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Abstract 

Background: Infertility has become a global health issue with the number of couples seeking in vitro fertilization 
(IVF) worldwide continuing to rise. Some couples remain childless after several IVF cycles. Women undergoing IVF face 
greater risks and financial burden. A prediction model to predict the live birth chance prior to the first IVF treatment is 
needed in clinical practice for patients counselling and shaping expectations.

Methods: Clinical data of 7188 women who underwent their first IVF treatment at the Reproductive Medical Center 
of Shengjing Hospital of China Medical University during 2014–2018 were retrospectively collected. Machine-learning 
based models were developed on 70% of the dataset using pre-treatment variables, and prediction performances 
were evaluated on the remaining 30% using receiver operating characteristic (ROC) analysis and calibration plot. 
Nested cross-validation was used to make an unbiased estimate of the generalization performance of the machine 
learning algorithms.

Results: The XGBoost model achieved an area under the ROC curve of 0.73 on the validation dataset and showed 
the best calibration compared with other machine learning algorithms. Nested cross-validation resulted in an average 
accuracy score of 0.70 ± 0.003 for the XGBoost model.

Conclusions: A prediction model based on XGBoost was developed using age, AMH, BMI, duration of infertility, 
previous live birth, previous miscarriage, previous abortion and type of infertility as predictors. This study might be a 
promising step to provide personalized estimates of the cumulative live birth chance of the first complete IVF cycle 
before treatment.

Keywords: Prediction model, Cumulative live birth, IVF/ICSI, Machine learning

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Infertility is a disease characterized by the failure to 
establish a clinical pregnancy after 12 months of regular, 
unprotected sexual intercourse [1]. Of reproductive-aged 
couples worldwide, 8–12% are struggling with it accord-
ing to estimates [2]. Infertility is not only a health prob-
lem but also a psycho-social and public health issue. The 
demand for in vitro fertilization (IVF) is increasing, with 

over 8 million babies born through IVF or other assisted 
reproductive technology treatments since the world’s first 
in 1978 [3]. This does not guarantee success, with some 
couples remaining childless after several IVF cycles. 
Women undergoing IVF face greater risks of maternal 
and neonatal complications. e.g. ovarian hyperstimula-
tion syndrome (OHSS), thrombus-embolism, infection, 
and abdominal bleeding [4]. Moderate-to-severe OHSS, 
which is potentially life-threatening, occurs in approxi-
mately 3–8% of cycles [5]. Furthermore, IVF itself is 
costly and few governments subsidize assisted repro-
ductive technology (ART) cycles within their national 
health insurance schemes. In most countries, the cost of 
a single cycle is more than half of an average individual’s 
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annual income. Many infertile couples incur catastrophic 
expenditure in order to pay for the high-cost of IVF treat-
ment [6]. Consequently, an evidence-based tool of the 
probability of a successful live birth before an IVF treat-
ment to assist with patient counseling is needed in clini-
cal practice.

Numerous attempts have been made to estimate the 
live birth chance for women undergoing IVF treatment. 
However, the existing pre-treatment prediction mod-
els do not perform as well as expected and the value of 
the c-statistic used as a measure of discrimination is low. 
In addition, previous live birth prediction models have 
focused on fresh-embryo transfer instead of giving suf-
ficient consideration to frozen-embryo transfer [7]. The 
newest and most accepted pre-treatment model is the 
McLernon model, which provides an individualized esti-
mate cumulative chance of a live birth over a complete 
IVF cycle both before treatment and after the first fresh-
embryo transfer [8, 9]. A complete IVF cycle refers to the 
fresh cycle and all the following freeze–thaw cycles from 
one round of ovarian stimulation. The model was built 
using data from the Human Fertilization and Embryology 
Authority database in the UK, which is the longest run-
ning database of its kind in the world and has recorded 
data since 1991. However, some crucial baseline fac-
tors which might be predictive factors for live birth are 
not included in the database. Due to this limitation, the 
McLernon model did not take factors such as body mass 
index (BMI) and anti-Müllerian hormone (AMH) into 
account. There has been extensive research regarding 
BMI and AMH for live birth prediction. A meta-analysis 
clearly demonstrates that female obesity negatively and 
significantly impacts live birth rates following IVF [10]. 
A systematic review confirmed that AMH is an indirect 
estimate of ovarian reserve has some value in predicting 
live birth and may be a predictor of live birth in women 
undergoing assisted conception [11]. Furthermore, in 
the past 40  years, ART has developed greatly from tra-
ditional IVF to intracytoplasmic sperm injection (ICSI) 
and preimplantation genetic screening (PGS)/preimplan-
tation genetic diagnosis (PGD). There is no doubt that 
many future innovations will be made in the ART field. 
It is therefore important for all existing models to be 
updated regularly, which is a difficult and time-consum-
ing process.

Machine learning is the science focusing on how com-
puters learn from data without being explicitly pro-
grammed [12]. There is no universally accepted and clear 
definition of machine learning. Machine learning based 
algorithms are often categorized as supervised and unsu-
pervised. Supervised machine learning is a process in 
which the model is trained with fully labeled and clas-
sified data. In contrast, unsupervised machine learning 

leaves the algorithms to discover on their own the under-
lying structure within unlabeled data. The machine 
learning based algorithms with strong data processing 
ability have become a promising methodology for clinical 
decision making and medicine study, including clinical 
prediction, radiology, surgery, drug discovery and phar-
macokinetic prediction [13–15]. In the field of reproduc-
tion science, machine learning has been applied in areas 
including embryo scoring and prediction of implantation 
rate after blastocyte transfer [16, 17]. Compared with 
traditional statistical analysis methods relying on a pre-
determined equation as a model, machine learning can 
take full account of the interactions among variations and 
incorporate new data to update algorithms [18]. Hence, 
using a machine learning algorithm might improve the 
prediction performance of a pre-treatment model and 
make it easy to update. To date, no study has applied 
machine learning to live birth prediction before an IVF 
treatment.

The main objective of this study is to develop and 
assess a machine learning based clinical prediction model 
for estimating the cumulative live birth chance of the first 
complete IVF cycle using pre-treatment variables includ-
ing BMI and AMH.

Methods
Data acquisition
Women undergoing IVF (including ICSI) at the Repro-
ductive Medical Center of Shengjing Hospital, China 
from January 2014 to December 2018 were retrospec-
tively reviewed. For a woman, the first fresh cycle and 
all following freeze–thaw cycles from the same ovarian 
stimulation were considered. Exclusion criteria included 
previous IVF/ICSI attempts, using frozen gametes, donor 
oocyte/sperm cycles and PGD/PGS cycles. Clinical data 
and patients’ baseline information were extracted from 
the patient database used in the fertility center. All data 
were de-identified and used with unique patient identi-
fier codes. The primary outcome was ongoing pregnancy 
leading to at least one live birth according to the World 
Health Organization.

Derivation and validation of models
Four supervised machine learning algorithms were 
respectively considered to build the predictive mod-
els: logistic regression, random forest, extreme gradi-
ent boosting (XGBoost) and support vector machine 
(SVM). All algorithms can deal with classification 
problems. Logistic regression is a common supervised 
classification algorithm with a nice probabilistic inter-
pretation. The SVM is good at high dimension data, 
making it popular for many machine learning practi-
tioners. Compared with logistic regression and SVM, 
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XGBoost and random forest are both ensemble tech-
niques that produce a prediction model by constructing 
a set of weaker learners, typically decision trees, and 
predict by combining the outcomes of each individual 
tree. The biggest difference lies in the way the trees are 
built. The random forest trains each tree independently 
by random sampling from the data. The XGBoost builds 
trees sequentially with each new tree trying to correct 
for the errors in the previous tree.

Getting pregnant is a complex process. Having a live 
birth after IVF treatment is influenced by a range of fac-
tors. In this study, the original dataset included more 
than 100 variables. Not all variables had a significant pre-
diction effect on live birth and the candidate predictors 
should be clearly defined, standardized, and reproduc-
ible. Therefore, feature selection was performed based 
on subject knowledge, on pathophysiological mecha-
nisms, or the results of previous studies and guidelines. 
We encoded categorical features using a one-hot encod-
ing scheme. After data processing, 70% of the dataset 
was randomly selected as a training set for prediction 
model establishment, and the remaining 30% was used 
for validation. A stratified random sampling method was 
employed to ensure that the proportions of live birth and 
no live-birth cases were the same in both the training and 
validation sets as in the original dataset. Grid-search with 
k-fold cross-validation (k = 5) was used to find the opti-
mal hyperparameters of the four classification classifiers 
mentioned above. The training set was subdivided into 
k folds. Each time, k − 1 folds were used for training and 
the remaining one was for validation. For each algorithm, 
models with different hyperparameters were scored by 
their mean accuracy. We chose the hyperparameter set 
that maximized the mean accuracy and fitted the model 
with the whole training dataset respectively. To evalu-
ate the performance of each machine learning classifier, 
we assessed discrimination and calibration, which are 
widely used in prediction model validation. The receiver 
operating characteristic (ROC) curve and the calibration 
plot of the four chosen models for the validation set were 
adopted as a measure of discrimination and calibration.

In order to obtain an unbiased estimate of the gener-
alization performance of these four classifiers to new 
patients, we also used repeated nested cross-validation to 
avoid sampling bias and data overfitting [19]. There are 
two cross-validation cycles in nested cross-validation. 
The outer K1 fold cross-validation where the dataset was 
split into the training validation set and the test set was to 
estimate the generalization performance of the learning 
pipeline. The inner K2 fold cross-validation was to tune 
hyperparameters and train models independently on the 
training validation set. In this study, we set K1 = K2 = 5 
and repeated it 11 times.

Statistical analysis and machine learning platform
Patients’ characteristics were described as counts and 
percentages or as means and standard deviations for cat-
egorical and continuous variables, respectively. Differ-
ences in the distribution of variables between live birth 
and no live-birth patients were assessed by Chi square 
test for categorical variables and by Student’s t test for 
continuous variables. All statistical analysis was con-
ducted using SPSS version 22. Machine learning algo-
rithms and plotting were performed with Python version 
2.7. Python Sklearn and XGBoost packages were used.

Results
Basic characters
Electronic medical records from 9256 women were col-
lected and reviewed in strict accordance with the set cri-
teria. We excluded women with no pregnancy outcomes 
follow-up (n = 1732) and incomplete cases with missing 
data in any study feature (n = 336). Finally, a total of 7188 
women’s first complete IVF/ICSI cycles were included in 
this study. There were 2797 (39%) women confirmed with 
live birth. Table 1 summarizes the baseline characters of 
the study population. Mean age at the time of IVF treat-
ment was 32.66 years. The average duration of infertility 
was 4.2 years. Mean AMH and BMI were 4.05 ng/ml and 
23.32  kg/m2, respectively. There were significant differ-
ences between the groups of patients who did and did not 
achieve a live birth.

Feature selection
The initial dataset included 108 variables (Additional 
file 1). Predictors were selected mainly according to pre-
vious studies and NICE clinical guidelines (The National 
Institute for Health and Care Excellence, UK). NICE 
clinical guidelines recommend female age, number of 
previous IVF treatment, previous pregnancy history, BMI 
and lifestyle factors can be used to predict IVF success. 
Moreover, the guidelines also demonstrate the important 
values of number of embryos transferred, ovarian reserve 
(AMH, AFC, FSH, etc.), duration of infertility, cause of 
infertility, number of oocytes retrieved and number of 
embryos available on prediction of IVF success [20]. Age 
and BMI are associated with lower pregnancy chances 
of IVF due to decreased both quality and quantity of 
oocytes. AMH is an indirect estimate of ovarian reserve. 
Studies show pregnancy rates were lower in couples with 
a longer duration of subfertility both in IVF and natural 
conception, even after adjustment for age [21]. Personal 
pregnancy history and type of infertility can indirectly 
reflect many complex factors of pregnancy including 
semen quality and endometrium receptivity, etc. As our 
model is for pretreatment counseling, we could only 
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use the clinical data that obtained before starting an 
IVF procedure. Taken together, we selected age, AMH, 
BMI, duration of infertility, previous live birth, previous 
miscarriage, previous abortion and type of infertility as 
predictors. Type of infertility was classified into tubal, 
anovulatory, male factor, unexplained and others (e.g. 
endometriosis, fibroids).

Model selection
We used grid-search combined with five-fold cross-val-
idation to optimize the best model parameters. Figure 1 

illustrates the ROC and calibration analysis of four clas-
sifiers with optimal hyperparameters on the training 
dataset using five-fold cross-validation. The results for 
the area under the ROC curve (AUC) and calibration are 
shown by the average of these values over five different 
folds.

Model performance
The ROC curves of four selected models for the vali-
dation dataset are shown in Fig.  2a. The four models 
showed small differences, but XGBoost and random 

Table 1 Descriptive statistics of the study population

Characteristics Total
N = 7188
Mean ± SD/N (%)

Live birth
N = 2797
Mean ± SD/N (%)

No live birth
N = 4391
Mean ± SD/(%)

P-value

Age (years) 32.66 ± 4.96 30.63 ± 3.59 33.96 ± 5.26 < 0.001

AMH (ng/ml) 4.05 ± 3.61 5.25 ± 4.03 3.29 ± 3.10 < 0.001

Duration of infertility 4.2 ± 3.19 3.80 ± 2.64 4.45 ± 3.47 < 0.001

BMI (kg/m2) 23.32 ± 3.76 23.14 ± 3.63 23.44 ± 3.83 0.001

Previous live birth 647 (9.0) 131 (4.7) 516 (11.9) < 0.001

Previous miscarriage 1544 (21.5) 464 (16.6) 1080 (24.6) < 0.001

Previous abortion 998 (13.9) 356 (12.7) 642 (14.6) 0.024

Type of infertility

 Tubal 3824 (53.2) 1546 (55.3) 2278 (51.9) 0.005

 Anovulatory 1785 (24.8) 521 (18.6) 1264 (28.8) < 0.001

 Male factor 2960 (41.2) 1271 (45.4) 1689 (38.5) < 0.001

 Others 353 (4.9) 131 (4.7) 222 (5.1) 0.476

 Unexplained 202 (2.8) 57 (2.0) 145 (3.3) 0.002

Fig. 1 Cross-validated model performance of four machine learning algorithms on the training dataset. a Receiver operating characteristic 
curve plot. b Calibration plot. AUC indicates area under the curve. Shaded areas depict the standard deviation across different folds in a five-fold 
cross-validation
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forest had slightly higher AUC of 0.73. Calibration of the 
four models in 10 bins is shown in Fig. 2b. The XGBoost 
exhibited the best calibration among all models, although 
it tended to underestimate the probability for high-prob-
ability patients. In conclusion, XGBoost provided the 
most accurate and robust prediction on the cumulative 
live birth chance for the first complete IVF cycles.

Nested cross-validation was performed for the whole 
dataset. A nested cross-validation procedure always pro-
vides an unbiased estimate error which is very close to 
that obtained on the new data in practical application. 
Figure 3 shows the accuracy scores of each trial. Consist-
ent with the aforementioned result, XGBoost provided 

the best performance, with an average accuracy score of 
0.70, compared to 0.69, 0.68 and 0.68 for random forest, 
SVM and logistic regression, respectively.

Discussion
In this study, we developed four machine learning mod-
els to predict the live birth probability for the first com-
plete IVF attempt using pre-treatment patient variables. 
The XGBoost model achieved the best performance for 
discrimination and calibration. For example, using the 
XGBoost prediction model, an example is a 29-year-old 
woman with AMH of 8.03 ng/ml and BMI of 21.97 who 
had suffered from infertility caused by the male factor for 

Fig. 2 Final model performances of four machine learning algorithms on the validation dataset. a Receiver operating characteristic curve plot. b 
Calibration plot. AUC indicates area under the curve

Fig. 3 Nested cross-validation. Nested cross-validation outcomes for 11 times
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2 years. She had an abortion once before marriage. Now 
she has a 65% probability of achieving a live birth after 
the first complete cycle of IVF (Fig.  4). A web tool was 
developed for practice (https ://lbpre dicti on.herok uapp.
com), which made it easily accessible for both patients 
and clinicians.

Study strengths and limitations
Machine learning algorithms have been successfully 
used in many complex scenarios. Unique advantages of 
machine learning include flexibility and scalability, which 
make it suitable for many tasks, such as risk stratifica-
tion, diagnosis and classification, and survival predictions 
[22]. XGBoost is a newly developed algorithm following 
the principle of gradient boosting, but with higher calcu-
lating speed and accuracy [23]. Many clinical prediction 
models have been established using XGBoost, in which 
XGBoost performed significantly better than traditional 
statistical approaches [24–26]. To our knowledge, that 
is the first published pre-treatment live birth prediction 
model based on a machine learning algorithm for women 
preparing to accept an IVF treatment. It represents a 
good attempt at combining a machine learning algorithm 
with reproduction big data. In this study, the XGBoost 
model achieved AUC = 0.73 for the validation dataset. 
Although this was not an ideal score, to date, no exist-
ing model has achieved a higher score. In addition, our 
model accounted for BMI and AMH. As the univariate 
analysis result showed, BMI and AMH were significantly 
associated with live birth. A recent external validation 
study of McLernon models suggested that the addition 
of AMH and body weight to McLernon models could 
improve the c-statistic [27]. Furthermore, on the basis of 
a self-updating ability of machine learning, we can easily 
update the XGBoost model by continuously providing it 
with the newest data.

Several limitations of this study deserve to be men-
tioned. First, the study was performed based on data 

derived from a single center. It is possible that the model 
might be suitable for the stratified population, which 
may limit the generalization of the model to other pop-
ulations. Fortunately, our study showed the ability of 
XGBoost for predicting live birth. We only need to fit the 
model with multicenter data or build more center-spe-
cific models using single center data. Second, our model 
can only be used for couples who have never accepted 
IVF treatment, which limits the application of the model. 
Third, we failed to account for family genetic history and 
lifestyle factors such as smoking status, alcohol and caf-
feine consumption due to the limitation of dataset.

Clinical implications
In clinical practice, when clinicians provide counseling 
on live birth chances for an IVF treatment, they rely 
on the mean success rate of the fertility center or their 
experience mainly by age, which is inaccurate. This study 
provides an online calculator that is adjusted for every 
patient’s easily measurable predictors to personalized 
estimates of the cumulative live birth chance of the first 
complete IVF cycle before treatment. The calculator will 
assist with patient counselling and help couples accept-
ing IVF treatment prepare emotionally, thus avoiding 
deep disappointment caused by high expectations. Cur-
rently, the tool is not advised to be used on decision 
making around whether or not should couples accept 
an IVF treatment. The model was established based on 
very limited predictors obtained before an IVF treat-
ment. Pregnancy is a dynamic and ongoing process. 
Given the complexity of a full term delivery we appreci-
ate successful live birth depends on more than the factors 
in this model alone. There are many other confounders 
that have an impact at different time points. For exam-
ple, factors such as number of oocytes retrieved, quality 
and number of embryos transferred, endometrial thick-
ness on embryo transferred day which are crucial factors 
during an IVF treatment, were not taken into account in 

Fig. 4 Live birth prediction tool (https ://lbpre dicti on.herok uapp.com)

https://lbprediction.herokuapp.com
https://lbprediction.herokuapp.com
https://lbprediction.herokuapp.com
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this study. Therefore, the model might give a false hope 
to couples who have a strong desire for a baby. It’s impor-
tant for clinicians and patients to be aware of the limita-
tions when using it.

Conclusions
In conclusion, we established a pre-treatment live birth 
prediction model for the first complete IVF cycle based 
on a machine learning algorithm, XGBoost. To further 
improve the performance of our XGBoost model, in 
subsequent research, we will continuously collect clini-
cal data for real-time updating of the model. More func-
tions will be added to the model, such as prediction of 
birth defects, preterm birth, low birth weight and other 
adverse pregnancy outcomes. A randomized controlled 
trial will be performed to evaluate whether the model 
improves satisfaction of couples accepting IVF treatment.
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