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Abstract

Background: The evolution of influenza A viruses leads to the antigenic changes. Serological diagnosis of the
antigenicity is usually labor-intensive, time-consuming and not suitable for early-stage detection. Computational
prediction of the antigenic relationship between emerging and old strains of influenza viruses using viral sequences
can facilitate large-scale antigenic characterization, especially for those viruses requiring high biosafety facilities, such
as H5 and H7 influenza A viruses. However, most computational models require carefully designed subtype-specific
features, thereby being restricted to only one subtype.

Methods: In this paper, we propose a Context-Free Encoding Scheme (CFreeEnS) for pairs of protein sequences,
which encodes a protein sequence dataset into a numeric matrix and then feeds the matrix into a downstream
machine learning model. CFreeEnS is not only free from subtype-specific selected features but also able to improve
the accuracy of predicting the antigenicity of influenza. Since CFreeEnS is subtype-free, it is applicable to predicting
the antigenicity of diverse influenza subtypes, hopefully saving the biologists from conducting serological assays for
highly pathogenic strains.

Results: The accuracy of prediction on each subtype tested (A/H1N1, A/H3N2, A/H5N1, A/H9N2) is over 85%, and can
be as high as 91.5%. This outperforms existing methods that use carefully designed subtype-specific features.
Furthermore, we tested the CFreeEnS on the combined dataset of the four subtypes. The accuracy reaches 84.6%,
much higher than the best performance 75.1% reported by other subtype-free models, i.e. regional band-based
model and residue-based model, for predicting the antigenicity of influenza. Also, we investigate the performance of
CFreeEnS when the model is trained and tested on different subtypes (i.e. transfer learning). The prediction accuracy
using CFreeEnS is 84.3% when the model is trained on the A/H1N1 dataset and tested on the A/H5N1, better than the
75.2% using a regional band-based model.

Conclusions: The CFreeEnS not only improves the prediction of antigenicity on datasets with only one subtype but
also outperforms existing methods when tested on a combined dataset with four subtypes of influenza viruses.
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Background
In the immune system, antigen molecules are often specif-
ically targeted by and bind with antigen receptors such
as antibodies. It is an important mechanism of adaptive
immunology in host organisms to defend against invad-
ing pathogens like influenza viruses. The capacity of an
antigen in binding with the receptors is called antigenic-
ity. Hemagglutinin (HA) and neuraminidase (NA) are so
far the only two membrane proteins known to character-
ize the antigenicity of influenza viruses. Therefore, HA
and NA are under constant antigenic drift pressure to
escape the human immune system, as well as the flu vac-
cines. The selection of flu vaccines is mainly dependent on
the antigenicity of influenza viruses. Therefore, the rapid
identification of influenza antigenic variants is crucial for
an effective vaccination program.

Serological diagnosis of influenza is usually conducted
by hemagglutination inhibition (HAI) assays or micro-
neutralization (MN) assays, serving as the gold standard
for the antigenic correlations among antigens and antis-
era. Regulatory agencies, such as the World Health Orga-
nization (WHO) and Centers for Disease Control and
Prevention (CDC), take the HAI assay titers of viruses
as one of the primary measurements for vaccine effi-
cacy, i.e. the ability of a vaccine to prevent disease in
vaccinated individuals [1]. Thus, characterizing the anti-
genicity of a viral strain is crucial for predicting the
vaccine efficacy. However, such experiments are labor-
intensive, time-consuming and not suitable for early-stage
detection. Compared with laboratory-based serological
diagnosis, computational prediction of antigenic dissim-
ilarity using viral sequences enables large-scale anti-
genic characterization of influenza viruses. Importantly,
sequence-based computational methods make it possible
to characterize the antigenicity of those highly virulent
subtypes such as H5 and H7 influenza viruses, without
requiring high biosafety levels.

Smith et al. pioneered the analysis of antigenic clus-
ters of influenza A/H3N2 from 1968 to 2003, by using the
method of metric multidimensional scaling (MDS) to map
the viral strains on a 2D map and group them into 11 clus-
ters [2]. Since then, researchers have made efforts to apply
machine learning techniques to the antigenicity analysis.
Most machine learning algorithms, however, require the
input to be numeric vectors of equal length. Encoding
the non-numeric dataset (e.g. protein sequences repre-
sented by letters) is, therefore, an important step for the
performance of machine learning methods. Researchers
have designed a variety of features to encode the viral
sequences and then feed them into classification algo-
rithms. For example, Liao et al. grouped amino acids based
on their polarity, charge and aliphatic. Pairwise sequence
comparisons were encoded into binary vectors accord-
ing to the substitutions in the same or different groups.

Regression models were then constructed to predict the
antigenic distances from the binary vectors [3]. Liao et al.
assumed that viral pairs with antigenic HAI titers larger
than 4-fold have significant differences in antigenicity,
and therefore should be treated as “variants” (i.e. dis-
tinct). Furthermore, Sun et al. extended the work by taking
antibody binding sites into consideration. A bootstrapped
ridge regression method was applied [4] and achieved
an average prediction accuracy of 83% on an influenza
A/H3N2 dataset. Du et al. calculated the differences in
12 structural and physiochemical features as a binary vec-
tor for each pair of HA sequences [5]. By integrating
those features, they predicted the antigenic relationship of
influenza A/H3N2 viruses with a Naïve Bayes classifier. To
improve the prediction, Qiu et al. incorporated the struc-
tural context of the HA protein for influenza A/H3N2,
reaching an accuracy of 87.5% [6].

A major limitation of the above-mentioned strategies is
that they depend on subtype-specific features. Limited by
the difficulty and cost in doing experiments with those
highly pathogenic strains, the HAI datasets for H5, H7
and H9 subtypes are rather small. Only a few researchers
endeavored to analyze the antigenicity of those subtypes
computationally [7, 8]. Besides, the development of a
universal flu vaccine, i.e. a vaccine providing durable pro-
tection against several strains, is a goal that has been long
sought after. Although the universal vaccine might still
be a long shot, finding the antigenic patterns shared by
multiple influenza subtypes would be one step towards
it. Peng et al. analyzed the sequence mutation patterns
of nine representative HA subtypes on the HA1 pro-
tein, and they found that these HA subtypes share similar
patterns of moving average position information entropy
(MAPIE) [8]. This provided a basis for developing a uni-
versal computational model for predicting the antigenicity
of influenza. They also proposed a regional band-based
method to predict the antigenicity of influenza for diverse
subtypes, but the accuracy was only 75% on the com-
bined dataset of multiple subtypes of influenza viruses.
Although the defined regional bands are independent
of the viral subtype, some of them are hardly corre-
lated with antigenic variation, as was reported by Lees
et al. [9]. Insufficient conserved information about the
antigenicity of influenza viruses could hamper the pre-
diction. Transfer learning could shed light on addressing
this issue. Many examples have justified the feasibility
for transfer learning, i.e. applying the knowledge dis-
covered from previous tasks to a target task with fewer
high-quality training data [10, 11]. Given the possible
shared sequence patterns of multiple influenza subtypes,
it is also plausible to develop a framework to apply the
knowledge learned in H1 and H3, where there are large
qualified serological assays data, to other subtypes with
limited data.



Zhou et al. BMC Genomics 2018, 19(Suppl 10):936 Page 147 of 193

The performance of computational models mainly
depends on two factors: the quality of the input, i.e. data
representation and the learning algorithm. A represen-
tation which keeps more relevant information about the
predicting target will benefit the performance of machine
learning models [12]. In this paper, we propose a method
called Context-Free Encoding Scheme (CFreeEnS) to
encode protein sequence pairs into a numeric matrix.

CFreeEnS takes advantage of rich information about
the physiochemical and structural properties of amino
acids. This encoding scheme keeps information about
conserved properties of amino acids, which makes it
possible for learning methods (e.g. random forest) to
capture the cross-subtype antigenic pattern of influenza
viruses. Using random forest classifier as a downstream
learning method, the predicting accuracy on every sub-
type (A/H1N1, A/H3N2, A/H5N1 or A/H9N2) is over
85.0%. On the influenza A/H5N1 dataset, it reaches
91.5%. The results show that CFreeEnS (integrated with
random forest) outperforms other methods that use
carefully designed subtype-specific features. On the com-
bined dataset, the average testing accuracy of CFreeEnS
reaches 84.6%, higher than 75.1% of the regional band-
based universal model [8]. Besides, we investigate the
performance of CFreeEnS in transfer learning. Specif-
ically, we use a testing dataset with a subtype of
influenza A viruses different from the training dataset.
The highest accuracy prediction accuracy is 84.3% when
the model is trained on the A/H1N1 dataset and tested
on the A/H5N1. The proposed CFreeEnS uses substi-
tution matrices in the AAIndex database [13]. Then,
we systematically evaluated the performance of all the
available indexes. By analyzing the performance patterns

of those indexes, we found several physiochemical and
biochemical properties could be closely related to the
antigenicity of influenza viruses, regardless of viral sub-
types. The antigenic patterns of diverse influenza subtypes
may give insights into conserved mechanisms of influenza
virulence, thereby paving the way for a universal vac-
cine to provide protection against multiple subtypes of
influenza viruses.

Methods
Many machine learning algorithms, including deep neu-
ral network architectures, require an input of equal-length
numeric vectors. A general pipeline for a machine learn-
ing project is shown in Fig. 1a. A non-numeric dataset
should first be encoded into a numeric feature matrix X
through some encoding scheme or handcrafted feature
scores. Then, the numeric dataset X and label vector Y
can be fed into machine learning models (e.g. deep neural
networks) to minimize a loss function. The models should
be evaluated with methods such as cross-validation for
a separatetesting dataset. The performance of machine
learning methods largely relies on the choice of data repre-
sentation. Different representations can entangle and hide
variant explanatory factors of the data.

In bioinformatics, encoding the symbolic amino acid
data of protein sequences faithfully is an important step
to improve the performance of model prediction. A good
encoding scheme should preserve the information closely
related to the problem. Although expert domain knowl-
edge regarding the biological problem or the properties
of proteins can benefit designing good encoding schemes,
an encoding scheme requiring less expert domain knowl-
edge and implementing more generic priors will help the

a

b

Fig. 1 A pipeline for machine learning projects and illustration for CFreeEnS. a Encoding a non-numeric dataset into equal-length numeric vectors is
necessary for both traditional machine learning models and deep neural networks. b CFreeEnS encodes m aligned protein sequence pairs of length
l with k substitution matrices, resulting in a numeric feature matrix X with dimension m × k × l
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automation of data-driven learning. The designing of an
encoding scheme requiring less expert knowledge is also
in line with the quest for artificial intelligence [12].

Here, we propose a context-free encoding scheme for
pairwise protein sequences, named CFreeEnS, to convert
protein sequence pairs into numeric vectors. CFreeEnS,
based on the the published similarity matrices of amino
acids, can capture the most important properties regard-
ing the similarity of sequence pairs without designing
features case-by-case. The representation of amino acids
are constructed from amino acids level, involving differ-
ent physiochemical and biological properties. Figure 1b
shows how CFreeEnS works. For a batch of aligned
protein sequences, suppose there are m sequence pairs
with equal length l after alignment. Each pair pi, where
(i = 1, 2, ..., m), can be encoded using k substitution matri-
ces Ma

20×20(a = 1, 2, ..., k). The score of pia at position j is
calculated as [14]:

pia[ j] =
{(

Ma
A1,A1

+Ma
A2,A2

)
−2Ma

A1,A2
, forA1!=gap and A2! = gap

λ, otherwise

(1)

where A1 and A2 are the amino acids at position j
(j = 1, 2, ..., l) of the two sequences respectively; Ma

x,y is
the score for amino acid x, y in substitution matrix Ma.
A penalty λ is encoded for gaps. Then, pia is a numeric
vector with length l. Algorithm 1 shows how CFreeEnS
encodes a protein sequence pair using one substitution
matrix.

Algorithm 1 CFreeEnS for a sequence pair pi with
sequences s1 and s2

1: function CFREEENS(s1, s2, Ma)
2: Input: protein sequences s1 and s2 that are pre-aligned;

a substitution matrix Ma.
3: Output: a numeric vector for the protein sequence pair

encoded by Ma.
4: assert len(s1) == len(s2)
5: declare pia = [ ]
6: for j = 1 to len(s1) do
7: A1 = s1[ j]
8: A2 = s2[ j]
9: if A1! =“-” & A2! = “-” then

10: � “-” stands for a gap in the aligned protein
sequences

11: pj = M[A1, A1] + M[A2, A2] − 2*M[A1, A2]
12: else
13: pj = λ

14: pia.append(pj)
15: return pia

By stacking k such vectors [ pi1, pi2, ..., pia, ..., pik], we can
get the score matrix for sequence pair pi. Stacking the m
instances together, an m × k × l scoring matrix X for the
dataset is generated. Using CFreeEnS, a set of symbolic
sequence pairs can be converted into numeric vectors
with equal-length and then fed into machine learning
models.

Currently, there are k = 94 substitution matrices in
the AAIndex database, preserving various physicochem-
ical and biochemical properties of amino acid pairs [13].
This database provides an opportunity for systematically
checking all substitution scoring matrices to select the
most effective ones.

Application
Problem formulation
Sequencing has become cheap and fast. Therefore,
we assume that HA1 protein sequences of the exist-
ing influenza viruses are available. Compared to viral
sequences, the HAI data is much less, because it’s more
expensive and time-consuming to obtain. The problem is
how to accurately predict the antigenic distances based on
the HA1 sequences of influenza viruses.

Instead of designing features for each subtype, we use
CFreeEnS to encode protein sequences of viral pairs into
a dissimilarity matrix X. The antigenic distances Y can be
measured by the HAI assays. Referring to expert knowl-
edge in this field, a distance threshold θ for judging two
viral strains can be decided. Subsequently, the antigenic
distances of viral pairs Y are discretized into a binary
relationship vector Y ∗ as illustrated in Eq. (2),

Y ∗(i, j) =
{

0, if d(i, j) < θ

1, otherwise (2)

where d(i, j) is antigenic distance between viral strain i
and j; 0 represents “similar” and 1 represents “distinct”
between the two viral strains i and j.

After encoding, we use a random forest, which is effi-
cient and robust in handling thousands of input vari-
ables without manual selection of features [15], as a
downstream learning method. The work is implemented
using Python 3.6.4. A RandomForestRegressor in the
sklearn.ensemble is used for training the model [16].
To avoid over-fitting, the maximum depth of trees is
restricted to nine and all other parameters are set to
default. The model is evaluated using metrics, including
accuracy, precision, recall and F-score. Also, the learning
curves regarding the mean-squared-log-error of training
and testing datasets have been plotted to diagnose bias
and variance of the computation model.

Datasets
The proposed method for predicting antigenicity of
influenza viruses does not rely on any subtype-specific
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feature. Therefore, it is universally applicable to all
influenza subtypes. In this paper, the model is trained
and tested on four subtypes which have drawn atten-
tion recently, namely A/H1N1, A/H3N2, A/H5N1 and
A/H9N2.

Antigenic data
Antigenic HAI assay data of the four influenza viruses
were collected and used to train computational models
for predicting the antigenic distances of influenza viral
pairs [8]. The Archetti-Horsfall distance (dAH) is taken
as antigenic distance between a pair of viral strains [17],
which has been reported to be more robust and less
dependent on antigenic factors than other measurements
[18]. The dAH between viral strains i and j is calculated
in Eq. (3).

dAH(i, j) =
√

HiiHjj

HijHji
(3)

where Hij is the HI titer of viral strain i relative to antis-
era raised against viral strain j. The antigenic distances of
viral pairs Y are then discretized into a binary relation-
ship vector Y ∗ with a threshold of θ = 4 [3] as illustrated
in Eq. (2). The estimated antigenic distances Ŷ vector can
be inferred from X by training regression models, and
then discretized with the same threshold to obtain the
estimated binary relationship vector Ŷ ∗.

Using the dAH measure, distances of 355, 791, 293 and
118 antigenic pairs were calculated for influenza A/H1N1,
A/H3N2, A/H5N1 and A/H9N2 viruses, respectively. The
percentages of distinct viral pairs in total viral pairs are
listed in Table 1. The influenza A/H1N1 has approxi-
mately equal number of similar and distinct viral pairs,
while the influenza A/H9N2 has more distinct pairs,
around 68% in all the viral pairs. The imbalance between
the similar and distinct pairs in the influenza A/H9N2
dataset may reduce the effectiveness of the predicting
method. For the combined dataset, mixing antigenic data
from all the four subtypes, the percentage of distinct
viral pairs is 52% in all the viral pairs, which means the

Table 1 Datasets for training and testing the predicting model

Subtype Number of sequences T D/T HA1 lengths

H1N1 68 355 0.50 327

H3N2 621 791 0.47 329

H5N1 148 293 0.57 320

H9N2 29 118 0.68 317

Combined 866 1557 0.52 340

1T: Total number of viral pairs;
2D: The number of antigenic distinct viral pairs;
3Combined: The combined dataset of H1N1, H3N2, H5N1 and H9N2

combined dataset has roughly balanced “similar” and
“distinct” viral pairs.

HA1 protein sequences
The HA1 protein sequences, the immunologic part of
HA protein, of those viruses involved in HAI assays were
derived from the Influenza Research Database [19]. For
subtype-specific predictive models, the HA1 sequences
were aligned according to subtypes. The lengths of
HA1 sequences are 327, 329, 320 and 317 for influenza
A/H1N1, A/H3N2, A/H5N1 and A/H9N2 respectively.
For a universal model, HA1 sequences of all the four sub-
types were mixed before being aligned. The length is 340
after the alignment, which were conducted using MAFFT
v7.245 with the FFT-NS-2 progressive strategy [20]. The
antigenic data and HA1 sequences are publicly available
in supplementary materials. Table 1 is a summary of the
datasets for training and testing the computational model.

Model evaluation
For each dataset, the model is trained and tested with 10-
fold cross validation. Assessment of the performance is
based on the average of the following evaluation metrics:

Accuracy = TP + TN
TP + FP + TN + FN

(4)

Precision = TP
TP + FP

(5)

Recall = TP
TP + FN

(6)

F-score = 2 ∗ precision × recall
precision + recall

(7)

Here, TP, TN, FP and FN denote true positive, true neg-
ative, false positive and false negative in the confusion
matrix obtained from Y ∗ and Ŷ ∗.

For a dataset of a single subtype, we use only one sub-
stitution matrix to encode the dataset. All the available
94 substitution matrices are used for evaluation. And
then, those matrices resulting in the optimal predicting
model with the highest accuracy are used to encode the
combined dataset with various subtypes.

Results
Predictions on datasets with single subtype
For each dataset with a single subtype, namely A/H1N1,
A/H3N2, A/H5N1 or A/H9N2, all the 94 substitution
matrices were used to train a random forest with the
same parameters. Each dataset has a distinct substitution
matrix resulting in the highest testing accuracy, namely
QU_C930102 for influenza A/H1N1, NIEK910102 for
A/H3N2, GRAR740104 for A/H5N1 and WEIL970102 for
A/H9N2. The results of testing accuracy are visualized
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in a line chart (Fig. 2). Overall, using only one substitu-
tion matrix to encode the dataset, the testing accuracy has
small standard deviation (< 1.5%) in each dataset, except
for A/H9N2. The strategy has the best performance on the
A/H5N1 dataset with an average testing accuracy of 88.2%
(± 1.3%), but the worst on the A/H9N2 dataset with the
accuracy of 78.2% (± 2.6%). The imbalance in the A/H9N2
dataset with 68% distinct viral pairs could partly explain
the lower performance.

The best predicting accuracy score for each subtype
is greater than 85%, reaching 91.5% on the A/H5N1
dataset. Models obtaining the best performance are based
on different substitution matrices, namely QU_C930102
for A/H1N1, NIEK910102 for A/H3N2, GRAR740104 for
A/H5N1 and WEIL970102 for A/H9N2. In QU_C930102,
the matrix was inferred from the contacts of main chain
atoms [21]. NIEK910102 is a structure-derived correlation
matrix considering the amino acid specific main-chain
torsion angle distributions [22]. GRAR740104 combines
mean chemical distances of properties: composition,
polarity, and molecular volume [23]. WEIL970102 is a
matrix obtained by subtracting the BLOSUM62 from the
WAC matrix [24].

In addition, we compared the proposed encoding strat-
egy CFreeEnS with the mutation-counts-based method
proposed by Liao et al. [3] and regional band-based
method proposed by Peng et al. [8] on the same datasets.
It is worth noting that the methods use not only different
encoding schemes, but also distinct training models. To
demonstrate that our CFreeEnS is more accurate than the
subtype-specific handcrafted ones, we also adapted the
methods in literature by using random forest as the same

training model, denoted as MutCounts and RegionBand
respectively.

Figure 3 shows the comparison of F-score among
five strategies on the four datasets with single-subtype
influenza viruses. CFreeEnS obtains the highest F-score
among the five strategies on all the four datasets
(besides the combined dataset). Accuracy, precision
and recall are also evaluated (Table 2). Although
CFreeEnS sometimes ranks the second or third in
precision or recall, it always obtains the highest accu-
racy and F-score. The experiments demonstrate that
our proposed encoding scheme CFreeEnS outperforms
subtype-specific features MutCounts and RegionBand in
predicting the antigenicity of influenza viruses within the
same subtype.

Prediction on the combined dataset with diverse subtypes
For datasets with a single subtype, we traversed all the
available substitution matrices. Each dataset has a distinct
substitution matrix resulting in the highest testing accu-
racy, namely QU_C930102, NIEK910102, GRAR740104,
and WEIL970102. The four substitution matrices, derived
from different properties of amino acids, are selected as
the optimal substitution matrices in predicting antigenic-
ity of influenza viruses, denoted as CFreeEnS-4 to be
distinguished from CFreeEnS which uses one substitution
matrix. With CFreeEnS-4, the 866 viral pairs are encoded
as a 866 × 4 × 340 matrix. To feed the data into machine
learning models, it was flattened as a 866 × 1360 matrix,
where the 4 feature vectors for each instance were stacked
by column. Here, we used random forest with the same
restrictions on maximum depth of trees, i.e. 9.

Fig. 2 Evaluation of all substitution matrices on datasets of single subtype. The 94 substitution matrices have an average testing accuracy higher
than 80% with small standard deviation, except on A/H9N2. Each dataset has a distinct substitution matrix resulting in the highest testing accuracy
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Fig. 3 Comparing F-score of models on datasets with singe subtype influenza viruse

Table 3 presents the performance comparison among
five strategies on the combined dataset. With 10-
fold cross-validation, the average testing accuracy of
CFreeEnS-4 on the combined dataset is 84.6%, higher than
the second highest accuracy of 75.1% using the regional
band-based method.

Table 2 Performance comparison among five strategies on four
single subtype datasets

Dataset Methods Accuracy Precision Recall F-score

H1N1 Liao et al. 0.742 0.717 0.877 0.788

MutCounts 0.824 0.802 0.884 0.840

Peng et al. 0.661 0.671 0.711 0.683

RegionBand 0.706 0.669 0.901 0.766

CFreeEnS a0.859 0.856 0.887 0.870

H3N2 Liao et al. 0.784 0.748 0.891 0.812

MutCounts 0.843 0.841 0.851 0.845

Peng et al. 0.720 0.658 0.950 0.777

RegionBand 0.790 0.763 0.864 0.809

CFreeEnS 0.885 0.896 0.882 0.889

H5N1 Liao et al. 0.753 0.758 0.878 0.813

MutCounts 0.863 0.859 0.915 0.885

Peng et al. 0.846 0.857 0.908 0.880

RegionBand 0.858 0.824 0.978 0.893

CFreeEnS 0.915 0.903 0.965 0.932

H9N2 Liao et al. 0.708 0.816 0.819 0.810

MutCounts 0.775 0.823 0.914 0.859

Peng et al. 0.633 0.888 0.601 0.702

RegionBand 0.804 0.818 0.954 0.880

CFreeEnS 0.850 0.860 0.964 0.908
aThe highest scores among five strategies on each dataset are colored red

Transfer learning: predicting the antigenicity of an
emerging unknown subtype of influenza A virus
To check whether the knowledge gained in one subtype
can be applied to the other subtype, we conducted transfer
learning across subtypes. To be more specific, we trained
a random forest using one subtype, and tested it on a dif-
ferent subtype of which not a single viral strain has been
used in the training. For example, we trained a model
on A/H1N1 dataset, and tested it on A/H3N2, A/H5N1,
A/H9N2 datasets respectively.

The accuracies of transfer learning using the three
encoding schemes (i.e., MutCounts, RegionBand and
CFreeEnS) are shown in Fig. 4. We can observe that
CFreeEnS outperforms the other two encoding schemes
in every experiment. The highest prediction accuracy is
84.3% when the model is trained on the A/H1N1 dataset
and tested on the A/H5N1. The experiments of transfer
learning indicate that CFreeEnS can encode generic prop-
erties conserved across subtypes. In addition, it gives a
high accuracy in predicting the antigenicity of influenza
A/H5N1 (83.3%) even with small training dataset like
A/H9N2 (only 118 sequence pairs as training instances).
The full result of comparison is available in Additional

Table 3 Performance comparison among five strategies on the
combined dataset

Dataset Methods Accuracy Precision Recall F-score

Combined Liao et al. 0.739 0.716 0.879 0.789

MutCounts 0.698 0.675 0.944 0.781

Peng et al. 0.741 0.757 0.800 0.775

RegionBand 0.751 0.723 0.912 0.807

CFreeEnS-4 a0.846 0.837 0.900 0.867
aThe highest scores among five strategies on each dataset are colored red
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Fig. 4 Accuracy scores of transfer learning using three encoding schemes: MutCounts, RegionBand and CFreeEnS. MutCounts: features that are
used in the method proposed by Liao et al. [3]; RegionBand: features that are used in the method proposed by Peng et al. [8]. All the models use
random forest as a downstream learning method

file 1. In some experiments, RegionBand has moderately
better performance in recall. Overall, however, CFreeEnS
has higher F-scores. Integrating the regional band-based
handcrafted features into the encoding scheme might fur-
ther improve the performance of prediction. Learning
curves provided in Additional file 2 have shown that our
models do not suffer the over-fitting problem.

Discussion
The proposed CFreeEnS does not use any subtype-
specific information, and thus can be applied to datasets
with either one subtype or various subtypes. For a dataset
with one subtype, one substitution matrix is enough to
encode the dataset. All the available 94 substitution matri-
ces are evaluated. Those with top ranking testing accuracy
are used to encode the combined dataset with various
subtypes.

The inconsistency of auto-selected substitution matrix
indicates that different properties may dominate the viral
antigenicity in different subtypes of influenza viruses. To
improve the prediction in diverse subtypes, all those prop-
erties are taken into account to encode the combined
dataset. The increases of predicting accuracy compared
with MutCounts and RegionBand are 14.8% and 9.5%
respectively, indicating that cross-subtype properties have
been captured by the encoding scheme CFreeEnS. Further
experiments on transfer learning have supported that the
properties captured in one subtype of influenza can also
work well in predicting the antigenicity of other subtypes
of influenza.

Conclusions
Our proposed encoding scheme CFreeEnS outperforms
current methods that handcraft subtype-specific features
when applied to predicting the antigenicity of influenza
viruses, especially in the combined dataset with various
subtypes. By systematically checking all the available sub-
stitution matrices, which consider different properties of
amino acids, we find that properties related to the struc-
tures of amino acids or contacts between amino acids
can help improve the prediction in the combined dataset.
To be more specific, besides fundamental properties such
as composition, polarity and molecular volume, informa-
tion about contacts of main chain atoms and amino acid
specific main-chain torsion angle distribution can help
improve the predicting accuracy. This is consistent with
our knowledge that different viral subtypes share major
protein structures. The shared properties which affect
the antigenicity of diverse influenza subtypes may give
insights into the mechanisms of virulence of the influenza
viruses. Another interesting finding is that the substitu-
tion matrices used in different subtypes are distinct. It
suggests that the amino acid properties dominating the
antigenicity of influenza viruses may vary from subtype to
subtype.

The CFreeEnS, free from dependence on carefully
designed features, is applicable to encoding different pro-
tein sequence pairs into a numeric matrix. It is promising
for other applications in bioinformatics measuring the
phenotype similarity from sequences, such as the neutral-
ization escape of HIV-1 virus [25].
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