also acts as the SE violation. These results
indicate that the immobile and slower component of non-Gaussianity
Kawasaki and Kim, Sci. Adv. 2017;3 : e1700399 18 August 2017
is characterized by the time scales ta and tg presenting the SE violation.
In contrast, the time scales tNG, ta2 , and tHB are coupled with the
diffusion constant D, which is markedly governed by the mobile
and jumping molecules.

Furthermore, the increase in the degree of the non-Gaussianity
DFpeak

s upon supercooling can be interpreted by the viscoelasticity
and nonexponentiality in the stress relaxation function Gh(t). The
viscosity h is mainly determined by Gp and th according to the
long-time behavior of Gh(t) ≃ Gp exp[−(t/th)

b] (see fig. S1B). This
dependence of Gh on Gp and th leads to the approximation of h as
∫∞0 Gpexp ½�ðt=thÞb�dt ¼ GpthGð1=bÞ=b, where G(⋯) is the gamma
function. Figure S2A shows that the plateau modulus Gp increases,
whereas the stretched exponent b decreases with decreasing temperature.
The clear correlation between h and GpthG(1/b)/b is demonstrated in fig.
S2B except for high temperatures. The plateau moduli are well developed
below TA ≈ 260 K, which is correlated with the onset of the two-step
relaxation in Fs(k,t). By combining it with D ~ tHB

−1, we obtain the
relationship Dh/T ~ [GpG(1/b)/Tb] × (th/tHB). The linear relationship
between tHB and th provides an alternative representation for the SE
violation as Dh/T ~ GpG(1/b)/Tb, as demonstrated in Fig. 2B. Ad-
ditionally, the SE violation is attributed to the immobile molecules
within dynamic heterogeneities, whose time scales are ta, tg, and tc4 .
This decoupling is in accord with the development of Gp, that is,
the emergence of solid-like regions. Therefore, the increase in the
non-Gaussianity DFpeak

s is directly relevant to the increase in Gp (attained
solidity) and to the decrease in b (increase in the nonexponentiality for
the stress relaxation), resulting in the SE violation with lowering T.
DISCUSSION
In summary, we reported comprehensive numerical results concerning
the SE relation in the TIP4P/2005 supercooled water. In particular, the
temperature dependence of the shear viscosity was quantified from the
stress correlation function in a wide temperature range (190 to 300 K).
Thus, the SE relation in supercooled liquid water was systematically
examined as follows.

We reported that the violation of the SE relation is characterized by
the fractional form D ~ (h/T)−z with z ≈ 0.8. The onset temperature of
the SE violation TX ≈ 240 K is slightly below TA ≈ 260 K, which is the
onset temperature of the two-step relaxations exhibited in Fs(k,t) and
Gh(t). These temperatures are above the FSC temperature TL ≈ 220 K
observed in the temperature dependence of h and ta. A similar obser-
vation, TL< TX ≲TA, has been reported in numerical results using ST2
water model (40). Furthermore, the degree of the SE violation was iden-
tified by Dta from the proportional relation h/T ~ ta. We also explored
the role of HB breakage on the SE relation. The results revealed that
the time scale associated with the translational diffusion constant D
should be the HB lifetime tHB, in accordance with the preservation
of the SE relation D ~ tHB

−1 even for supercooled states. We observed
that both D and tHB exhibit an Arrhenius temperature dependence
with a similar activation energy. This SE preservation proposes
the temperature-independent length scale ℓjp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6DtHB

p
≈ 2:6 Å,

which has no relation with the Widom line and the possible liq-
uid-liquid transition.

We quantitatively confirmed that the observed preservation of the
SE relation D ~ tHB

−1 was attributed to the effect of the activated
jumping of mobile molecules on the translational diffusion. The
distinction between jumping and nonjumping molecules in supercooled
states is a manifestation of spatially heterogeneous dynamics, that is, the
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dynamic heterogeneities in supercooled water (67, 68). In particular, the
MSD from the jp molecules, 〈Drjp(t)

2〉, was characterized by the diffusive
behavior 6Dt, even on short time scales. The jumping rate was characterized
by the inverse of the HB lifetime tHB. An analogous result showing the
SE preservation between D and tHB has already been obtained in both
binary soft-sphere mixtures (fragile liquids) (63) and silica-like
network-forming liquids (strong liquids) (31). In these studies, the
bond-breakage method characterizing the changes in local particle
connectivity was used, which is essentially the same as the current
analysis regarding the HB network in liquid water.

Furthermore, we categorized other time scales (such as stress
relaxation time th, time scales of the non-Gaussianity ta2 , tg, and
tNG, and four-point dynamic susceptibility tc4 ) into the SE violation
and preservation. Here, the time scales of th, ta2, and tNG characterize
the mobile molecules within dynamic heterogeneities and are coupled
with the diffusion constant D even for supercooled states. In contrast,
tg and tc4 exhibit the temperature dependence similar to that of the
a-relaxation time ta. These time scales are governed by the immobile
and slower molecules and are decoupled with D when the temperature
decreases, leading to the SE violation.

Finally, we revealed that the SE violation was attributed to the
increase in the degree of the non-GaussianityDFpeak

s . Simultaneously,
the SE relation is represented by Dh/T ~ GpG(1/b)/Tb, where Gp and b
denote the plateau modulus and the stretched exponent in the stress
relaxation function, respectively. Here, the proportional relationship
between the stress relaxation time and the HB lifetime th ~ tHB was
used. Therefore, the time scales supporting the violation or preservation
of the SE relation were thoroughly identified; attained solidity
(increasing Gp) and increasing nonexponentiality (decreasing b) give
rise to the SE violation with decreasing temperature. Note that the
nonexponentiality in the stress relaxation is also a significant hallmark
of the dynamic heterogeneities (69). In our simulations, the plateau
modulus and the nonexponentiality develop largely below TA ≈ 260 K.
Correspondingly, the growths of the non-Gaussianity and the dynam-
ic susceptibility are noticeable, as demonstrated in fig. S3 (A to C).

There are other implications in developing the plateau modulus
Gp. The SE violation with decreasing temperature will be relevant with
the decoupling between translational and rotational motions in supercooled
water. It is expected that translational relaxations become slower,
whereas molecules undergo rotational motions even inside immobile
solid-like regions (20). The mechanism of this decoupling will be
clarified in terms of the attained solidity Gp. In addition, a recent
theoretical study has shown that the spatially heterogeneous dynam-
ics is attributed to the thermal excitation between the different me-
tabasins of the free energy landscape (70). In the framework, the value
of the plateau modulus Gp is determined by the curvature of the local
metabasin. Considering these investigations, the demonstrated SE
preservation DtHB will provide deeper insight into the activated jump
events occurring between different metabasins, not only in supercooled
water but also in various glassy systems, although further investigations
are required to confirm it.
MATERIALS AND METHODS
Simulations
The molecular dynamics simulations of liquid water were performed
using the LAMMPS package (71). The TIP4P/2005 model was used
for the water molecules (26, 27). The NVT ensemble for N = 1000
water molecules was first simulated at various temperatures (T =
Kawasaki and Kim, Sci. Adv. 2017;3 : e1700399 18 August 2017
300, 280, 260, 250, 240, 230, 220, 210, 200, and 190 K) with a fixed
density r = 1 g cm−3. The corresponding linear dimension of the
system is L = 31.04 Å. After equilibration for a sufficient time at each
temperature, the NVE ensemble simulations were completed, yielding
five independent 100-ns trajectories from which the various physical
quantities were calculated. The simulations were performed with a
time step of 1 fs. The total CPU (central processing unit) time
approximated about 20 years of single core time.

Incoherent intermediate scattering function and MSD
The incoherent intermediate scattering function is given by

Fsðk;tÞ ¼ 1
N
∑
N

i¼1
exp ½ik⋅ðriðtÞ � rið0ÞÞ�

* +
ð1Þ

where ri(t) is the position vector of the O atom of the water molecule i
at time t. The bracket indicates an average over the initial time t = 0.
The wave number k = |k| was chosen as k = 3.0 Å−1, which corresponds
to the first peak position of the static structure factors of the O atom.
The a-relaxation time ta was determined by the fitting Fs(k,t) with ð1�
fcÞexp ½�ðt=tsÞ2� þ fcexp ½�ðt=taÞba �, where fc, ts, ta, and ba are the
fitting parameters. The exponent ba is the degree of nonexponentiality
of Fs(k,t).

The MSD of the O atom

DrðtÞ2� � ¼ 1
N
∑
N

i¼1
riðtÞ � rið0Þj j2

* +
ð2Þ

was also calculated. The translational diffusion constant D was
determined from the long-time behavior of the MSD using the Einstein
relation D = limt → ∞〈Dr(t)

2〉/6t.

HB breakage and its lifetime
The dynamics of HB was investigated by using r definition (72), where
only the intermolecular O–H distance rOH is involved. An HB bond is
present at the initial time if the rOH is less than 2.4 Å, corresponding
to the first minimum of the radial distribution function gOH(r). At a
later time t, the HB is broken when the distance rOH becomes larger
than 2.4 Å , which was determined from the second minimum posi-
tion of gOH(r).

First, to characterize the local configuration change, we defined
the number of HBs broken during time t for molecule i as BiðtÞ.
Next, the characteristic time scale (that is, the HB lifetime tHB) was
determined. The number of HBs was calculated at the initial time t = 0
and denoted as NHB(0). At time t, the number of remaining HBs,
NHBðtÞ ¼ Nð0Þ � ∑iBiðtÞ=2, was less than the initial value NHB(0)
due to HB breakages (34, 35). The average fraction of HB bonds as
a function of time t was then defined as

CHBðtÞ ¼ 〈NHBðtÞ=NHBð0Þ〉 ð3Þ

The average HB lifetime tHB was determined by fitting CHB(t)
with exp ½�ðt=tHBÞbHB �, where the exponent bHB is the degree of
nonexponentiality of CHB(t).

Furthermore, the present scheme is identical to the bond-breakage
method applied to various supercooled liquids (31, 63, 73–76). These
previous studies have demonstrated that the bond-breakage method is
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more remarkable when the collective motions and dynamic heterogeneities
peculiar to supercooled states are characterized.

Stress correlation function and shear viscosity
The autocorrelation function of the off-diagonal stress tensor is given by

GabðtÞ ¼ V
kBT

〈sabðtÞsabð0Þ〉 ð4Þ

where V is the volume of the system, sab represents the ab(a,b=x,y,z)
components of the off-diagonal stress tensor, and kB is the Boltzmann
constant. The average stress correlation function is defined as Gh(t) =
[Gxy(t) + Gxz(t) + Gyz(t)]/3. The shear viscosity h was determined from
the integral of Gh(t) as h ¼ ∫∞0 GhðtÞdt; using the Green-Kubo formula.

Characterizations of dynamic heterogeneities
The non-Gaussian parameter for the displacements of the molecules is
the conventional quantity to characterize dynamic heterogeneities in
various glass-forming liquids. The equation is given by

a2ðtÞ ¼ 3
5
〈DrðtÞ4〉
〈DrðtÞ2〉2 � 1 ð5Þ

that represents the degree of the deviation from the Gaussian ap-
proximation in the density correlation function, which is revealed by
the cumulant expansion such as

Fsðk;tÞ ∼ FGauss
s ðk;tÞ 1þ 1

2!
a2ðtÞ½k2〈DrðtÞ2〉=6�2

� �
ð6Þ

where FGauss
s ðk;tÞ ¼ expð�k2〈DrðtÞ2〉=6Þ. The difference is then given

by DFsðk;tÞ ¼ Fsðk;tÞ � FGauss
s ðk;tÞ.

This a2(t) is mainly dominated by mobile components in the
distribution of the single-molecular displacement Gs(r, t). To emphasize
immobile and slower components, another type of a non-Gaussian
parameter is given by

gðtÞ ¼ 1
3
〈DrðtÞ2〉 1

DrðtÞ2
* +

� 1 ð7Þ

which is referred to as the new non-Gaussian parameter (65).
Furthermore, the four-point dynamic susceptibility c4(k,t) was

used to identify the magnitude of dynamic heterogeneities. The equa-
tion is defined from the variance of Fs(k,t)

c4ðk;tÞ ¼ N
1
N
∑
N

i¼1
½dFiðk; tÞ�2

* +
ð8Þ

where dFi(k,t) = cos{k ⋅ [ri(t) − ri(0)]} − Fs(k,t) is the ith molecular
fluctuation in the real part of the density correlator (66).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/8/e1700399/DC1
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fig. S1. Time correlation functions.
fig. S2. Properties of stress-relaxation function.
fig. S3. Characterizations of dynamic heterogeneities.
fig. S4. van Hove correlation functions.
text S1. SE violation evaluated by non-Gaussianity.
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