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Abstract
Recent development of large databases, especially those in genetics and
proteomics, is pushing the development of novel computational algorithms that
implement rapid and accurate search strategies. One successful approach has
been to use artificial intelligence and methods, including pattern recognition
(e.g. neural networks) and optimization techniques (e.g. genetic algorithms).
The focus of this paper is on optimizing the design of genetic algorithms by
using an adaptive mutation rate that is derived from comparing the fitness
values of successive generations. We propose a novel pseudoderivative-based
mutation rate operator designed to allow a genetic algorithm to escape local
optima and successfully continue to the global optimum. Once proven
successful, this algorithm can be implemented to solve real problems in
neurology and bioinformatics. As a first step towards this goal, we tested our
algorithm on two 3-dimensional surfaces with multiple local optima, but only
one global optimum, as well as on the N-queens problem, an applied problem
in which the function that maps the curve is implicit. For all tests, the adaptive
mutation rate allowed the genetic algorithm to find the global optimal solution,
performing significantly better than other search methods, including genetic
algorithms that implement fixed mutation rates.
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Introduction
The last few years have seen an exponential increase in the size 
of  databases, especially those in genetics, which catalog the basis 
of various diseases. Computing power has not kept pace with this 
rapid increase in bioinformatics. Therefore, it has become critical 
to develop clever algorithms to reduce the time needed to search 
such databases and arrive at solutions to the treatment of geneti-
cally determined diseases1. Genetic algorithms provide new hope 
to overcome this dilemma. Genetic algorithms attempt to copy the 
principle of “survival of the fittest”, using Darwin’s theory of evolution 
to find a satisfactory solution. In essence, a group of random solutions 
is created and ranked, after which the best solutions are allowed to 
“interbreed”. During interbreeding, small mutations are allowed to add 
an element of randomness, and in this way aid the genetic algorithm in 
finding the optimal solution2. 

The applications of genetic algorithms (GAs) are well known and 
far ranging3. Because of their versatility, GAs have been widely and 
successfully used to optimize practical problems such as determin-
ing a long sequence of base pairs in a genetic database, scheduling 
drilling operations in a circuit-board factory, and data mining, among 
others4. However, one major problem faced by GAs is premature 
convergence, in which the algorithm becomes trapped in a local  
optimum and is unable to find the global optimum5.

This study focuses on the use of mutations in GAs. Normally, the 
mutations occur at a constant rate, known as the mutation rate. 
However, use of a fixed mutation rate can produce sub-optimal 
solutions5. We propose a new, variable mutation rate that uses a 
pseudoderivative to take into account the time that a GA can be 
stuck at a certain point. The longer the algorithm has been stuck at a 
local optimum, the more likely it is that a mutation will occur. This 
addition of a greater element of randomness to the algorithm allows 
it to move from the local optimum and look for better solutions. In 
this paper, we show that the proposed variable mutation rate outper-
forms fixed mutation rates and other common search algorithms in 
the effectiveness of their solutions.

Background
Rationale
Many real-life problems can be modeled as continuous, nonlinear 
optimization problems. Within a given search space S on the 
optimization function f, a global (absolute) optimum is sought. This 
may take the form of a global maximum or minimum, depending on 
the original problem. A typical 3-dimensional global optimization 
problem follows the form:

maximize/minimize f (x, y), where (x, y) ∈ S (1)

The challenge in solving a global optimization problem is in seeking 
the global optimum rather than becoming trapped in a local optimum, 
an issue that will be addressed in more detail later6. These optimiza-
tion problems can be approached with a variety of techniques. One 
popular technique is the use of GAs, the focus of this study7.

Genetic algorithms (GAs)
GAs are population-based optimization techniques favored for 
their properties of self-learning, self-organization, self-adaptation, 
and implicit parallelism8. Based on the principles of Charles 
Darwin’s natural selection and meiotic cell division, GAs involve 
several components: a population, a measure of fitness, and a method 
of breeding2. The population forms the basis for the GA and is 
made up of many individuals, often called chromosomes. Over 
time, “chromosomes” breed with other “chromosomes” to form 
“children” that make up a new generation in the GA9.

Chromosomes can be made up of binary strings or of real values. 
Binary-coded GAs (BCGAs) have chromosomes of 0s and 1s. 
While BCGAs are the more traditional method and are adequate 
for small- to moderate-size optimization problems, they fail for  
high-dimensional problems because they require more computational 
time and memory. Real-coded GAs (RCGAs) utilize real values that 
allow for both improved computational time and memory as com-
pared to BCGAs, making the optimization of multi-dimensional 
and high-precision problems more feasible5. Each chromosome 
(binary-coded or real-coded) has a certain fitness value or f value 
derived from its binary string or its real values, where the f value 
of a chromosome refers to its value when inputted into the function 
described in (1). The calculations for the f value of a chromosome 
vary by problem. In this respect, each chromosome represents a 
single solution to the optimization problem10. Following the principles 
of natural selection, chromosomes with higher fitness values give 
rise to children with high fitness values, so the GA “selects” for 
fitter chromosomes by giving them a higher probability of breeding 
and passing on their genes11.

The breeding stage involves two processes: crossover and mutation. 
In true meiotic cell division (the process by which a sperm or an 
egg cell is created), a crossover occurs when two chromosomes pair 
with each other and exchange portions of their length, forming two 
hybrid chromosomes. Similarly, chromosomes in a GA exchange 
values12. A simple example of crossover is illustrated in Figure 1.

The second operator of the breeding stage is mutation. Mutation is 
a naturally-occurring phenomenon that may come into play during 
any replication of chromosomes. Incorporation of mutation into a 
GA may be considered an optional step, but has generally been 
found to increase the diversity of the population13. This allows GAs 
to explore promising areas of the search space8. The major advan-
tage of implementing mutations in a GA is in avoiding premature 
convergence, in which the GA becomes trapped in a local optimum14. 
However, the mutation operator has trade-offs in slowing down the 
learning process5. Mutations have in the past taken the form of 
point, frame-shift, and translocation mutations, all of which involve 
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swapping, switching, or shifting binary bits, in the case of binary-
coded chromosomes15. Random mutation has also been proposed, 
in which a gene is replaced with a random value within certain 
lower and upper bounds16, and may provide interesting insight into 
the mechanisms of mutation, since a small mutation in nature may 
cause a gene to take on a vastly different role17. Finally, the rate of 
mutation, r

m
, can play a key role in the effectiveness of a given GA7.

A variety of modifications have been made to GAs in the breeding 
stage. A large amount of attention has been devoted to developing 
improvements in crossover operators, but there have been fewer 
studies in improving mutation operators, which make up a very prom-
ising although largely unexplored branch5,15. Several studies have 
implemented adaptive mutation, or a changing mutation rate18,19. 
Adaptive mutation methods have ranged from individual gene-based 
mutations to Gaussian mutation operators based on the mean and 
the standard deviation of the Gaussian distribution20. This study 
proposes a novel adaptive mutation approach and applies it to two 
tests: the well-known N-queens problem and the maximization 
of a 3-dimensional function. This study also compares a GA 
implementing an adaptive mutation operator with other well-known 
search algorithms, such as the Nelder-Mead method, hill climbing 
technique, and random search.

Other search algorithms
Numerous other search algorithms besides GAs exist for solving 
similar optimization problems21. A basic method is the random 
search method whereby solutions are randomly chosen and evalu-
ated for a certain amount of time, and the best solution found during 
the time span is returned22. A more advanced method implements the 
hill climbing technique. This method begins at a random point and 
uses a greedy algorithm to move to the best immediate neighbor-
ing solution until no neighboring solution is better than the current 
solution23. The final, and most robust, non-GA search algorithm 
being examined in this study is the Nelder-Mead algorithm. The 
Nelder-Mead method is a heuristic search that relies on approximating 
a local optimum for a problem with N variables by using a simplex 

(a polytope consisting of N + 1 vertices)24.

The N-queens problem
The N-queens problem is an interesting application for testing the 
accuracy of genetic algorithms due to the inherent difficulty of 
optimizing the problem under efficient time and memory con-
straints25. Given an N × N board, find a set of N-queens such that 
zero pairs of queens are in the same row, column, or diagonal (none 
of the queens are attacking each other). Although there are several 
approaches (brute force/recursion, simulated annealing, etc.) to 
solving this optimal placement problem26, the N-queens problem 
was chosen in this study as an early practical test of the proposed 
new mutation rate operator’s accuracy. 

Optimizing a 3-dimensional function
Finding the maximum or minimum value of a 3-dimensional sur-
face is a more abstract but more visual problem. A surface with 
multiple local maxima and minima can simultaneously test a GA’s 
ability to avoid premature convergence and its ability to handle 
multidimensional optimization problems. Because GAs solve 
problems with implicit functions of N-dimensions, it is important 
that the newly proposed mutation operator can deliver reasonable 
speed and accuracy in the most primal form of the N-dimensional 
problem, optimizing a space function. While the N-queens problem 
is adequate for testing the accuracy of a GA, it is not adequate for 
testing its speed of convergence because there are multiple solu-
tions. Therefore, maximization of a 3-dimensional surface with 
multiple local maxima but only one absolute maximum was chosen 
as a practical test of the new mutation operator’s speed of conver-
gence, or number of generations needed to converge to the optimal 
solution. Furthermore, minimization of the Rastrigin function was 
chosen as a simple method for comparing accuracies of various 
search algorithms. The Rastrigin function is an optimal function 
to choose for such a comparison as the surface holds a myriad of 
local minima, but only one global minimum at f (0,0) = 0. The 
Rastrigin function models a difficult problem to optimize, where a 

Figure 1. Example of crossover between two binary-coded chromosomes. An example of crossover between a set of two binary-coded 
chromosomes where half the length of chromosome A is exchanged for half the length of chromosome B, resulting in a hybrid set of 
chromosomes.
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non-robust search algorithm may easily become caught in a local 
optimum27.

Methods
Experimental design
The research question this study attempted to answer was: what are the 
effects of an adaptive mutation rate, based on the derivative of the fitness 
function with respect to generations, on the efficiency and accuracy of 
a GA? We performed three experiments to answer this question. The 
first experiment in this study tested the null hypothesis that given 
a problem, which is not always solvable (to the global optimum) 
by a fixed-rate GA, a GA with an adaptive mutation rate (based on 
the derivative of the fitness function with respect to generations) 
would find an optimal solution significantly more often than one 
with a constant mutation rate. To reject the null hypothesis, we will 
need to show that an adaptive mutation rate can find an optimal 
solution significantly more often than one with a fixed mutation 
rate. The second experiment tested the null hypothesis that given 
a problem, which is always solvable (to the global optimum) by a 
constant mutation rate GA, there would be no significant difference 
in the efficiency between the constant mutation rate GA and a GA 
with an adaptive mutation rate, based on the derivative of the fitness 
function with respect to generation. The third experiment tested 
the null hypothesis that a GA with an adaptive mutation rate is not 
significantly more accurate in converging to a global optimum of 
a 3-dimensional function as compared to other search algorithms  
(i.e. Nelder-Mead, hill climbing, random).

The mutation rate function r
m
 was the independent variable in the 

first study. Accuracy (how often a GA finds the optimum solution) 
measured in percent (%) with an error value of ±0.001, and effi-
ciency (how long it takes to converge to the solution), measured 
in generations, were the dependent variables. The experiment was 
set up with three levels: a constant r

m
 of 0% (no mutation, con-

trol), a constant r
m
 of 20% (control), and an adaptive r

m
 derived 

from a pseudoderivative and a sigmoid function. The independ-
ent variable of the second study was the specific search algorithm  
being run. The accuracy, measured in percent (%) with an error  
value of ±0.001, was the dependent variable. The experiment was 
set up with four levels (search algorithms): a random search, a 
search implementing the hill climbing technique, a search imple-
menting the Nelder-Mead method, and a search implementing the 
proposed adaptive GA.

The adaptive mutation rate operator was tested on three problems: the 
N-queens problem, the maximization of a 3-dimensional surface, and 
the minimization of a different 3-dimensional surface (the Rastrigin 
function). The N-queens problem was used specifically to test the 
accuracy of the new adaptive mutation rate since a GA imple-
menting a constant mutation rate does not have 100% accuracy 
in the N-queens problem. The maximization of a 3-dimensional 
surface problem was used to test the efficiency of the new adaptive 
mutation rate since a GA implementing the 20% constant mutation 
rate does have 100% accuracy in the 3-dimensional maximization 
problem. The minimization of the Rastrigin function was used to 
determine the robustness of the proposed adaptive GA compared 
to other well-known search algorithms. The Rastrigin function 

was selected due to a most diverse topography, including a myriad 
of local optima by which weak search algorithms may be forced 
to prematurely converge. In the first study, accuracy was defined 
to be the rate of successful optimization within 100,000 gen-
erations to the nearest ±0.001, in order to save computing power. 
Python 2.5 was used to create and run GAs for the N-queens and 
3-dimensional maximization problems. Python 3.0 was used to 
create and run an adaptive GA, Nelder-Mead, hill climbing, and 
random search algorithms for the Rastrigin function minimization 
problem. A vector class was created to aid in simplifying the code 
for the latter experiment. Both GAs reported mutation rate, conver-
gence, and best f values for later analysis. For both problems, the 
mutation rate operator function was a sigmoid function fit to the domain 
x in [0, ∞) and range y in [0, 1]. The sigmoid function is defined as:

sigmoid x
e x( ) =

+ −

1
1  

(2)

with domain x in (-∞, ∞), range y in [0, 1], and sigmoid(0) = 0.5. 
The function used was thus a fit of the monotonic sigmoid function 
to the desired domain and range, resulting in

r
m
 = 2 * (sigmoid(x) – 0.5) (3)

where x is given by:

x = g
c
 – g

o
 (4)

with g
c
 representing the current generation and g

o
 representing the 

oldest generation of the same best f value. x thus is inversely related 
to the derivative of the fitness function with respect to generation. 
This causes an increase in mutation rate when the fitness between 
generations is stagnant. A theoretical basis and further details of the 
adaptive mutation rate operator is included in the Theory section 
under the Discussion.

For the N-queens problem, the specific case of N = 8 was chosen. 
The fitness function was chosen for this problem to be the number of 
pairs of queens violating the problem specification. A program was 
written to run 200 trials of GAs maxed at 100,000 generations or 
until a solution was found (f = 0). The genetic code for each solution 
in the solution set was a sequence of eight integers, with each index 
representing a column and each value representing a row. Crosso-
ver locations were determined using random integers. All variables 
were held constant apart from mutation rates, which varied between 
constant mutation at 0% (no mutation), constant mutation rate of 
20%, and the sigmoidally-determined adaptive mutation. For the 
full code, see Script 1 in the Supplementary materials.

Regarding the maximization of a 3-dimensional function, the pro-
posed sigmoidal mutation operator was again compared to controls 
of a constant mutation rate of 20% and of no mutation (0%). The 
function chosen for maximization was

z x e
x

x y e ex y x y x= − − − −



 −− − + − − − +3 1 10

5
1
3

2 1 3 5 12 2 2 2

* ( ) * * * *( ) ( ))2 2− y (5)
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method and the adaptive GA, as the run time for each method was 
identical, and thus, held constant. Each algorithm was run for 1,000 
trials in order to obtain enough data for a robust analysis. For the 
full code, see Scripts 2, 3, and 4 in the Supplementary materials.  
A graphical representation of the Rastrigin function can be found as 
Figure 3 and Figure 4.

Figure 3. Graphical representation of the Rastrigin function 
used in the comparison of the Nelder-Mead, Hill Climbing, 
and Random Search algorithms with the adaptive genetic 
algorithm. Visualized in MATLAB 6.5: f = @(x,y) 10*2 + x.^2 + 
y.^2 – 10*cos(2*pi*x) – 10*cos(2*pi*y). The global minimum of the 
Rastrigin function is f (0,0) = 0.

which represents a function with several local maxima and minima, 
which can be solved by the 20% mutation rate GA but not the 
0% mutation rate GA. This allowed for a test of efficiency of the 
new sigmoidally-determined adaptation mutation rate GA against 
the 20% fixed mutation rate GA and a test of accuracy for the 
sigmoidally-determined adaptation mutation rate GA against the 0% 
fixed mutation rate (no mutation) GA. A graphical representation of 
the function is shown as Figure 2. The genetic code for each solution 
in the solution set for this problem was a sequence of two integers, 
the x and y coordinates. The chromosomes were implemented as 
real-coded chromosomes containing the actual coordinates rather 
than binary strings. For crossover, the x coordinate of one solution 
was chosen and the y coordinate of another solution was chosen. 
For mutation, a coordinate was replaced by a random number 
within the domain of the problem. Once again, all variables, except 
for mutation rates, were held constant throughout each experiment.

Figure 4. Contour plot of the Rastrigin function. Visualized in 
Mathematica 8: ContourPlot[10*2 + x^2 + y^2 – 10 Cos[2 Pi x] –10 
Cos[2 Pi y], {x, -5.12, 5.12}, {y, -5.12, 5.12}, ImageSize -> 1000, Axes 
-> False, ColorFunction -> ColorData[“TemperatureMap”]].

Figure 2. Graphical representation of the surface used for the 
3D maximization problem. Visualized in MATLAB 6.5 Using the 
Command peaks(40). The three maximums of the surface were 
located at f = 8.1165 (global maximum), 3.5507, and 3.4652.

The minimization of the Rastrigin function, given by:

z = 20 + x2 − 10cos(2πx) + y2 − 10 cos(2πy) (6)

was the final test run, with a goal to learn how the proposed adaptive 
GA compares to non-GA search algorithms. All of the search algo-
rithms were coded to report the run time to converge and the result 
of the respective convergence. In order for a result to be considered 
accurate, the returned answer had to be within 0.001 of the true 
answer. This ensures that the algorithm is converging to the cor-
rect minimum and also aids in simulating a difficult optimization 
problem. Since the random method does not converge, but rather 
runs for a given time span, the average run time for each GA trial 
was obtained and used for the run time of the random method search. 
This allows for direct comparison of the accuracies of the random 
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Results
The results of experimentation are summarized in Table 1, Table 2, 
Table 5, and Table 7. In the N-queens problem, the proposed sig-
moid mutation operator displayed both the fastest convergence and 
greatest accuracy with convergence after an average of 25,455.4 
generations and an accuracy of 95.5%. In the 3-dimensional surface 
maximization problem, there was no significant difference between 
the speeds of the successful GAs. Accuracies were tied between 
20% constant and adaptive mutation, as both techniques consist-
ently identified the global maximum within the 100,000-generation 
limit. In the Rastrigin function minimization problem, the proposed 
sigmoid mutation operator GA performed significantly better than 
the three other search algorithms in terms of accurately converging 
to the global minimum. See Figure 5–Figure 7 for a summary of the 
results and significant differences.

N-queens
In the N-queens problem, a series of unpaired, single-tailed Student’s 
t-tests were used to test the following null hypothesis at the 0.05 
level of significance: the accuracy of the adaptive mutation operator 
will not be significantly higher than that of 20% constant mutation 
or that of 0% constant mutation. The null hypothesis was rejected 
for the 20% constant mutation rate (p = 6.108 × 10-25 < 0.05) and the 
0% constant mutation rate (p = 2.572 × 10-214 < 0.05). See Table 3 
for a summary of the N-queens statistics.

Accuracies, run times, and statistics for genetic algorithms with 
various mutation rates solving the N-queens problem

1 Data File

http://dx.doi.org/10.6084/m9.figshare.640022

Figure 5. N-queens accuracy and convergence results for constant and adaptive mutation rate genetic algorithms. A. Graph of the 
N-queens problem accuracies among 0% constant mutation, 20% constant mutation, and adaptive mutation. ***p < 0.001. B. Graph of the 
N-queens problem convergences among 0% constant mutation, 20% constant mutation, and adaptive mutation. ***p < 0.001. mutation 
(mut.), adaptive (adapt.).

Table 1. Summary of results from solving the N-Queens 
problem using various mutation rates.

Constant (0%) 
mutation

Constant (20%) 
mutation

Adaptive 
mutation

Overall accuracy (%) 0 53.5 95.5

Average 
convergence 
(generations)

100000 50661.49 25455.4

Table 2. Summary of results from solving the 3-dimensional 
maximization problem using various mutation rates.

Constant (0%) 
mutation

Constant (20%) 
mutation

Adaptive 
mutation

Overall accuracy (%) 0 100 100

Average 
convergence 
(generations)

100000 67460.99 67779.92
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Figure 6.  3D maximization accuracy and convergence results for constant and adaptive mutation rate genetic algorithms. A. This is 
a graph of the 3D surface maximization problem accuracies among 0% constant mutation, 20% constant mutation, and adaptive mutation.   
B. This is a graph of the 3D surface maximization problem convergences among 20% constant mutation and adaptive mutation. 0% 
constant mutation was not statistically analyzed because convergence was not achieved. ***p < 0.001. mutation (mut.), adaptive 
(adapt.).

Figure 7. Rastrigin function minimization accuracy results 
for various search algorithms. Graph of the Rastrigin function 
minimization problem accuracies among random, Hill climbing, 
Nelder-Mead, and adaptive GA methods. ***p < 0.001. genetic 
algorithm (GA).

Table 3. Summary of statistical tests on N-queens results 
comparing the accuracies and convergence generations 
associated with adaptive and constant mutation rates.

T-tests p-value

Constant (0%) mutation vs.
adaptive mutation – accuracy 2.572 × 10−214

Constant (0%) mutation vs.
adaptive mutation – convergence 6.2864 × 10−137

Constant (20%) mutation vs.
adaptive mutation – accuracy 6.10806 × 10−25

Constant (20%) mutation vs.
adaptive mutation – convergence 1.86354 × 10−10

Table 4. Summary of statistical tests on 
3-dimensional maximization results comparing the 
accuracies and convergence generations associated 
with adaptive and constant mutation rates.

T-tests p-value

Constant (0%) mutation vs.
adaptive mutation – accuracy 0

Constant (0%) mutation vs.
adaptive mutation – convergence 1.1566 × 10−56

Constant (20%) mutation vs.
adaptive mutation – accuracy 0.5

Constant (20%) mutation vs.
adaptive mutation – convergence 0.44759
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times of the hill climbing and Nelder-Mead methods when the  
algorithm accurately converged and when the same algorithm did not  
accurately converge. Both the hill climbing method (p = 0.140 > 0.05) 
and the Nelder-Mead method (p = 0.576 > 0.05) showed no signifi-
cant differences in run time when accurately converging compared 
to inaccurately converging. These results point to the possibility 
that these two methods were only accurate when a fortunate random 
point was selected to start running the search algorithm from. No 
extra time being needed to converge correctly versus incorrectly, 
points towards the idea that no extra computation was needed either. 
See Table 6 and Table 7 for a summary of the Rastrigin function 
minimization statistics.

Accuracies, run times, and statistics for search algorithms 
minimizing the Rastrigin function

1 Data File

http://dx.doi.org/10.6084/m9.figshare.640021

Discussion
Theory
The mutation rate operator presented in this study uses randomness 
to guide a genetic algorithm (GA) towards the optimal solution. 
A GA with less randomness leads to faster convergence towards 
local optima; however, by limiting randomness it limits the search 
space, which in turns hinders the search for the global optimum. 
Conversely, a GA with more randomness hinders progress towards 
local optima, but allows for a wider search space, aiding the search 
for the global optimum8,28. Therefore, randomness should be 
inversely related to the derivative of the fitness function f. Because 
f is implicit in most problems, the proposed heuristic attempted 

Table 5. Summary of results for solving the Rastrigin function minimization problem using various search algorithms.

Random Hill climbing Nelder-Mead Adaptive genetic 
algorithm

Accuracy (%) 0.2 0.8 5.7 100

Average run time to correctly converge (s) 0.27405 0.65205 0.01852 0.27405

Average converged minimum value 0.49505 16.97789 4.76441 0

Trials 1000 1000 1000 1000

Table 6. Summary of statistical tests on the Rastrigin 
function minimization results comparing the accuracies 
associated with each search algorithm.

T-tests p-value

Random vs. adaptive genetic algorithm – 
accuracy 2.53 × 10−223

Hill climbing vs. adaptive genetic algorithm – 
accuracy 9.61 × 10−268

Nelder-Mead vs. adaptive genetic algorithm – 
accuracy 3.04 × 10−152

Table 7. Summary of results and statistics comparing run times  
for accurate and inaccurate convergences using the Hill climbing 
and Nelder-Mead methods.

Convergence Hill climbing Nelder-Mead

Run time (s)
Accurate 0.65205 0.01852

Inaccurate 0.59429 0.01830

Trials
Accurate 35 57

Inaccurate 4965 943

p-value 0.13960 0.57576

Maximizing a 3-dimensional function
In the surface maximization problem, a series of unpaired, single- 
tailed Student’s t-tests were used to test the following null 
hypothesis at the 0.05 level of significance: the efficiency of the 20% 
constant mutation rate GA will be significantly higher than that of the 
adaptive mutation operator GA. The null hypothesis was rejected 
(p = 0.448 > 0.05) for the 20% level. Because the constant 0% 
mutation rate GA does not find the global maximum, it was 
compared to the adaptive mutation operator on the basis of null 
hypothesis 1 at the 0.05 level of significance: the accuracy of the adap-
tive mutation operator will not be significantly higher than that of 0% 
constant mutation rate. The null hypothesis was rejected (p = 0 < 0.05). 
See Table 4 for a summary of the surface maximization statistics.

Accuracies, run times, and statistics for genetic algorithms with 
various mutation rates maximizing a 3D function

1 Data File

http://dx.doi.org/10.6084/m9.figshare.640020

Minimizing the Rastrigin function
In the Rastrigin function minimization problem, a series of unpaired, 
single-tailed Student’s t-tests were used to test the following null 
hypothesis at the 0.05 level of significance: the accuracy of the 
adaptive mutation operator GA will not be significantly higher 
than those of the other search methods (Nelder-Mead, hill climb-
ing, random). The null hypothesis was rejected for random method 
(p = 2.53 × 10-223 < 0.05), for the hill climbing method (p = 9.61 × 10-268 

< 0.05), and for the Nelder-Mead method (p = 3.04 × 10-152 < 0.05).  
Furthermore, a series of unpaired, single-tailed Student’s t-tests 
were used to test if there were significant differences in the run 
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to look at the derivative of f with respect to generation, creating 
a pseudo, inversely related function to the derivative that could be 
used to calculate an adaptive mutation rate. The heuristic subtracted 
the first generation at which the most optimal fitness value appeared 
from the current generation to obtain a result inversely related to the 
derivative, and thus directly related to the randomness or mutation 
rate. Therefore any monotonically increasing function with domain 
bounded by x in [0, ∞) and y in [0, 1] should provide an appropriate 
amount of randomness to either find a local optimum or increase 
the search space from the local optima in order to find the global 
optimum.

Implications
The implications of a new, pseudoderivative-based adaptive mutation 
rate are considerable. The implementation of this new technique 
within a genetic algorithm could provide increased accuracy in 
optimization of all GA problems.  For example, the treatment of  
complex diseases requires the discovery of new drug combinations 
that are hard to come by solely on the basis of empirical clinical 
knowledge. Search algorithms, including GAs, have begun to provide 
promising results in identifying optimal drug combinations, e.g. for 
destroying human cancer cells as well as for minimizing the physi-
ological decline associated with aging. Moreover, these approaches 
required only one-third of the number of tests employed in the  
classic method for the discovery of optimal drug combinations. 
This approach has greatly reduced the risk and expense of clinical 
trials29. The availability of a more sophisticated class of GAs will 
also allow search algorithms that are based on GAs to be improved. 
For example, swarm-based optimization algorithms, such as the 
Bees Algorithm, can improve the efficiency  with which optimal 
and suboptimal solutions can be discovered within a given search 
space30.

Our results agree with results reported in other articles on adaptive 
mutation accuracy and efficiency5,31. The method described in this 
study also has the added benefit of low computational complexity 
while still being able to guide the GA out of local optima and towards 
the global optimum. Studies in adaptive mutation have ranged 
widely from individual gene-based mutations, to Gaussian opera-
tors, to polynomial operators20. However, to our knowledge, past 
adaptive mutation techniques have never used the derivative of f 

with respect to generation to determine a changing mutation rate. 
This new method of implementing adaptive mutation may open up 
entirely new areas for implementing search algorithms based on 
improved GAs.

Conclusion
GAs are powerful tools that can optimize overwhelmingly complex 
real-life problems, including speedy diagnoses of complex diseases. 
Previous GAs faced a trade-off between speed and accuracy, as more 
random GAs sacrificed speed in exchange for a better chance of 
optimization or less random ones gave up accuracy for speed. The 
solution of an adaptive mutation operator based on the derivative of 
f with respect to generation allows for increased accuracy without 
the loss of speed. Suggestions for research that would expand upon 
current findings include determining an optimal monotonically 
increasing function for the mutation operator, such as a sigmoid, 
inverse tangent, or scaled linear function, as well as comparing the 
current GA to other commonly used search methods in current 
bioinformatics problems.
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main idea is that variable-rate operators will help algorithms escape the local optima and identify the
global optimum more efficiently. The authors indeed show that this is the case in at least some of the
examples they investigated. I think this is a very promising article that will generate a lot of interest in this
area.

However, I am a bit unsure about the method’s relevance to biology. There are some biological examples
that I can think of where their methodology can make an impact but I fail to see how it can be used for
“diagnosis” and “therapy” as the title states. I wish they had provided some more examples towards that
direction.

Finally, I would like to bring up a point that is frequently overseen in computational studies. Although in
many non-biological problems finding the optimal solution is the ultimate goal, many biological problems
are better served by finding a set of optimal+ sub-optimal solutions. Examples include protein and RNA
folding, and microRNA and transcription factor binding sites. Perhaps the authors would consider
extending their methodology towards that direction in the future.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.
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We agree with the reviewer’s point. Our main objective was to show the advantage variable-rate
mutation operators in genetic algorithms had over fixed-rate ones when applied correctly. While
some of our immediate visions for the algorithm were for applying it towards solving problems in
bioinformatics, we realize that the algorithm is more of a general search method that can be
applied to a number of problems not just within biology. In order to more accurately portray the
content of this article, the title and abstract have been modified to avoid emphasizing a minor

aspect of the article. In addition, the Implications section of the Discussion have been expanded on
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aspect of the article. In addition, the Implications section of the Discussion have been expanded on
to more comprehensively explain how this algorithm can be applied in the medical field as an
example of one of its many applications.

In regards to your comment, you bring up a very good point. We will certainly look into modifying
this algorithm to make it a technique that better serves attempting to solve problems in biology by
having it search for a set of optimal and suboptimal solutions. 

 No competing interests were disclosed.Competing Interests:
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 Mark Ragan
Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia

Genetic algorithms offer a biologically motivated approach to nonlinear optimisation. In the so-called
breeding stage of a genetic algorithm, the diversity of candidate solutions is increased by operations
analogous to crossover between chromosomes, and point mutations. If parameterised appropriately, the
mutation operator helps the genetic algorithm explore the fitness landscape, in particular by making it less
likely to become trapped in a local optimum. Mutation operators are typically of fixed rate, although there
is some prior art in the use of variable-rate operators. Here Kanwal, Ramesh and Huang, senior students
at Thomas Jefferson High School for Science and Technology in Alexandria, Virginia, develop some
theory on the form of adaptive-rate mutation operators, and investigate the performance of a new heuristic
motivated by this theory. They report that this heuristic delivers much-improved accuracy in finding the
global optimum, at no cost in speed, in two reasonably difficult optimisation scenarios, and describe
bounds on the mutation function.

The research is clearly of publishable quality. The content explained clearly and in sufficient detail to allow
the work to be replicated, and the conclusions are balanced and justified on the basis of the results
presented. The writing style is exemplary. However, the manuscript does not deliver against the
“diagnosis and therapy” promised in the title and abstract: indeed, the authors rightly allude to much
broader contexts. In the absence of a specific case study in the biological application domain, the title
might focus solely on the algorithmic contribution. It would be interesting to compare the performance of
genetic algorithms implementing their new mutation operator with, for example, simulated annealing or
multi-chain MCMC, although this would presumably require a broader comparison framework than was
within-scope for the work reported here.

Figures 3 and 4 are very similar to those in Wikipedia (http://en.wikipedia.org/wiki/Rastrigin_function,
accessed 13 July 2013); does this arise from use of a generic parameterisation?

I would prefer “optima” rather than “optimums”.  There is a misspelling in the legend of Figure 3.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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Author Response 19 Nov 2013
, Thomas Jefferson High School for Science and Technology, USAMaxinder Kanwal

We agree with the reviewer’s point. Our main objective was to show the advantage variable-rate
mutation operators in genetic algorithms had over fixed-rate ones when applied correctly.  While
some of our immediate visions for the algorithm were for applying it towards solving problems in
bioinformatics, we realize that the algorithm is more of a general search method that can be
applied to a number of problems not just within biology. In order to more accurately portray the
content of this article, the title and abstract have been modified to avoid emphasizing a minor
aspect of the article. In addition, the Implications section of the Discussion have been expanded on
to more comprehensively explain how this algorithm can be applied in the medical field as an
example of one of its many applications.

In regards to Figures 3 and 4 being similar to those on Wikipedia, the reason for this is because the
code given below the images was almost the same code used to generate our figures in the paper
with only slight modifications to make the figures more readable.  We were aware of the Wikipedia
images before generating our own; we simply liked the parameters set in the Wikipedia code, and
so we generated our images using that code (along with some additional style changes).

The mistakes pointed out have been fixed as well. 

 No competing interests were disclosed.Competing Interests:
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 Christos Ouzounis
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Genetic algorithms (GAs) represent an adaptive computation technique with applications to various
optimization problems, borrowing ideas from biological systems – with solution populations and operators
that mimic DNA mutation and selection. As the authors of this report mention, GAs can suffer from issues
of convergence to local optima, as all optimization algorithms do. It is proposed that a variable mutation
rate (as opposed to the more classical approach of a constant mutation rate) can contribute towards
better optimization performance, away from local optima: the longer the GA remains at a local optimum,
the higher the mutation rate can become. This is the key idea that is addressed in this work.

The study is interesting as it focuses on the mutation operator which has not been researched sufficiently,
compared to the crossover operator which has been studied quite extensively. The proposed solution -
namely a variable mutation rate as an independent variable, at least in one case - is compared to other
optimization techniques, such as random search / hill climbing / Nelder-Mead. Experiments are performed
for well-established, highly controlled optimization problems, such as the N-Queens problem,
maximization of a 3D surface and the Rastrigin function. Performance in terms of both accuracy of
solution and efficiency of resource consumption was monitored for all experiments. Interestingly, while
adaptive mutation has a two-fold performance in both terms above for the N-Queens problem, there is no
significant difference for the 3D surface problem.
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significant difference for the 3D surface problem.

This is interesting work, but relevance to computational biology and real-world solutions is somewhat
peripheral. I am sure the authors are investigating applications of their approach to larger problems, as
alluded in their title - which unfortunately is somewhat misleading: without the terms ‘diagnosis’ and
‘therapy’, this would have been a fine, technical report on an exciting subject. Hopefully, we will see some
further development towards that direction in the near future.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:
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We agree with the reviewer’s point. Our main objective was to show the advantage variable-rate
mutation operators in genetic algorithms had over fixed-rate ones when applied correctly. While
some of our immediate visions for the algorithm were for applying it towards solving problems in
bioinformatics, we realize that the algorithm is more of a general search method that can be
applied to a number of problems not just within biology. In order to more accurately portray the
content of this article, the title and abstract have been modified to avoid emphasizing a minor
aspect of the article. In addition, the Implications section of the Discussion have been expanded on
to more comprehensively explain how this algorithm can be applied in the medical field as an
example of one of its many applications. 

 No competing interests were disclosed.Competing Interests:
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