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Pattern Discovery in Brain Imaging 
Genetics via SCCA Modeling with a 
Generic Non-convex Penalty
Lei Du1, Kefei Liu2, Xiaohui Yao   2, Jingwen Yan2, Shannon L. Risacher2, Junwei Han1, Lei 
Guo1, Andrew J. Saykin   2, Li Shen   2 & the Alzheimer’s Disease Neuroimaging Initiative*

Brain imaging genetics intends to uncover associations between genetic markers and neuroimaging 
quantitative traits. Sparse canonical correlation analysis (SCCA) can discover bi-multivariate 
associations and select relevant features, and is becoming popular in imaging genetic studies. The L1-
norm function is not only convex, but also singular at the origin, which is a necessary condition for 
sparsity. Thus most SCCA methods impose 1-norm onto the individual feature or the structure level of 
features to pursuit corresponding sparsity. However, the 1-norm penalty over-penalizes large 
coefficients and may incurs estimation bias. A number of non-convex penalties are proposed to reduce 
the estimation bias in regression tasks. But using them in SCCA remains largely unexplored. In this 
paper, we design a unified non-convex SCCA model, based on seven non-convex functions, for unbiased 
estimation and stable feature selection simultaneously. We also propose an efficient optimization 
algorithm. The proposed method obtains both higher correlation coefficients and better canonical 
loading patterns. Specifically, these SCCA methods with non-convex penalties discover a strong 
association between the APOE e4 rs429358 SNP and the hippocampus region of the brain. They both 
are Alzheimer’s disease related biomarkers, indicating the potential and power of the non-convex 
methods in brain imaging genetics.

By identifying the associations between genetic factors and brain imaging measurements, brain imaging genetics 
intends to model and understand how genetic factors influence the structure or function of human brain1–14. Both 
genetic biomarkers such as single nucleotide polymorphisms (SNPs), and brain imaging measurements such as 
imaging quantitative traits (QTs) are multivariate. To address this problem, bi-multivariate association models, 
such as multiple linear regression15, reduced rank regression16–18, parallel independent component analysis19, 
partial least squares regression20,21, canonical correlation analysis (CCA)22 and their sparsity-inducing variants23, 
have been widely used to uncover the joint effect of multiple SNPs on one or multiple QTs. Among them, SCCA 
(Sparse CCA), which can discover bi-multivariate relationships and extract relevant features, is becoming popular 
in brain imaging genetics.

The CCA technique has been introduced for several decades24. CCA can only perform well when the number 
of observations is larger than the combined feature number of the two views. Unfortunately, the problem usually 
is a large-p-small-n problem in the biomedical and biology studies. And it gets even worse because in CCA we are 
facing a large-(p + q)-small-n problem. In order to overcome this limitation, sparse CCA (SCCA)25–36 employs a 
sparsity inducing regularization term to select a small set of relevant features and has received increasing atten-
tion. The 1 -norm based SCCA method25 has gained great success for its sparsity pursuing capability. After that, 
there are many SCCA variants based on the 1 -norm. For examples, the fused lasso penalty imposes the 1 -norm 
onto the ordered pairwise features25, and the group lasso penalty imposes the 1 -norm onto the group of fea-
tures29,32. Further, the graph lasso or the graph guided lasso can be viewed as imposing the 1-norm onto the 
pairwise features defined by an undirected graph29.

However, the 1 -norm penalty shows the conflict of optimal prediction and consistent feature selection37. In 
penalized least squares modeling, Fan and Li38 showed that a good penalty function should meet three properties. 
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First, the penalty function should be singular at the origin to produce sparse results. Second, it should produce 
continuous models for stable model selection, and third, the penalty function should not penalize large coeffi-
cients to avoid estimation bias. The 1 -norm penalty is successful in feature selection because it is singular at the 
origin. On the contrary, the 1-norm penalty over-penalizes large coefficients, and thus it may be suboptimal with 
respect to the estimation risk39,40. The 0-norm function which only involves the number of nonzero features is an 
ideal sparsity-inducing penalty. However, it is neither convex nor continuous, and thus solving 0 -norm con-
strained problem is NP-hard41.

A number of non-convex penalties are proposed as the surrogate of the 0-norm to handle this issue. These 
penalties includes the γ -norm (0 < γ < 1) penalty42, the Geman penalty43, the Smoothly Clipped Absolute 
Deviation (SCAD) penalty38, the Laplace penalty44, the Minimax Concave Penalty (MCP)45, the Exponential-Type 
Penalty (ETP)46 and the Logarithm penalty47. These non-convex functions have attractive theoretical properties 
for they all are singular at the origin and leave those larger coefficients unpenalized. Though they have gained 
great success in generalized linear models (GLMs), it is an unexplored topic to apply them to the SCCA models 
for achieving sparsity and unbiased prediction simultaneously.

Therefore, it is essential and of great interest to investigate performances of various SCCA models based on 
these non-convex penalties. A major challenge of non-convex function is the computational complexity. The local 
quadratic approximation (LQA) technique is introduced to solve the SCAD penalizing problem38. LQA approxi-
mates the objective by a locally quadratic expression which can be solved like a ridge constrained problem. 
Inspired by this, in this paper, we propose a generic non-convex SCCA models with these non-convex penalties, 
and propose a unified optimization algorithm based on the LQA technique and the Alternate Convex Search 
(ACS) method48. Using both synthetic data and real imaging genetic data, the experimental results show that with 
appropriate parameters, the non-convex SCCA methods have better performance on both canonical loading 
patterns and correlation coefficients estimation than the 1-norm based SCCA methods.

Methods
Throughout this paper, scalars are denoted as italic letters, column vectors as boldface lowercase letters, and 
matrices as boldface capitals. The u  denotes the Euclidean norm of a vector u.

Preliminaries.  Sparse Canonical Correlation Analysis (SCCA).  Let ∈ ×X n p be a matrix representing the 
SNP biomarkers data, where n is the number of participants and p is the number of SNPs. Let Y n q∈ ×  be the 
QT data with q being the number of imaging measurements. A typical SCCA model is defined as

− Τ Τu X Yvmin (1)u v,

s t c cXu Yv u v1, 1, ( ) , ( ) ,2 2
1 2. . ≤ ≤ Ω ≤ Ω ≤

where Xu and Yv are the canonical variables, u and v are the corresponding canonical vectors we desire to esti-
mate, and c1, c2 are the tuning parameters that control the sparsity level of the solution. The penalty function could 
be the 1-norm penalty, or its variants such as the fused lasso, group lasso and graph lasso25,27,29,32,34.

Non-convex Penalty Functions for SCCA.  In this paper, we investigate seven non-convex surrogate penalties of 
0-norm in the SCCA model. They are singular at the origin, which is essential to achieve sparsity in the solution. 
And they do not overly penalize large coefficients. In order to facilitate a unified description, we denote the 
non-convex penalty as

∑Ω = | |λ γ
=

P uu( ) ( ),
(2)i

p

inc
1

,

where λ and γ are nonnegative parameters, and Pλ,γ(|ui|) is a non-convex function. We absorb λ into the penalty 
because it cannot be decoupled from several penalties, such as the SCAD function38. We here have seven penalties 
and they are described in Table 1 and visualized in Fig. 1, where for clarity we have dropped the subscript i in ui. 
There is a sharp point at the origin for each of them, indicating that they are singular at the origin. This is essential 
to achieve sparseness in the solution. Besides, these curves are concave in |ui| and monotonically decreasing on 
(−∞, 0], and monotonically increasing on [0, ∞). Therefore, though these penalties are not convex, they are 
piecewise continuously differentiable and their supergradients exist on both (−∞, 0] and [0, ∞)49. Table 1 also 
shows their supergradients P′λ,γ(|ui|) with respect to |ui|.

The Proposed Non-convex SCCA Model and Optimization Algorithm.  Replacing the 1 -norm con-
straints in the SCCA model, we define the unified non-convex SCCA model as follows

u X Yv u vmin ( ) ( ) (3)u v,
nc nc− + Ω + ΩΤ Τ

. . ≤ ≤s t Xu Yv1, 1,2 2

where Ωnc(u) and Ωnc(v) can be any of the non-convex functions listed in Table 1.
To solve the non-convex SCCA problem, we use the Lagrangian method,
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which is equivalent to
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from the point of view of optimization. α1, α2, λ1, λ2 and γ are nonnegative tuning parameters. Next we will show 
how to solve this non-convex problem.

The first term −uΤXΤYv on the right of equation (5) is biconvex in u and v. Xu 2 is convex in u, and Yv 2 is 
convex in v. It remains to approximate both Ωnc(u) and Ωnc(v) and transform them into convex ones.

The local quadratic approximation (LQA) technique was introduced to quadratically expresses the SCAD 
penalty38. Based on LQA, we here show how to represent these non-convex penalties in a unified way. First, we 
have the first-order Taylor expansion of P ( ),1
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where μ0 and μ are neighbors, e.g., the estimates at two successive iterations during optimization. Substituting 
μ = ui

2 and μ = u( )i
t

0
2 into (6), we have
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, | |λ γ  (as shown in Table 1) at ui
t| |.

Then we obtain a quadratic approximation to Ωnc(u):
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Table 1.  The seven non-convex penalty functions and their supergradients.
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is not a function of u and thus will not contribute to the optimization.
In a similar way, we can construct a quadratic approximation to Ωnc(v)
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is not a function of v and makes no contribute towards the optimization.
Denote the estimates of u and v in the t-th iteration as ut and vt, respectively. To update the estimates of u and 

v in the (t + 1)-th iteration, we substitute the approximate functions of Ωnc(u) and Ωnc(v) in equations (8) and (9) 
into (u, v) in 5, and solve the resultant approximate version of the original problem:
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Obviously, the equation (10) is a quadratical expression, and is biconvex in u and v. This means it is convex in 
terms of u given v, and vice versa. Then according to the alternate convex search (ACS) method which is designed 
to solve biconvex problems48, the (t + 1)-th estimation of u and v can be calculated via
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Figure 1.  Illustration of the 0, 1 and seven non-convex functions. All the non-convex penalty functions share 
two common properties: They are singular at origin, concave and monotonically decreasing on (−∞,0], and 
concave and monotonically increasing on [0,∞).



www.nature.com/scientificreports/

5Scientific Reports | 7: 14052  | DOI:10.1038/s41598-017-13930-y

Both equations above are quadratic, and thus their closed-form solutions exist. Taking the partial derivative of 
(u, v) in (5) with respect to u and v and setting the results to zero, we have

0 X Yv D X X u( ) , (12)t
1 1α∈ − + +Τ Τ

0 Y Xu D Y Y v( ) , (13)t
2 2α∈ − + +Τ Τ
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According to perturbed version of LQA50, we address this by adding a slightly perturbed term. Then the i-th ele-
ment of Dt
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where ζ is a tiny positive number. Hunter and Li50 showed that this modification guarantees optimizing the equa-
tion (11). Then we have the updating expressions at the (t + 1)-th iteration

α= ++ Τ − Τu D X X X Yv( ) , (15)t t t1
1 1

1

α= + .+ Τ − Τ +v D Y Y Y Xu( ) (16)t t t1
2 2

1 1

Figure 2.  Canonical loadings estimated on four synthetic data sets. The first column shows results for Data1, 
and the second column is for Data2, and so forth. The first row is the ground truth, and each remaining one 
corresponds to an SCCA method: (1) Ground Truth. (2) L1-SCCA. (3) L1-NSCCA. (4) L1-S2CCA. (5) 

γ-norm 
and so forth. For each data set and each method, the estimated weights of u is shown on the left panel, and v is 
on the right. In each individual heat map, the x-axis indicates the indices of elements in u or v; the y-axis 
indicates the indices of the cross-validation folds.

HC MCI AD

Num 204 363 176

Gender(M/F) 111/93 235/128 95/81

Handedness(R/L) 190/14 329/34 166/10

Age(mean ± std) 76.07 ± 4.99 74.88 ± 7.37 75.60 ± 7.50

Education(mean ± std) 16.15 ± 2.73 15.72 ± 2.30 14.84 ± 3.12

Table 2.  Participant characteristics.
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We alternate between the above two equations to graduate refine the estimates for u and v until convergence. 
The pseudo code of the non-convex SCCA algorithm is described in Algorithm 1.

Computational Analysis.  In Algorithm 1, Step 3 and Step 6 are linear in the dimension of u and v, and are 
easy to compute. Step 4 and Step 7 are the critical steps of proposed algorithm. Since we have closed-form updat-
ing expressions, they can be calculated via solving a system of linear equations with quadratic complexity which 
avoids computing the matrix inverse with cubic complexity. Step 5 and 8 are the re-scale step and very easy to 
calculate. Therefore, the whole algorithm is efficient.

Data Availability.  The synthetic data sets generated in this work are available from the corresponding 
authors’ web sites, http://www.escience.cn/people/dulei/code.html and http://www.iu.edu/ shenlab/tools/ncscca/. 
The real data set is publicly available in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database repos-
itory, http://adni.loni.usc.edu.

Experiments and Datasets
Data Description.  Synthetic Dataset.  There are four data sets with sparse true signals for both u and v, i.e., 
only a small subset of features are nonzero. The number of features of both u and v are larger than the observa-
tions to simulate a large-(p + q)-small-n task. The generating process is as follows. We first generate u and v with 
most feature being zero. After that, the latent variable z is constructed from Gaussian distribution N(0, In × n). 
Then we create the data X from N zx u( , )i i x∼ ∑  and data ∼ ∑N zy v( , )i i y , where (∑x)jk = exp(−|uj − uk|) and 
(∑y)jk = exp(−|vj − vk|). The first three sets have 250 features for u and 600 ones for v, but they have different 
correlation coefficients. There are 500 features and 900 features in u and v respectively for the last data set. We 
show the true signal of every data set in Fig. 2 (top row).

Real Neuroimaging Genetics Dataset.  Data used in the preparation of this article were obtained from the ADNI 
database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership by the National 
Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food 
and Drug Administration (FDA) etc, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 
ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 
other biological markers, and clinical and neuropsychological assessment can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, 
see www.adni-info.org. The study protocols were approved by the Institutional Review Boards of all participating 
centers (Northwestern Polytechnical University, Indiana University and ADNI (A complete list of ADNI sites 
is available at http://www.adni-info.org/)) and written informed consent was obtained from all participants or 
authorized representatives. All the analyses were performed on the de-identified ADNI data, and were deter-
mined by Indiana University Human Subjects Office as IU IRB Review Not Required.

The real neuroimaging genetics dataset were collected from 743 participants, and the details was presented 
in Table 2. There were 163 candidate SNP biomarkers from the AD-risk genes, e.g., APOE, in the genotyping 
data. The structural MRI scans were processed with voxel-based morphometry (VBM) in SPM851,52. Briefly, 
scans were aligned to a T1-weighted template image, segmented into gray matter (GM), white matter (WM) and 

γ -norm SCAD
Geman, 
Laplace, MCP ETP, Log

Range of γ 0.1, 0.2, 0.3 3.7 0.1, 0.01, 0.001 10, 100, 1000

Table 3.  The searching range of optimal γ for each non-convex penalty.

http://www.escience.cn/people/dulei/code.html
http://www.iu.edu/
http://adni.loni.usc.edu
http://www.adni-info.org
http://www.adni-info.org/


www.nature.com/scientificreports/

7Scientific Reports | 7: 14052  | DOI:10.1038/s41598-017-13930-y

cerebrospinal fluid (CSF) maps, normalized to MNI space, and smoothed with an 8mm FWHM kernel. We sub-
sampled the whole brain and generated 465 voxels spanning the whole brain ROIs. The regression technique was 
employed to remove the effects of the baseline age, gender, education, and handedness for these VBM measures. 
The aim of this study is to evaluate the correlation between the SNPs and the VBM measures, and further identify 
which SNPs and ROIs are associated.

Experimental Setup.  Benchmarks.  In this paper, we are mainly interested in whether these non-convex 
SCCA methods could enhance the performance of 1-SCCA method based on our motivation. It is reasonable to 
employ the 1 -norm based methods in comparison. Therefore, the structure-aware SCCA methods such as28,29,32,34 
are not contained here as benchmark. Based on different mathematical techniques, there are three different 1
-SCCA algorithms. They are the singular value decomposition based method25, the primal-dual based method29 
and the LQA based method32. Though the latter two are proposed for capturing group or network structure, they 
can be easily reformulated to the 1-norm constrained methods, such as setting the parameters associated with the 
structure penalty to zero29. Therefore, to make the comparison fair and convincing, we choose all of them as 
benchmarks. With a slight abuse of notation, we use the penalty name to refer a non-convex SCCA method, e.g. 
ETP for ETP based SCCA method. For the 1-norm based methods, we call them L1-SCCA25, L1-S2CCA32, and 
L1-NSCCA29.

Parameter Tuning.  There are four parameters λi(i = 1, 2) and αi(i = 1, 2) associated with the non-convex SCCA 
methods, and one pivotal parameter γ. According to their equations, these non-convex penalties can approximate 
the 0-norm by providing an appropriate γ. In this situation, the λi and αi play a very weak role because theoreti-
cally the 0 -norm penalized problem does not rely on the parameters. Based on this consideration, we here only 
tune the γ other than tuning λi and αi by a grid search strategy. This reduces the time consumption dramatically 
but does not affect the performance significantly. Further, we observe that two γ's perform similarly if they are not 
significantly different. Thus the tuning range of γ is not continuous. Besides, we set γ = 3.7 for SCAD penalty 
since38 suggested that this is a very reasonable choice. The details of tuning range for each penalty are contained 
in Table 3. For λi and αi, we simply set them to 1 in this study.

Termination Criterion.  We use u umax i i
t

i
t1 ε| − | ≤+  and ε| − | ≤+v vmax j j

t
j
t1  as the termination condition for 

Algorithm 1, where ε is the user defined error bound. In this study, we set ε = 10−5 according to experiments. All 

u v

Data1 Data2 Data3 Data4 Data1 Data2 Data3 Data4

L1-SCCA 1.00 ± 0.00 0.75 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.10 1.00 ± 0.00 1.00 ± 0.00

L1-S2CCA 1.00 ± 0.00 0.38 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.75 ± 0.00 0.75 ± 0.00 1.00 ± 0.00 0.75 ± 0.00

L1-NSCCA 0.80 ± 0.45 0.30 ± 0.41 0.80 ± 0.45 0.40 ± 0.55 1.00 ± 0.00 0.65 ± 0.15 1.00 ± 0.00 0.80 ± 0.27

γ-norm 1.00 ± 0.00 0.75 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.76 ± 0.04 1.00 ± 0.00 1.00 ± 0.00

Geman 1.00 ± 0.00 0.75 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.01 1.00 ± 0.00 1.00 ± 0.00

SCAD 1.00 ± 0.00 0.75 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.02 1.00 ± 0.00 1.00 ± 0.00

Laplace 1.00 ± 0.00 0.75 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.75 ± 0.02 1.00 ± 0.00 1.00 ± 0.00

MCP 1.00 ± 0.00 0.75 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.76 ± 0.04 1.00 ± 0.00 1.00 ± 0.00

ETP 1.00 ± 0.00 0.75 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.76 ± 0.04 1.00 ± 0.00 1.00 ± 0.00

Log 1.00 ± 0.00 0.75 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.75 ± 0.02 1.00 ± 0.00 1.00 ± 0.00

Table 4.  Performance comparison on synthetic data sets. The AUC (area under the curve) values (mean ± std) 
of estimated canonical loadings u and v.

Training Testing

data1 data2 data3 data4 data1 data2 data3 data4

L1-SCCA 0.65 ± 0.03 0.83 ± 0.03 0.65 ± 0.05 0.66 ± 0.04 0.59 ± 0.14 0.82 ± 0.05 0.59 ± 0.25 0.62 ± 0.08

L1-S2CCA 0.51 ± 0.25 0.67 ± 0.30 0.63 ± 0.28 0.32 ± 0.15 0.55 ± 0.23 0.68 ± 0.28 0.53 ± 0.29 0.24 ± 0.20

L1-NSCCA 0.62 ± 0.04 0.80 ± 0.01 0.75 ± 0.01 0.65 ± 0.02 0.61 ± 0.17 0.80 ± 0.04 0.73 ± 0.13 0.65 ± 0.10

γ -norm 0.62 ± 0.04 0.83 ± 0.01 0.75 ± 0.01 0.65 ± 0.02 0.61 ± 0.17 0.84 ± 0.02 0.73 ± 0.13 0.66 ± 0.10

Geman 0.62 ± 0.04 0.83 ± 0.01 0.75 ± 0.01 0.65 ± 0.02 0.62 ± 0.17 0.83 ± 0.02 0.72 ± 0.13 0.66 ± 0.10

SCAD 0.62 ± 0.04 0.83 ± 0.01 0.75 ± 0.01 0.65 ± 0.03 0.61 ± 0.17 0.84 ± 0.02 0.73 ± 0.13 0.66 ± 0.10

Laplace 0.62 ± 0.04 0.83 ± 0.01 0.75 ± 0.01 0.65 ± 0.02 0.61 ± 0.17 0.83 ± 0.02 0.73 ± 0.13 0.66 ± 0.10

MCP 0.62 ± 0.04 0.83 ± 0.01 0.75 ± 0.01 0.65 ± 0.02 0.61 ± 0.17 0.84 ± 0.02 0.73 ± 0.13 0.66 ± 0.10

ETP 0.62 ± 0.04 0.83 ± 0.01 0.75 ± 0.01 0.65 ± 0.02 0.61 ± 0.17 0.84 ± 0.02 0.73 ± 0.13 0.66 ± 0.10

Log 0.66 ± 0.03 0.83 ± 0.01 0.76 ± 0.01 0.68 ± 0.03 0.62 ± 0.14 0.83 ± 0.03 0.73 ± 0.12 0.67 ± 0.08

Table 5.  Training and testing correlation coefficients (mean ± std) of 5-fold cross-validation synthetic data sets. 
The best values are shown in boldface.
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methods use the same setup, i.e., the same partition of the five-fold cross-validation, running on the same 
platform.

Results on Synthetic Data.  Figure 2 shows the heat maps of canonical loadings estimated from all SCCA 
methods, where each row corresponds to an experimental method. We clearly observe that the non-convex SCCA 
methods and L1-SCCA correctly identify the identical signal positions to the ground truth across four data sets. 
Besides true signals, L1-SCCA introduces several undesired signals which makes it be inferior to our methods. As 

Figure 3.  Canonical loadings estimated on real imaging genetics data. Each row corresponds to a SCCA 
method: (1) L1-SCCA, (2) L1-NSCCA, (3) L1-S2CCA, (4) 

γ-norm and so forth. For each method, the 
estimated u is shown on the left panel, and v is on the right one. In each individual heat map, the x-axis indicates 
the indices of elements in u or v (i.e., SNPs or ROIs); the y-axis indicates the indices of the cross-validation folds.

Figure 4.  Mapping averaged canonical weight v's estimated by every SCCA method onto the brain. The left 
panel and right panel show five methods respectively, where each row corresponds to a SCCA method. The 
L1-SCCA identifies the most signals, followed by the L1-NSCCA and L1-S2CCA. All the proposed methods 
identify a clean signal that helps further investigation.
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a contrast, L1-NSCCA finds out an incomplete proportion of the ground truth, and L1-S2CCA performs unstably 
as it fails on some folds. Moreover, we also prioritize these methods using the AUC (area under ROC) criterion in 
Table 4, where a higher value indicates a better performance. The results exhibit that the non-convex SCCA meth-
ods have the highest score at almost every case. L1-SCCA scores similarly to the proposed methods, but later we 
can see it pays the price at a reduced prediction ability. Table 5 presents the estimated correlation coefficients on 
both training and testing data, where the best values are shown in boldface. The proposed SCCA methods alter-
natively gain the best value, and the Log method wins out for the most times. This demonstrates that the 
non-convex methods outperform 1-norm based SCCA methods in terms of the prediction power. In summary, 
the proposed methods identify accurate and sparse canonical loading patterns and obtain high correlation coef-
ficients simultaneously, while those 1 -norm based SCCA methods cannot.

Results on Real Neuroimaging Genetics Data.  In this real data study, the genotyping data is denoted by 
X, and the imaging data is denoted by Y. The u is a vector of weights of all SNPs, and v is a vector of weights of all 
imaging markers.The canonical correlation coefficients are defined as Pearson correlation coefficient between Xu 
and Yv, i.e., ΤXu Yv Xu Yv( ) /( ).

Figure 3 presents the heat maps regrading the canonical loadings generated from the training set. In this fig-
ure, each row shows two weights of a SCCA method, where a larger weight stands for a more importance. The 
weight associated with the SNPs is on the left panel, and that associated with the voxels is on the right. The pro-
posed non-convex SCCA methods obtain very clean and sparse weights for both u and v. The largest signal on the 
genetic side is the APOE e4 SNP rs429358, which has been previously reported to be related to AD53. On the right 
panel, the largest signal for all SCCA methods comes from the hippocampus region. This is one of the most nota-
ble biomarkers as an indicator of AD, since atrophy of hippocampus has been shown to be related to brain atrophy 
and neuron loss measured with MRI in AD cohort53. In addition, the L1-S2CCA and SCAD methods identify a 
weak signal from the parahippocampal gyrus, which is previously reported as an early biomarker of AD54. On 
some folds, the Log method also finds out the lingual region, parahippocampal gyrus, vermis region. Interestingly, 
all the three regions have shown to be correlated to AD, and could be further considered as an indicating bio-
marker that can be observed prior to a dementia diagnosis. For example, Sjöbeck and Englund reported that 
molecular layer gliosis and atrophy in the vermis are clearly severer in AD patients than in the health controls55. 
This is meaningful since the non-convex SCCA methods identify the correct clue for further investigation. On 
this account, both L1-SCCA and L1-NSCCA are not good choices since they identify too many signals, which 
may misguide subsequent investigation. The figure shows that L1-S2CCA could be an alternative choice for sparse 
imaging genetics analysis, but it performs unstably across the five folds. And, the non-convex methods is more 
consistent and stable than those 1-SCCA methods. To show the results more clearly, we map the canonical 
weights (averaged across 5 folds) regarding the imaging measurements from each SCCA method onto the brain 
in Fig. 4. The figure confirms that the L1-SCCA and L1-NSCCA find out many signals that are not sparse. The 
L1-S2CCA identifies fewer signals than both L1-SCCA and L1-NSCCA, but more than all these non-convex 
SCCA methods. All the non-convex SCCA only highlights a small region of the whole brain. This again reveals 
that the proposed methods have better canonical weights which reduces the effort of further investigation.

Besides, we include both training and testing correlation coefficients in Table 6, where their mean and stand-
ard deviation are shown. The training results of all methods are similar, with the Log method gains the highest 
value of 0.33 ± 0.03. As for the testing results, which is our primary interest, all the non-convex SCCA methods 
obtain better values than these 1 -SCCA methods. Besides, the difference between the training and testing perfor-
mance of the proposed methods is much smaller than that of three 1-SCCA methods. This means that the 
non-convex methods have better generalization performance as they are less likely to fall into overfitting issue. 
The result of this real imaging genetics data reveals that the proposed SCCA methods can extract more accurate 
and sparser canonical weights for both genetic and imaging biomarkers, and obtain higher correlation coefficients 
than those 1 -SCCA methods.

Conclusion
We have proposed a unified non-convex SCCA model and an efficient optimization algorithm using a family of 
non-convex penalty functions. These penalties are concave and piecewise continuous, and thus piecewise differ-
entiable. We approximate these non-convex penalties by an 2  function via the local quadratic approximation 
(LQA)38. Therefore, the proposed algorithm is effective and runs fast.

We compare the non-convex methods with three state-of-the-art 1-SCCA methods using both simulation 
data and real imaging genetics data. The simulation data have different ground truth structures. The results on the 
simulation data show that the non-convex SCCA methods identify cleaner and better canonical loadings than the 
three 1 -SCCA methods, i.e. L1-SCCA25, L1-S2CCA32, and L1-NSCCA29. These non-convex methods also recover 

L1-SCCA L1-S2CCA L1-NSCCA γ -norm Geman SCAD Laplace MCP ETP Log

Training 0.27 ± 0.01 0.29 ± 0.02 0.27 ± 0.01 0.28 ± 0.02 0.27 ± 0.02 0.29 ± 0.02 0.27 ± 0.02 0.28 ± 0.02 0.28 ± 0.02 0.33 ± 0.03

Testing 0.18 ± 0.04 0.25 ± 0.10 0.22 ± 0.07 0.26 ± 0.09 0.26 ± 0.10 0.27 ± 0.09 0.26 ± 0.10 0.26 ± 0.09 0.26 ± 0.09 0.27 ± 0.11

Training-Testing Gap 0.09 0.04 0.05 0.02 0.01 0.02 0.01 0.02 0.02 0.06

Table 6.  Performance comparison on real data set. Training and testing correlation coefficients (mean ± std) of 
5-fold cross-validation are shown. The best value is shown in boldface.
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higher correlation coefficients than 1 -SCCA methods, demonstrating that 1 -SCCA methods have suboptimal 
prediction capability as they may over penalize large coefficients. The results on the real data show that the pro-
posed methods discover a pair of meaningful genetic and brain imaging biomarkers, while the 1 -SCCA methods 
return too many irrelevant signals. The correlation coefficients show that the non-convex SCCA methods hold 
better testing values. This verifies our motivation that the non-convex penalty can improve the prediction ability, 
and thus has better generalization capability. Obviously, the parameter γ plays a key role in these non-convex 
penalties. In the future work, we will investigate how to choose a reasonable γ; and explore how to incorporate 
structure information into the model as structure information extraction is an important task for brain imaging 
genetics as well as biology studies.
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