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Abstract: The SARS-CoV-2 targets were evaluated for a set of FDA-approved drugs using a combi-
nation of drug repositioning and rigorous computational modeling methodologies such as molec-
ular docking and molecular dynamics (MD) simulations followed by binding free energy calcula-
tions. Six FDA-approved drugs including, Ouabain, Digitoxin, Digoxin, Proscillaridin, Salinomycin
and Niclosamide with promising anti-SARS-CoV-2 activity were screened in silico against four
SARS-CoV-2 proteins—papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp),
SARS-CoV-2 main protease (Mpro), and adaptor-associated kinase 1 (AAK1)—in an attempt to define
their promising targets. The applied computational techniques suggest that all the tested drugs
exhibited excellent binding patterns with higher scores and stable complexes compared to the native
protein cocrystallized inhibitors. Ouabain was suggested to act as a dual inhibitor for both PLpro and
Mpro enzymes, while Digitoxin bonded perfectly to RdRp. In addition, Salinomycin targeted PLpro.
Particularly, Niclosamide was found to target AAK1 with greater affinity compared to the reference
drug. Our study provides comprehensive molecular-level insights for identifying or designing novel
anti-COVID-19 drugs.

Keywords: anti-COVID-19; drug repositioning; molecular docking; molecular dynamic simulations;
binding free energy

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the well-known
coronavirus disease of 2019, COVID-19 [1]. The World Health Organization (WHO) has de-
clared a public health emergency of worldwide importance [2]. The fundamental difficulty
is that COVID-19 is a very contagious disease with a high fatality rate [3]. It has exhibited
strong transmissibility and has caused a substantial number of deaths worldwide since its
inception. It is still creating havoc all around the world [4]. This signifies that appropriate
treatment is required as soon as an epidemic begins in order to prevent the disease from
spreading [2,5].

The global research and clinical communities have been under tremendous pressure
to produce treatments to battle the ever-growing pandemic since the outbreak of the
unique COVID-19 disease. However, drug development can take several years and there
is no certainty that it will be completed successfully. Furthermore, with the existing drug
production or application method, this cannot be done, and it takes several years for newly
approved drugs to reach the market. Instead, SARS-CoV-2 infection could be treated with
existing drugs. When it comes to developing new drugs/vaccines or repurposing approved
ones, detailed information on the possible target(s) is essential [6].

Since the start of the pandemic, scientists have been working on developing vaccina-
tions against SARS-CoV-2. As of July 2021, the WHO had approved 14 vaccinations under
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the Emergency Use Listing (EUL), with many more on the waiting list. Although all the
licensed vaccinations have proven to be rather effective up to this point, the emergence of
new strains due to rapid virus mutations poses a significant imminent danger to vaccine
efficacy. Various routes are being targeted to limit viral replication inside human cells, and
studies are being conducted to understand the complexities of how the virus affects the
human body [7].

Potential anti-coronavirus drugs can be divided into two categories based on the
target: One targets the human immune system or human cells, while the other targets
the coronavirus itself. The innate immune system response is critical in suppressing
coronavirus replication and infection in the human immune system, and interferon is
believed to improve the immune response [8]. Furthermore, inhibiting viral endocytosis is
pivotal in COVID-19 therapy [9]. The therapies that target the coronavirus include blocking
the virus’s binding to human cell receptors or inhibiting the virus self-assembly process
by acting on some structural proteins, as well as preventing the synthesis of viral RNA by
acting on the virus genetic material or inhibiting virus replication by acting on critical viral
enzymes [10]. The spike protein, membrane protein, envelop protein, nucleocapsid protein,
protease, helicase, and hemagglutinin esterase are the seven key structural protein targets
for SARS-CoV-2 [11], while replicase proteins, polyprotein 1a (PP1a) and polyprotein 1ab
(PP1ab) represent the other 16 nonstructural proteins (NSPs) formed from the virus [12].
All NSPs have a unique role in replication and transcription. On the other hand, human
targets, including many kinases, e.g., adaptor-associated kinase 1 (AAK1), cathepsin L,
and the transmembrane serine protease 2 (TMPRSS2), are involved in the advancement of
symptoms associated with SARS-CoV-2 infections, such as pneumonia, inflammation, and
fibrosis [13]. Kinases react to and control the synthesis of potentially damaging cytokines
(IL-6, IL-10, and TNF) and proteins linked to inflammation and the induction of pulmonary
fibrosis (such as the pro-inflammatory cytokine TGF-). Thus, kinase inhibitors can have
antiviral, anti-inflammatory, cytokine-suppressive, and antifibrotic properties, all of which
could be beneficial in the fight against respiratory viral infections. Several kinase inhibitors
are now being investigated in COVID-19 clinical studies [13,14].

Because there is a pressing need to treat the disease, most research is focusing on
repurposing already approved drugs rather than classical drug discovery. Remdesivir was
the first of all the COVID-19 drugs to be approved for hospitalized patients by the US
Food and Drug Administration (FDA). The concept of drug repositioning, also known as
drug repurposing, drug reprofiling, and therapeutic switching, has gained considerable
attention from pharmaceutical companies and researchers due to its potential to discover
new uses for approved drugs [15]. Compared to traditional de novo methods, the approach
is more efficient in terms of time and cost savings. The shorter development time, in
particular, corresponds to an example of the general scenario, in this case, COVID-19.
Furthermore, contemporary and powerful artificial intelligence (AI) technologies have
substantially improved the throughput and accuracy of drug repurposing [16]. A multi-
target molecular modeling protocol was employed to identify druggable targets associated
with viral replication, in addition to a molecular dynamic simulation against the SARS-
CoV-2 viral genome, as mutations are one of the most challenging obstacles to overcome
with antiviral therapeutics [17,18].

Since the outbreak started, a flood of computational articles identifying potential
antiviral drug repurposing candidates has appeared in peer-reviewed journals and preprint
services, but most of them lack experimental confirmation [10,19–23]. The purpose of this
research was to look at the primary SARS-CoV-2 proteins as potential targets for active
FDA-approved drugs with a more enhanced antiviral profile with the aid of computational
tools, docking, and molecular dynamic simulations. As the selected listed drugs have been
previously experimentally screened against the SARS-CoV-2 virus, we tried to elucidate
their activity to find their viral targets from structural and nonstructural protein targets,
which are crucial for viral replication and translation, as well as one of the promising
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human kinases. These drugs can be used in future research as a potential pharmacophore
scaffold for the development of promising anti-COVID-19 therapies.

2. Results and Discussion
2.1. Rationale of Drug and Proteins Selection

A public health emergency with regard to COVID-19 in all countries and efforts
to develop an effective vaccine or drug for prevention or treatment are critical. New
compound approval as a drug necessitates a lengthy investigation period and a considerable
financial investment. So, the best starting point is repurposing already approved drugs
when developing novel COVID-19 therapeutics. We virtually reprofiled drugs against
multiple SARS-CoV-2 targets, including SARS-CoV-2 Mpro, PLpro, and RdRp, in addition
to AAK1 as a human target.

Previously, Meehyun Ko et al. tested a total of 24 FDA-approved drugs against
SARS-CoV-2 in Vero cells and Calu3 cells—a well-known human lung cell line—as potential
antiviral candidates [24,25]. For deep computation, we created a panel of the most active
(lC50 less than 2.5 µM) FDA-approved drugs that showed antiviral activity compared to the
clinically applied drugs Chloroquine, Remdesivir, and Lopinavir (IC50 in Vero cells 11.4,
7.28 and 9.12 µM, IC50 Calu cells, respectively). The current study tried to find the potential
target for each drug against SARS-CoV-2 through virtual screening. The included drugs
are currently on the market and some are in clinical trials against SARS-CoV-2 infections.
The drugs that are currently in clinical studies were given special consideration. The
drugs’ generic name, clinical use, and reported activity against SARS-CoV-2 (IC50 µM) are
presented in Table 1.

Table 1. FDA-approved drugs are considered tested ligands that were selected for molecular docking.
Drug generic names, clinical use, and reported activity against SARS-CoV-2.

Drug Generic Name Clinical Use (IC50, µM) in Vero Cell (IC50, µM) in Calu Cell

Ouabain (OUB) Cardiovascular agents <0.097 0.1
Digoxin (DGX) Cardiovascular agents 0.19 0.72
Digitoxin (DIG) Cardiovascular agents 0.23 0.16

Salinomycin (SLM) Antibacterial agents 0.24 0.5
Niclosamide (NIS) Antiparasitic agents 0.28 0.84

Proscillaridin (PRO) Cardiovascular agents 2.04 5.95

2.2. Molecular Docking

The structures of four SARS-CoV-2 proteins (macromolecules) and antiviral drugs
(ligands) were retrieved and optimized for the docking simulation to investigate the binding
preference between the protein binding pocket residues and ligands. The molecular docking
resulted in ten different docked poses for each drug. Each drug’s optimal pose was
chosen based on how closely its binding pattern in the active pocket matched that of the
original ligand, taking into consideration the binding energy. Accordingly, the drugs under
investigation were scored, with the top scorers being those with the lowest binding energy.
For each ligand, the complex with the best-predicted affinity energy (AE) was used for the
MD simulations.

In this research, the docking efficacy of six FDA-approved drugs previously tested
against SARS-CoV-2 (Scheme 1) against a host and viral SARS-CoV-2 proteins was studied.
Four SARS-CoV-2 proteins were investigated. Among them, three are viral SARS-CoV-2
proteins: Mpro, PLpro, and RdRp. In addition to human protein AAK1, docking studies
were conducted using MOE software. The MOE software’s output was further evaluated
and displayed. These docking studies predicted the AE for the compounds against the
studied SARS-CoV-2 systems listed in Table 2.
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Scheme 1. FDA-approved drugs that were included in the virtual study.

Table 2. Affinity energy (AE) values (Kcal/mol) of binding for FDA-approved repositioned drugs to
selected SARS-CoV-2 target proteins.

Drug Name PLpro Mpro RdRp AAK1

Ouabain (OUB) −9.52 −8.21 −6.35 −8.17
Digoxin (DGX) −7.88 −7.64 −7.63 −9.08
Digitoxin (DIG) −8.01 −6.56 −7.69 −9.9

Salinomycin (SLM) −9.02 −4.97 −5.19 −9.05
Niclosamide (NIS) −6.43 −5.87 −5.66 −11.84

Proscillaridin (PRO) −6.22 −7.28 −7.11 −8.25
Cocrystallized ligand GRM −8.46
Cocrystallized ligand X77 −8.05
Cocrystallized ligand RDV −7.8
Cocrystallized ligand LKB −11.72

The repositioned drug with the highest score for each investigated target was selected.
Ouabain (OUB) showed the greatest affinity for SARS-CoV-2 Mpro and PLpro (−8.21
and −9.52 Kcal/mol, respectively) contrasted to the enzyme native ligand X77 and GRM
(−8.05 and −8.46 Kcal/mol), respectively. DGX and DIG showed AEs comparable to RdRp
with binding energy (−7.63 and −7.69 Kcal/mol, respectively) compared to cocrystallized
ligand Remdesivir (RDV) which revealed AE equal to −7.8 Kcal/mol. Salinomycin (SLM)
showed binding affinity for PLpro (AE = −9.05 Kcal/mol) compared to cocrystallized
ligand GRM (AE = −8.46 Kcal/mol). Niclosamide (NIS) showed excellent interaction
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and binding affinity (AE = −11.84 Kcal/mol) for the AAK1 system in comparison to its
cocrystallized ligand LKB (AE = −11.72 Kcal/mol). Finally, Proscillaridin (PRO) showed
optimum binding affinity for RdRp (AE = −7.11 Kcal/mol).

2.3. Analysis of the Intermolecular Binding Pattern of Repurposed Systems by Docking and
MD Simulations

Molecular docking is a powerful approach for evaluating binding affinity and investi-
gating the binding pattern of ligands that bind to the active region of target proteins [26].
The most likely interaction of the ligand with the protein receptor was identified and
visualized using molecular docking studies performed using MOE software. Both the
binding modalities and affinity of docked ligands at the active pocket of the protein were
predicted using the docking score and hydrogen bonds generated between amino acids
and the interacted atoms. A specific ligand binds and interacts at the active site residues of
a target protein with a certain affinity and strength that is referred to as the binding energy.
A docking investigation was conducted for FDA-approved drugs: OUB, DGX, DIG, SLM,
NIS, and PRO using MOE software, as discussed above.

Although molecular docking may shed light on repurposing drug protocols [27], their
usual fast and approximate algorithms lack protein flexibility, which may be related to the
recognition and binding involved in ligand–protein complexes [28]. In this sense, molecular
dynamic (MD) simulation techniques, which are more computationally expensive but more
accurate than docking protocols, may provide a better complementary result [29]. In
summary, MD simulations can be used to study the macromolecule characteristics and
provide a suitable ensemble for thermodynamics analysis.

Here, MD simulation calculations were conducted to understand the structural stabil-
ity of some favorable docking results. We can summarize it as (i) PLpro–GRM, PLpro–OUB,
and PLpro–SLM systems; (ii) Mpro–X77 and Mpro–OUB systems; (iii) RdRp–RDV and
RdRp–DIG systems; (iv) AAK1–LKB and AAK1–NIS systems. Initially, The RMSD anal-
ysis from the 200 ns of MD trajectories were explored to examine flexibility across the
simulation periods.

2.3.1. PLpro Systems

PLpro is an essential aspect of the replicase–transcriptase complex as a nonstructural
protein 3 (NSP3). By releasing NSP1–3 from the viral polyprotein, which is required for viral
replication, human proteases with a comparable cleavage selectivity can be known, and
inhibitors of that enzyme are unlikely to be harmful [30]. The comprehensive examination
of the Mpro catalytic mechanism makes it a promising target for anti-COVID-19 medication
development [30]. PLpro acts as a negative regulator of the immune response to viral
infection [31]. All of these factors combine to make it an attractive target for antiviral
drugs. PLpro was represented with the cocrystallized lead compound GRM [32]. Of the
six selected drugs on the active pocket of PLpro, Ouabain (OUB) was approved by the
FDA to treat heart conditions of patients for over 10 decades. OUB showed the highest
docking score (−9.52 Kcal/mol) among the tested compounds, which was higher than that
of the native ligand GRM (-8.46 Kcal/mol). GRM hydrogen-bonded with the carboxylate
of Asp165 and with the backbone carbonyl oxygen of Tyr269. OUB rings similarly showed
binding to the PLpro active pocket Asp165 and Tyr269. In addition, it showed an extra
hydrogen-bond interaction with Leu163 and Glu168 (Figure 1). This outcome is consistent
with in vitro screening as it has the lowest IC50 values of all the tested drugs.
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Figure 1. 3D model of the interactions between cocrystallized ligand GRM (A), OUB (B), and SLM
(C) with PLpro active site residues.
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Streptomyces albus produces Salinomycin (SLM), a carboxylic polyether ionophore.
Ionophores have a wide range of bioactivity, including antibacterial, antifungal, antipara-
sitic, antiviral, and, more recently, anti-tumor properties [33]. In a trial to reposition SLM
for the treatment of COVID-19, it showed antiviral activity, with a lower IC50 compared to
the control drugs. This activity may be attributed to the SLM binding affinity for PLpro, as
manifested from the docking simulation. SLM is connected to key PLpro residues through
three hydrogen bonds (Figure 1). It bonded to the Asp165, Tyr265, and Tyr269 amino acids
with a docking score of −9.02 Kcal/mol, which is more than that of the crystallized ligand
(8.46 Kcal/mol).

A suitable structural stabilization for PLpro systems by computing RMSD/RMSF
can be observed in Figure 2A,B, where all systems converged to their respective average
structures during the total MD simulation scale. In addition, all the systems showed
very small RMSDs (Figure 2A), which changed from 1.41 ± 0.30 Å (PLpro–GRM) to
1.33 ± 0.34 Å (PLpro–OUB) and 1.34 ± 0.24 Å (PLpro–SLM), respectively. From the RMSF
analysis (Figure 2B), the values changed from 1.24±0.80 Å (PLpro–GRM) to 1.17 ± 0.74 Å
(PLpro–OUB) and 1.18 ± 0.70 Å (PLpro–SLM), respectively. All these results suggest that
the crystal (PLpro–GRM) and repurposed (PLpro–OUB and PLpro–SLM) systems were in
a very similar conformation during the MD simulation.

Figure 2. (A) RMSD and (B) RMSF plots for PLpro–GRM (red line), PLpro–OUB (blue line), and
PLpro–SLM (black line). All values are reported in Å.
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2.3.2. Mpro Systems

The comprehensive examination of the Mpro catalytic mechanism identified it as a
promising target for anti-COVID-19 medication development. For Mpro systems, it should
be highlighted that previous experimental studies show that in the biological environment,
Mpro acts as a dimer instead of a monomer [34]. However, for computational analysis
and computer-aided drug design strategies, only the monomeric form is necessary [35–37].
For the comparison of the docking data of the studied compounds, the cocrystallized
ligand X77 (N-(4-tert-butylphenyl)-N-[(1R)−2-(cyclohexylamino)−2-oxo−1-(pyridine−3-
yl)ethyl]−1H-imidaz-ole−4-carboxamide) was employed as a reference ligand. It interacted
with Asn142, Gly143, His163, and Glu166, through four hydrogen bonds [38], while OUB
created six hydrogen bonds with Met49, Asn142, Gly143, Met165, and Glu166 (Figure 3).
It exhibited a binding score of −8.21 Kcal/mol, similar to that of the reference ligand
(−8.05 Kcal/mol).

Figure 3. 3D model of the interactions of cocrystallized ligand X77 (A) and OUB (B) with Mpro active
site residues.
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Here, Mpro–X77 (crystal reference) and Mpro–OUB (repurposed system) were submit-
ted to 200 ns production MD simulations. For the RMSD analysis (Figure 4A), the values
for Mpro–X77 and Mpro–OUB changed from 1.37 ± 0.48 Å to 1.27 ± 0.25 Å, respectively. A
similar trend was found for the RMSF analysis (Figure 4B), where the values changed from
1.37 ± 0.54 Å to 1.10 ± 0.71 Å. Both results suggest excellent structural stabilization during
all the MD production scales. Particularly, Mpro–X77 system showed an increase of about
1 Å on the last 20 ns MD simulation. However, it did not affect the binding of the crystal
inhibitor (X77). Our findings are in good concordance with a previous computational
study involving a drug repurposing analysis for the Mpro system [35]. Consequently, OUB
can be considered as a dual inhibitor of SARS-CoV-2 through in silico screening against
two SARS-CoV-2 targets: Mpro and PLpro.

Figure 4. (A) RMSD and (B) RMSF plots for Mpro–X77 (red line) and Mpro–OUB (blue line). All
values are reported in Å.

2.3.3. RdRp Systems

Natural cardiac glycosides, such as Digoxin, Digitoxin, and Proscillaridin, can be
utilized to treat congestive heart failure and cardiac arrhythmia. The virtual screening of
our selected drugs indicated the affinity of these drugs for SARS-CoV-2 RNA-dependent
RNA polymerase (RdRp) (PDB code: 7BV2). The RdRp enzyme allows the viral genome
to be transcribed into new RNA copies using the host cell’s machinery [38]. RdRp is
required for the RNA virus life cycle but has no homolog in the host cell. This allows for the
development of antiviral drugs and minimizes the risk of a protein in human cells being
impacted [39]. Remdesivir, a repositioned drug, was taken as a standard. The in silico
docking of RDV on (RdRp) protein hydrogen bonded to the active site residues Asp730,
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Arg588, and Arg523 with a docking score of −7.8 Kcal/mol. DIG had a binding pattern
to RdRp similar to RDV as it was connected to the active site residues Arg553, Arg555,
Lys621, and Asp623 through hydrogen bonds with an almost similar binding score of
−7.69 Kcal/mol, compared to the RDV docking score of −7.8 Kcal/mol, as illustrated in
Figure 5.

Figure 5. 3D interactions between RDV (A) and DIG (B) with 7BV2 active site residues.
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Recently, MD simulation studies for RdRp have been carried out using RDV as a
bound inhibitor [40,41]. Particularly, Srivastava et al. [40] used different RDV models
(named monophosphate and triphosphate). On the other hand, Koulgi et al. [41] used
RDV before any metabolic change during 100 ns of MD simulations. Here, we chose to
follow Koulgi’s proposal, but we performed 200 ns of MD simulations. According to our
RMSD and RMSF analysis, the RdRp–RDV (crystal reference) and RdRp–DIG (repurposed)
systems had similar structural stabilization. The RMSD values (Figure 6A) for RdRp–RDV
and RdRp–DIG changed from 1.40 ± 0.17 Å to 1.48 ± 0.22 Å, respectively, while the RMSF
values (Figure 6B) changed from 1.08 ± 0.75 Å to 1.23 ± 0.80 Å, respectively.

Figure 6. (A) RMSD and (B) RMSF plots for RdRp–RDV (red line) and RdRp–DIG (blue line). All
values are reported in Å.

2.3.4. AAK1 Systems

Niclosamide (NIS) is an antiparasitic drug that prevents the tapeworm from absorbing
glucose, as well as preventing oxidative phosphorylation and anaerobic metabolism [42].
In comparison to the cocrystallized inhibitor (AE = −11.72 Kcal/mol), it was able to
robustly bind to the AAK1 active site (AE = −11.84 Kcal/mol). AKK1 is a key kinase
of receptor-mediated endocytosis found in the host cell, which regulates viral entrance
and processing. Previous research has found that inhibiting AKK1 selectively can be
helpful in SARS-CoV-2 treatment, either by blocking viral endocytosis or lowering the
presence of pro-inflammatory molecules (IFN-γ and IL-6) [43]. Due to its affinity for
the AP2-associated protein AAK1, Baricitinib, an efficient AAK1 and GAK inhibitor, has
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recently been discovered to have antiviral effects, reducing SARS-CoV-2 endocytosis [44,45].
From the docking results, NIS interacted with the AKK1 active site through four hydrogen
bonds between carbonyl, chloride, phenolic hydroxyl, and nitro moieties and the active
site residues Asp133, Lys127, Cys129, and Asp194, respectively. Further, it formed three
π interactions with the amino acids Leu52 and Val60 (Figure 7), while the native ligand
LKB formed four hydrogen bonds with Lys74, Asp127, Cys129 and Asn136 in addition to a
Pi–H interaction with the amino acids Leu52 and Val60.

Figure 7. 3D model of the interactions between crystallized ligand LKB (A) and NIS (B) in 5L4Q
active site residues.
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The structural analysis for the AAK1 systems by considering the RMSD and RMSF
calculations for AAK1–LKB (crystal reference) and AAK1–NIS (repurposed) systems sug-
gested that they were more structurally stable than the previous simulated systems. The
RMSD values (Figure 8A) for AAK1–LKB and AAK1–NIS changed from 0.96 ± 0.17 Å to
1.29 ± 0.51 Å, respectively, while the RMSF values (Figure 8B) changed from 0.86 ± 0.51 Å
to 0.83 ± 0.43 Å, respectively. However, by comparing the RMSF plots of AAK1–LKB and
AAK1–NIS, we can observe a suitable divergence in the region that comprises residues
from Trp214 to Tyr260. For the previous simulated systems, no similar differences were
found.

Figure 8. (A) RMSD and (B) RMSF plots for AAK1–LKB (red line) and AAK1–NIS (blue line). All
values are reported in Å.

2.4. Binding Free Energy Calculations

As described in the Material and Methods section, relative binding free energies for all
simulated systems were computed using the MM/GBSA approach [46–48] as implemented
in MMPBSA.py [49] and are presented in Table 3. A single MD trajectory of the bound



Molecules 2022, 27, 5988 14 of 22

complexes was used to calculate the relative binding free energy (∆Gbind); the ∆Eint term
(in Equation (3)) was canceled once the changing energy between complex systems and
their components were computed using the same MD ensemble [47,48].

Table 3. Binding free energy (∆Gbind) values and their components for the crystal and repurposed
systems by MM/GBSA. The errors were computed by using the single-trajectory protocol [48]. All
values are reported in Kcal/mol.

System ∆EvdW ∆Eelec ∆Gpolar ∆Gnon−polar ∆Gbind

GRM–PLpro −39.7 (0.1) 0.7 (0.1) 13.9 (0.1) −4.6 (0.1) −29.7 (0.1)

OUB–PLpro −38.2 (0.2) −55.4 (0.3) 61.9 (0.2) −5.7 (0.1) −37.4 (0.2)

PLpro–SLM −36.7 (0.1) 52.9 (0.2) −41.4 (0.2) −4.6 (0.1) −29.8 (0.1)

Mpro–X77 −52.9 (0.1) −22.8 (0.2) 39.1 (0.1) −6.2 (0.1) −42.8 (0.1)

Mpro–OUB −41.9 (0.1) −29.3 (0.2) 47.7 (0.1) −5.2 (0.1) −28.7 (0.1)

RdRp–RDV −36.9 (0.1) −219.8 (0.8) 250.2 (0.7) −6.5 (0.1) −13.0 (0.1)

RdRp–DIG −50.6 (0.1) −34.6 (0.3) 76.8 (0.3) −6.3 (0.1) −14.7 (0.1)

AAK1–LKB −44.7 (0.1) −31.3 (0.1) 40.3 (0.1) −5.7 (0.1) −41.4 (0.1)

AAK1–NIS −41.0 (0.1) −22.0 (0.1) 29.1 (0.1) −5.3 (0.1) −39.2 (0.1)

All the binding free energy terms are also listed in Table 3. For the PLpro systems, we
can see that in PLpro–GRM, the vdW term (∆EvdW) was the most important component for
binding free energy followed by the polar term (∆Gpolar). The PLpro–SLM showed similar
values of ∆EvdW and ∆Gbind when compared with PLpro–GRM. However, a significant
difference can be observed in electrostatic (∆Eelec) and polar terms, where the first term
increased from 0.70 Kcal/mol to 52.9 Kcal/mol for PLpro–GRM and PLpro–SLM, respec-
tively, while the second term (∆Gpolar) decreased from 13.9 Kcal/mol to −41.4 Kcal/mol,
respectively. The most interesting result can be observed for PLpro–OUB, where the ∆Eelec
and ∆Gpolar appeared to be the most important terms for OUB binding with the catalytic
site of the PLpro enzyme. As can be seen in Table 3, there was a decrease in the ∆Eelec value
from 0.70 Kcal/mol to −41.4 Kcal/mol for PLpro–GRM and PLpro–OUB, respectively. In
addition, the ∆Gpolar term increased from 13.9 Kcal/mol to 61.9 Kcal/mol. These changes
resulted in a large decrease in ∆Gbind from −29.7 Kcal/mol to −37.4 Kcal/mol, respectively.
Our findings suggest that OUB is a more favorable inhibitor than the crystal inhibitor
(GRM). This agrees with its reported activity against SARS-CoV-2, as well as the IC50 values
in Vero and Calu cells (Table 1).

In the Mpro systems, Mpro–X77 showed the lowest ∆Gbind value (−42.8 Kcal/mol) in
comparison with the Mpro–OUB (−28.7 Kcal/mol) systems. Particularly, the increase in the
∆EvdW and ∆Gpolar terms from −52.9 Kcal/mol to −41.9 Kcal/mol and from 39.1 Kcal/mol
to 47.7 Kcal/mol, respectively, for Mpro–X77 and Mpro–OUB, explain the large increase in
∆Gbind for the Mpro systems.

Interestingly, for the RdRp systems, the RDV and DIG inhibitors showed similar ∆Gbind
values. However, the free energy components were very different. As can be observed in
Table 3, the ∆Eelec and ∆Gpolar showed significant changes between these compounds. The
∆Eelec increased from −219.8 Kcal/mol to −34.6 Kcal/mol for RDV and DIG, respectively.
This occurred due to the highest electronic density of RDV, mainly due to the presence of
its phosphate group. On the other hand, the ∆Gpolar decreased from 250.2 Kcal/mol to
76.8 Kcal/mol for RDV and DIG, respectively. Probably, it resulted due to compensation
for the electrostatic effects of the electronic density of the RDV compound. Besides, the
∆Gbind of RDV (−13.0 Kcal/mol) is close to the value found by Srivastava et al. [40]
(−16.6 Kcal/mol), which means that our RDV model is similar to the monophosphate RDV
model that was simulated previously.
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For the AAK1 systems, AAK1–LKB and AAK1–NIS showed very similar ∆Gbind
values (−41.4 and 39.2 Kcal/mol, respectively). These results suggest that NIS can bind
the catalytic site of the AAK1 enzyme in a similar mode to the crystallized inhibitor (LKB).
The main energetic differences were found in the ∆Eelec and ∆Gpolar terms. The first
term increased from −31.3 Kcal/mol to −22.0 Kcal/mol and the second decreased from
40.3 Kcal/mol to 29.1 Kcal/mol for AAK1–LKB and AAK1–NIS, respectively.

In summary, if we consider the contributions of different ∆Gbind components of crystal
and repurposed systems, the ∆EvdW is a crucial term of the difference in the binding affinity
in most systems, which agrees with the previous repurposed study [35]. Interestingly, our
findings for the most promising repurposed compound (OUB) suggest that it can bind the
PLpro enzyme with a binding affinity driven by the electrostatic interactions, with more
evidence than any other repurposed system.

A residual decomposition analysis of ∆Gbind (Figure 9) was carried out to improve
the understanding of the features that contributed to the recognition and binding in all the
simulated systems. Here, any residue that contributed to the binding free energy values
below −1.20 Kcal/mol was included as an important residue in the binding process.

Figure 9. Residual decomposition plot for (A) PLpro (GRM, red; OUB, blue; SLM, black), (B) Mpro
(X77, red; OUB, blue), (C) AAK1 (LKB, red; NIS, blue) and (D) RdRp (RDV, red; DIG, blue) systems.
All values are reported in Kcal/mol.

For the PLpro systems (Table 4), the main residual differences occurred for Leu163,
Asp165, and Arg167 when PLpro–GRM and PLpro–OUB were compared, while Asp165,
Tyr269, and Gln270 had suitable differences in the PLpro–SLM system. These results
suggest that the electrostatic shift caused by Asp165 and Arg167 explains the favorable
binding energy found for the PLpro–OUB system.
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Table 4. Residual decomposition analysis of binding free energies. All values are reported
in Kcal/mol.

PLpro systems

GRM OUB SLM

Leu163 −0.68 −2.96 −0.83

Asp165 0.31 −1.78 −1.58

Arg167 −0.12 −2.65 −0.02

Pro248 −1.60 −0.80 −2.35

Tyr265 −2.15 −1.75 −2.51

Tyr269 −3.64 −2.55 0.03

Gln270 −1.47 −0.81 0.09

Mpro systems

X77 OUB

His41 −1.55 −2.12

Met49 −1.64 −1.56

Asn142 −1.68 0.41

Gly143 −1.81 0.07

Ser144 −1.33 0.02

Cys145 −1.48 −0.41

Met165 −4.41 −1.69

Glu166 −1.56 −0.09

Gln189 −0.45 −1.98

Thr190 −0.07 −3.47

Gln192 0.05 −2.16

RdRp systems

RDV DIG

Ser550 −0.25 −2.08

Val558 0.00 −1.42

Thr688 0.03 −1.20

Glu730 −2.82 0.30

Cys731 −1.45 0.50

Glu812 −1.77 0.24

Ser815 −4.24 −1.02

AAK1 systems

LKB NIS

Leu20 −1.99 −2.36

Val28 −1.65 −1.83

Lys42 −2.09 −1.19

Asp95 −2.11 −0.06

Phe96 −2.56 −0.95

Cys97 −1.69 −2.98

Leu151 −2.23 −2.02

Cys161 −1.74 −1.41
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In the Mpro systems, the increasing values for Asn142, Gly143, Ser144, Cys145, Met165,
and Glu166 appear to explain the binding differences found for Mpro–X77 and Mpro–OUB,
although an energetic decrease was observed for Thr190 and Gln192. On the RdRp systems,
the main binding difference occurred in the electrostatic term; by considering the residual
decomposition analysis, some polar residues had significant changes between the RDV and
DIG systems. We can also highlight the increase in the residual energies in Glu730, Cys731,
Glu812, and Ser815 from the RdRp–RDV to the RdRp–DIG system.

Finally, for the AKK1 systems, only Asp95 and Phe96 showed some significant ener-
getic shifting, which was not enough to promote a large difference in the binding of NIS.
These results suggest that both compounds (LKB and NIS) bind to the catalytic site of AKK1
with a similar binding affinity trend.

3. Computational Methods
3.1. FDA-Approved Small Molecule Selection Rationale

The PubChem database (https://pubchem.ncbi.nlm.nih.gov/ (accessed on 4 January
2022)) [50] (was used to retrieve the FDA-approved drugs database. Molecular Operating
Environment (MOE) platform was utilized to perform energy optimization for 3D structures
of each compound using the MMFF94x forcefield (with the gradient set to a root mean
square (RMS) of 0.05 kcal/mo1). The structures of the drugs are shown in Scheme 1.

3.2. Target Selection from Identified SARS-CoV-2 Protein Crystal Structures

Although any NSP may be included as a therapeutic target, the crystal structure and
reported ligand, as well as its critical role in viral infection, greatly boost the success chances.
Based on this hypothesis and focusing on SARS-CoV-2 reported studies, it is worth noting
the NSP structures accessible for this virus: the main protease (Mpro, NSP5) [51,52], the
papain-like protease (PLpro, NSP3) [10,53], the RNA-dependent RNA polymerase (RdRp,
NSP12) [54] in complex with cofactors NSP7 and NSP8, as well as a human target, adaptor-
associated kinase 1 (AAK1) [14,55], which was involved in a molecular docking study.

3.3. In Silico Docking Protocol Validation

Before docking, native ligands in the active region of the active domains were re-
docked to verify the docking process, which resulted in a docking pose with certain
RMSD values. For the SARS-CoV-2 Mpro, PLpro, RdRp, and AAK1, and their respective
cocrystallized ligands, the computed RMSD values were 1.483, 0.665, 0.883, and 0.321 Å,
respectively. The validated docking methodologies were then utilized to investigate the
ligand–protein interactions of the tested drugs at the target active site to anticipate their
binding mode. The measured RMSD values of the tested drugs indicated the efficiency and
validity of the docking process.

3.4. Molecular Docking

The molecular modeling simulations were performed using the Molecular Operating
Environment (MOE, 2020.09) software. With the MMFF94x force field, all minimizations
were carried out with MOE until an RMSD gradient of 0.05 Kcal/mol was reached, and
the partial charges were calculated automatically. Three viral SARS-CoV-2 proteins: (i) The
SARS-CoV-2 Mpro (PDB ID: 6W63, resolution: 2.16 Å), (ii) PLpro (PDB ID: 3MJ5, resolution:
2.65 Å) [56], (iii) RdRp (NSP 12, PDB ID: 7BV2, resolution: 2.50 Å) [57], in addition to a
host protein (iv) AAK1 (PDB ID: 5L4Q, resolution: 1.97 Å) [58] were downloaded from the
RCSB Protein Bank Database. The proteins were selected according to their therapeutic
potential. First, water molecules were removed. Then, for the docking study, all protein
preparation was performed in MOE with the default options.

The generated ligand conformations were docked using a validated docking method-
ology, and the Triangle Matcher placement method was used and scored based on London
dG. The top best 50 poses were refined, and the energy was minimized in the binding site
using the induced fit method and then reranked with the GBVI/WSA scoring function [59].

https://pubchem.ncbi.nlm.nih.gov/
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In all the selected systems, the cocrystallized ligands were used as a reference for the
selected FDA drugs during the molecular docking procedures. Afterwards, the 3D and 2D
ligand–receptor binding patterns of the selected compounds were investigated.

3.5. Molecular Dynamic (MD) Simulations and Binding Free Energy

As a powerful tool to avail in silico, the stability of the above-repurposed systems,
classical molecular dynamics (MD) simulations were carried out by using the PMEMD mod-
ule [60] of the Amber20 package. Preliminary, all ligands were structurally optimized at the
quantum mechanics (QM) level by applying the Hartree–Fock (HF) method with 6-31G**
as implemented into the Gaussian09 program [61]. Afterwards, MM charges for each
molecule were computed using the restrained electrostatic potential (RESP) method [62] by
using the antechamber module of AmberTools20 [63]. The GAFF [64] and ff19SB [65] MM
parameter sets were chosen for ligands and enzymes, respectively. Particularly, for 3MJ5
and 7BV2 systems, the Zinc AMBER force field (ZAFF) [66] was selected to simulate their
metal centers. In addition, the SWISS-MODEL web server [67] was used to add missing
amino acid residues into the 7BV2 system. The protonation state of the ionizable residues of
all systems, at pH = 7, was calculated on PROPKA 3.1 version [68] and protons were added
by the tleap module of AmberTools20 [63]. Each system was solvated by the TIP3P water
model [69], extending 8 Å away from the solute atoms. Next, the appropriate counter-ions
were added in order to neutralize the charges in the solvated system.

Each solvated system was energetically minimized to avoid bad atomic contacts using
the PMEMD module. The minimization was carried out in four successive stages by
applying 5000 steepest descent steps followed by 5000 steps of the conjugate gradient
method, where restraints were removed during the process. After successful minimization,
each system was slowly heated up to 300 K over 100 ps under constant volume, where the
solute was restricted with the positional restraints of 50 Kcal/mol·Å2. Next, maintaining
the same solute restraints, 200 ps of MD was performed at the NPT ensemble (p = 1 atm
and T = 298 K). Then, the force constant of the restraints was slowly removed over the
eight stages of equilibration; each stage was carried out for 100 ps under the NPT ensemble.
Finally, a 200 ns unrestrained MD simulation (named “production stage”) was performed
for each equilibrated system. The SHAKE algorithm [70] with the time step of 2 fs was
applied for all the hydrogen bonds. The non-bonded cut-off set to 10 Å was used for
the non-polar and polar interactions calculated using the Particle Mesh Ewald (PME)
method [71]. The same MD protocol was used for all systems.

The structural analysis of all the simulated systems was evaluated by computing
the root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of the
backbone atoms (Cα, N, O, C). Particularly, the RMSD calculations for each ligand were
computed by considering only their respective heavy atoms. The trajectories were aligned
by the main-chain atoms of the average structures from production stages by using the
CPPTRAJ module [72].

The CPPTRAJ module [72] was used to extract 10 ns (a total of 1000 representative
snapshots) from the production stage of the MD simulations on each system to be selected
for the binding free energy calculations using the MM/GBSA approach [46–48], which was
implemented into the MMPBSA.py module [49] of AmberTools20. The main equations of
the chosen approach can be summarized as follows:

∆Gbind = ∆Gcomplex −
(

∆Greceptor + ∆Gligand

)
(1)

∆Gbind = ∆EMM + ∆GSOLV − T∆S (2)

∆EMM = ∆Eint + ∆Eelec + ∆Evdw (3)

∆GSOLV = ∆GGB + ∆GSA (4)

where ∆Gcomplex, ∆Greceptor and ∆Gligand indicate the free energies of the complex, the
receptor, and the ligand, respectively (Equation (1)). The ∆Gbind is obtained from the
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gas-phase MM energy (∆EMM), solvation energy (∆GSOLV) and the entropic term (−T∆S)
(Equation (2)). The ∆EMM includes the changes in the internal (bond, angles, and di-
hedral energies) (∆Eint), electrostatic (∆Eelec) and van der Waals (∆Evdw) contributions
(Equation (3)). Here, as a single-trajectory scheme was used for the binding free energy
calculations, the ∆Eint is equal to zero. The ∆GSOLV is the sum of the polar (∆GGB) and
non-polar (∆GSA) energies for ∆Gbind (Equation (4)). To reduce the computational cost, the
entropic term (−T∆S) was not computed into the binding free energy calculations [47,48].
Furthermore, a per-residual decomposition analysis was included to avail the relative
contribution of each amino acid residue [46]. This method has been frequently applied as a
useful tool in SARS-CoV-2 drug design studies [35,40,41,73–76].

4. Conclusions and Prospects

A set of comprehensive docking approaches and molecular dynamics simulations
were performed to find viable drugs for inhibiting SARS-CoV-2 targets. Accordingly,
based on docking and the MD simulation results, Digitoxin was postulated as an effective
RNA-dependent RNA polymerase inhibitor compared to Remdesivir as a known inhibitor.
It was concluded that Salinomycin may act as a PLpro inhibitor, while Ouabain can share
the activity with Salinomycin and Proscillaridin as a dual inhibitor of both PLpro and Mpro
SARS-CoV-2, respectively. In addition, Niclosamide was proposed to be an inhibitor for
adaptor-associated kinase 1. The insights provided by the present study may substantiate
the valuable exploration and development of anti-SARS-CoV-2 therapeutic agents from
FDA-approved drugs, to be used as leads for further drug development. Furthermore,
drug repositioning can be considered an efficient tool as a source of new analogs to help
defeat COVID-19.
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