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Abstract

Some tardigrades can survive extremely desiccated conditions through transi-

tion into a state called anhydrobiosis. Anhydrobiotic tardigrades have proteins

unique to them and they are thought to be keys to the understanding of

unusual desiccation resistance. In fact, previous transcriptome data show that

several tardigrade-specific proteins are significantly upregulated under desic-

cated conditions. However, their physiological roles and chemical properties

have been ambiguous because they show low or no similarity of amino acid

sequences to proteins found in other organisms. Here, we report a crystal

structure of one of such proteins. This protein shows a β-sandwich structure

composed of 8 β-strands, three Ca2+-binding sites, and hydrophobic residues

on Ca2+-binding (CBD) loops, which resemble characteristics of C2 domain

proteins. We therefore conveniently describe this protein as tardigrade C2

domain protein (TC2P). Because the C2 domain functions as a Ca2+-mediated

membrane docking module, which is related to signal transduction or mem-

brane trafficking, TC2Ps may play a role in Ca2+-triggered phenomenon under

desiccated situations. Our finding provides not only structural insights into a

newly discovered desiccation-related protein family but also insights into the

evolution and diversity of C2 domain proteins.
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1 | INTRODUCTION

Tardigrades are microscopic organisms ubiquitously
found on Earth.1 Some terrestrial tardigrades can survive
extremely desiccated conditions through transition into a
state called anhydrobiosis with undetectable metabo-
lism.2,3 In preparation for anhydrobiosis, the bodies of
tardigrades shrink to form a so-called “tun.” The tun
shows tolerances to high (151�C)4 or low (−273�C)5

temperature, exposure to high energy radiations,6–8

vacuum,9,10 high pressure,11,12 and toxic chemicals.13,14

Moreover, anhydrobiotic tardigrades are famous for the
survival record in space.15 To understand the molecular
basis of the extraordinary abilities of anhydrobiotic tardi-
grades, genomics and transcriptome analyses have
recently uncovered tardigrade-specific proteins.16,17

These proteins show very low or no amino acid sequence
similarities to those of well-studied proteins from other
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organisms; therefore, their functions are ambiguous. A
protein family, which we here designated tardigrade C2
domain protein (TC2P), seems to be conserved in tardi-
grades and is not found in phyla other than Tardigrada.
The earlier transcriptome studies16,17 also show that in
two different anhydrobiotic tardigrades, Ramazzottius
varieornatus and Hypsibius exemplaris (the same strain as
Hypsibius dujardini described in17, which has been
recently renamed Hypsibius exemplaris.18 We use the new
terminology in this report), some TC2Ps are upregulated
when they are exposed to dried conditions. Therefore,
TC2Ps are promising candidates for anhydrobiosis-
related proteins. However, due to its no amino acid
sequence similarities to known proteins, functional ana-
lyses of the proteins at molecular and atomic levels are
difficult. Here, we performed the structural analysis on a
TC2P from R. varieornatus strain YOKOZUNA-1. Our
structure provides insights into chemical properties and a
possible physiological role of TC2Ps, which will help
future biochemical studies.

2 | RESULTS AND DISCUSSION

The crystal structure of the TC2P was determined at a
resolution of 2.50 Å by a multi-crystal native single-
wavelength anomalous dispersion (native SAD) method19

using calcium atoms (Table 1) because of its low
sequence similarity to known proteins. A high-resolution
dataset was also collected from another crystal and its
structure was solved at 1.70 Å resolution. The final Rwork

and Rfree values of the high-resolution structure are 0.175
and 0.212, respectively. The overall structure of TC2P
shows a β-sandwich core composed of 4 + 4 β-strands
(Figure 1a). The Dali server20 reports that the obtained
TC2P model is especially similar to the structures of the
calcium-phospholipid binding domain from cytosolic
phospholipase A2 (cPLA2 C2 domain; PDB ID: 1RLW)21

and the C2A domain of otoferlin (PDB ID: 3L9B)22 with
Z-scores higher than 10. Although the amino acid
sequence of the TC2P is distinct from those of the C2
domain proteins (Figure S1), superimposition of the
TC2P structure on the cPLA2 C2 domain and the
otoferlin C2A domain reveals that the TC2P has the same
fold and topology as these proteins (Figure 1b). Further-
more, all other top-hit structures at the Dali server belong
to C2 domain proteins. These results show that the TC2P
is a previously unknown C2 domain protein. The C2
domain functions as a Ca2+-mediated membrane-docking
module,23,24 which is related to signal transduction or
membrane trafficking. Some C2 domain proteins such as
cPLA2 C2 domain have hydrophobic residues on the
Ca2+-binding (CBD) loops (CBD loop1 and 2) positioned

above the Ca2+-binding sites, which facilitate direct inter-
action with membrane.23 The TC2P structure also

TABLE 1 Data collection and refinement statistics

Data collection at SPring-8 BL44XU

High-
resolution data

Native
SAD data

No. of crystals 1 2

Wavelength (Å) 0.9000 1.9000

Total images 1,800 6,600

Space group P41212

Unit cell a, b, c (Å) 62.92, 62.92,
100.5

62.69, 62.69,
100.9

Resolution range (Å) 40.7–1.70
(1.73–1.70)a

44.3-2.50
(2.60–2.50)

Total no. of reflections 299,105 (16,254) 323,225
(37,127)

No. of unique reflections 22,431 (1,128) 7,373 (796)

Completeness (%) 98.4 (97.1) 99.3 (98.2)

Redundancy 13.3 (14.4) 43.8 (46.6)

hI/σ(I)i 16.2 (2.5) 24.0 (13.5)

Rmeas (all I+ & I−) 0.091 (1.290) 0.256 (0.932)

Rmeas (within I+/I−) 0.095 (1.334) 0.256 (0.938)

CC1/2 0.999 (0.870) 0.998 (0.990)

Refinement

Resolution range (Å) 39.3–1.70
(1.76–1.70)

Completeness (%) 97.9 (96.5)

No. of reflections,
working set

22,402 (2149)

No. of reflections, test set 1,101 (92)

Rwork/Rfree 0.175/0.212
(0.249/0.286)

No. of non-H atoms

Protein 1,449

Ca ion/Trehalose 3/23

Water 202

R.m.s. deviation bonds
(Å), angles (�)

0.006, 0.945

Average B factors (Å2) 29.4

Protein 27.9

Ca ion/Trehalose 19.9/54.6

Water 37.4

Ramachandran favored/
allowed/disallowed (%)

96.43/3.57/0

PDB code ID 7DF2

aStatistics for the highest-resolution shell are shown in parentheses.
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displays hydrophobic residues on its CBD loops and they
are conserved among TC2Ps (Figure 1c–e), suggesting
membrane docking of TC2Ps.

Because of the presence of Ca2+ ions in our crystalli-
zation condition, we could observe a Ca2+-bound state of

the TC2P (Figure 2a, Table S1). These Ca2+ ions are veri-
fied by anomalous signals that are weak but stronger
than those from sulfur atoms (Figure S2). There are three
Ca2+-binding sites in the TC2P structure, which resem-
bles aspartate clusters for multiple Ca2+-binding in

FIGURE 1 Crystal structure of TC2P. (a) Overall structure of TC2P. Ca ions are shown by magenta spheres. Disulfide bonds are shown

in insets with 2mFo-DFc maps at 1 σ. (b) Structural comparison of TC2P with C2 domain proteins: cPLA2 (PDB code ID: 1RLW) and

otoferlin (PDB code ID: 3L9B). Root-mean-square-deviations are 2.8 and 2.6 Å for 1RLW (123 Cα atoms) and 3L9B (126 Cα atoms),

respectively. Ca ions are illustrated by spheres. (c) Hydrophobic residues on the Ca2+-binding (CBD) loops of TC2P. (d) Hydrophobic

residues on the CBD loops of the C2 domain in cPLA2. (e) Sequence alignment of TC2Ps. Black circles: cysteine residues forming the S S

bonds. Black triangles: ligand residues to Ca2+ ions. Blue squares: hydrophobic residues on the CDB loops. GenBank accession IDs starting

from GAU and OQV mean sequences from R. varieornatus and H. exemplaris, respectively. GAU87506.1 is the TC2P studied here
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known C2 domain proteins (Figure 2b, Figure S3).21,25

The Ca2+ ions in the TC2P structure are coordinated by
7 (at Ca1 and Ca3) or 8 (at Ca2) ligands with coordina-
tion distances of 2.32–2.68 Å, which are typical coordina-
tion spheres of Ca2+-binding sites in proteins.26 The
Ca2+-ligand aspartate residues are conserved among
TC2Ps (Figure 1e), indicating that the Ca2+-binding abil-
ity is an important characteristic of TC2Ps.

A striking feature of TC2Ps is the presence of three
disulfide bonds, which are not observed in other known C2
domain proteins (Figure S1). Two disulfide (S S) bonds
(SS1 and SS3) are formed near each end of the β-sandwich
structure (Figure 1). Additionally, one S S bond (SS2) is
formed between β6 and β7. Because the cysteine residues
forming these S S bonds are conserved among TC2Ps
(Figure 1e), it is likely that the bonds have biological func-
tions. Especially, SS3 is located on CBD loop1 and close to
Ca2+-binding sites. In our structure, Cys69 shows two differ-
ent conformations (Figure 1a, inset). One forms the S S
bond and the other is in a free state. Although the observed
alternative conformation of Cys69 could be induced by
X-ray radiation damages during data collection, our struc-
ture implies that this S S bond is redox sensitive. Because
CBD loop1 in the TC2P structure is a random coil longer
than those in other C2 domain proteins (Figure 1c,d),
reduction of the S S bond will give the TC2P CDB loop
high flexibility. Moreover, Cys69 directly binds to Ca3
through its carbonyl O atom (Figure 2a). These observations
suggest that the redox states of SS3 can affect the
Ca2+-binding mode or affinity to Ca2+ ions. Cys149 at SS2
also shows two conformations (Figure 1a, inset), indicating
that SS2 is an additional modulator of the TC2P structure.

Because tardigrades are exposed to severe oxidative stresses
under desiccated conditions, a redox sensitive switch such
as a disulfide bond may be useful to rapidly respond to envi-
ronmental changes. Biochemical analyses of TC2Ps, such as
verification of the hypothesis that TC2Ps can bind mem-
brane lipids and that the S S bond functions as a redox
switch module, are currently under way.

While many tardigrade-specific proteins with low or
no sequence similarities to well-characterized proteins
are found, structural biology has revealed that some of
their three-dimensional structures are unexpectedly
quite similar to those of known proteins. For example,
secretory abundant heat soluble (SAHS) proteins are
only found in some anhydrobiotic tardigrades,27 but
their structures are almost the same as those of fatty
acid binding proteins (FABPs) and SAHS proteins can
bind to fatty acids and other hydrophobic compounds
as FABPs do.28,29 We here showed that the TC2P is
another example for “much different primary structure
but the same tertiary structure.” More structural and
functional analyses on tardigrade proteins may answer
to why tardigrade proteins have evolved in such a
unique way.

3 | MATERIALS AND METHODS

3.1 | Sequence and structural alignment

Sequence alignment was performed by Clustal Omega.30

The alignment figure was generated by ESpript.31 The
Dali server was used to find similar fold proteins.

FIGURE 2 Ca2+-binding sites of TC2P. (a) Aspartate cluster for Ca2+-binding. 2mFo-DFc map is contoured at 2.0 σ. Ca2+ ions and

ligand water molecules are represented by magenta and yellow spheres. Coordination bonds are shown by dotted black lines. Colors of

residues are in accordance with Figure 1a. (b) Well-characterized Ca2+-binding sites in the C2 domains from cPLA2 (PDB code ID: 1RLW)

and synaptotagmin I (PDB code ID: 1BYN). Other examples of Ca2+-binding sites in C2 domain proteins are shown in Figure S3
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3.2 | Protein expression and purification

The GenBank accession ID of the gene for a R. varieornatus
TC2P, which was used in this study, is GAU87506.1. A syn-
thesized and codon optimized DNA of the TC2P without
the signal peptide region (TC2P21–213) was purchased from
GenScript and cloned into a pET28a vector. A 6×His tag
followed by a TEV protease site (ENLYFQG) was
attached at the N-terminus of TC2P for purification. Its
complete sequence is shown in Appendix S1 of
Supporting Information. The protein was expressed in
Escherichia coli Shuffle T7 (New England Bio Labs, Ips-
wich, MA, USA). At culture optical density of �0.6,
0.5 mM isopropyl β-D-1 thiogalactopyranoside was added
to induce expression. After 18 hr at 18�C, the bacterial
pellet was collected and then sonicated in a buffer con-
taining 20 mM Tris–HCl pH 8, 200 mM NaCl, and a
cOmplete Protease Inhibitor Cocktail tablet (Roche,
Basel, Basel-Stadt, Switzerland). The resulting solution
was centrifuged and supernatant was purified using a
HiTrap TALON column (GE healthcare, Chicago, IL).
The sample was incubated with TEV protease and imid-
azole was removed through dialysis against 20 mM Tris–
HCl pH 8 overnight at 4�C. The sample was then loaded
on a HisTrap column (GE healthcare) equilibrated by
20 mM Tris–HCl pH 8 and 40 mM imidazole. The
flowthrough fraction was further purified using a Hiload
16/60 Superdex 75 gel filtration column (GE healthcare)
in 20 mM Tris–HCl buffer pH 8.

3.3 | Crystallization

Crystallization was performed by the sitting drop and hang-
ing drop vapor-diffusion method. After more than 3 months,
crystals appeared under the condition of 30 mg/mL TC2P,
0.1 M calcium chloride dihydrate, 0.1 M Tris pH 6.5, 13%
(wt/vol) polyethylene glycol monomethyl ether 2000 at
20�C. Before the crystals were frozen by liquid nitrogen, they
were soaked in the crystallization solutions supplemented
by 25% vol/vol glycerol (SAD data) or 15% xylitol and 15%
trehalose (high-resolution data). The soaking time should be
very short otherwise crystals are dissolved. A trehalose mole-
cule was observed in the crystal structure (Figure S3).

3.4 | X-ray data collection, processing,
structure solution, and refinement

X-ray diffraction experiment was performed on the
BL44XU beamline of SPring-8, Hyogo, Japan. Diffraction
images were collected at 100 K using an EIGER X 16 M

detector (Dectris, Philadelphia, PA). For native SAD and
high-resolution data collection, X-ray wavelengths were
set to 1.9 and 0.9 Å, respectively. The datasets were
processed using XDS.32 The processed data were scaled
and merged by Aimless.33 Phase determination and
initial model building was performed by CRANK2.34

Manual model building was performed using Coot.35 The
program phenix.refine36 was used for structural refinement.
The stereochemical quality of the final model was checked
by Molprobity.37 Data collection and refinement statistics
are summarized in Table 1. The coordinate and structure
factor files are deposited at the Protein Data Bank (PDB
code ID: 7DF2). Raw data is available at Integrated
Resource for Reproducibility in Macromolecular Crystallog-
raphy (https://proteindiffraction.org/).
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