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Low back pain represents a significant social and economic
burden, including direct medical costs, lost production, and
disability benefits, and lowers the quality of life of many
individuals.1,2 Low back pain is strongly associated with the
intervertebral disk (IVD) degeneration, and IVD degeneration
is also associated with sciatica and disk herniation or pro-
lapse. It possibly adversely affects the behavior of other spinal
structures such as muscles and ligaments. In the long term it
can lead to spinal stenosis, amajor cause of pain and disability
in the elderly. Therefore, it follows that the suppression of IVD
degeneration may limit the pain and disability associated
with a range of pathologies of the back. Accordingly, clarifi-
cation of the pathophysiology of IVD degeneration and its
associated pain currently represents a major biomedical
research priority. Much research is going on to understand
IVD at a molecular level in hopes of creating clinically
applicable options for treating IVD degeneration. Despite
extensive study of the degenerative process in the IVD, the

exact mechanism of diskogenic low back pain (IVD-related
pain) has not been elucidated. In this review, we describe
recent studies on diskogenic low back pain that have shed
new light on the molecular mechanism and intracellular
signaling pathways involved.

Disk Morphology

The IVD lies between the vertebral bodies, separated from
them by the end plate and consisting of twomain regions: an
inner, soft and highly hydrated structure, the nucleus pulpo-
sus, and an outer, annulus fibrosus. Their major role is
mechanical functions, as they constantly transmit loads
arising from body weight and muscle activity through the
spinal column. In addition, the IVD is the largest avascular
tissue in the body, and the essential nutrients are supplied to
the disk virtually entirely by diffusion.3 Some groups have
reported that several intrinsic and extrinsic factors influence
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Abstract Many of the causes of low back pain are still unknown; sufficient evidence indicates that
both degenerative and mechanical change within the intervertebral disk (IVD) is a
relevant factor. This article reviews intracellular signaling pathways related to pain
receptors in the degenerated IVD. Several reports have demonstrated the number of
nerve fibers in the IVD was increased in degenerated disks. In recent years, some groups
have reported that an increase in nerve fibers is associated with the presence of
inflammatory mediators and/or neurotrophins in the IVD. Cell signaling events, which
are regulated by inflammatory mediators and neurotrophins, must be identified to
clarify the mechanism underlying low back pain. Major intracellular signaling pathways
(nuclear factor kappa β, mitogen-activated protein kinases, and Wnts) potentially play
vital roles in mediating the molecular events responsible for the initiation and
progression of IVD degeneration. These signaling pathways may represent therapeutic
targets for the treatment of IVD degeneration and its associated back pain.
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the cellular and molecular state of the IVD, including aging,
genetics, transport of nutrients, and the mechanical environ-
ment.4–7 This makes it difficult to distinguish the vital cell
type to target for therapeutic measures. Despite this com-
plexity, recent studies have shown that there are considerable
interspecies variations in the phenotypical characteristics of
the cells. Although phenotypical similarities and character-
istics exist between nucleus pulposus cells and articular
chondrocytes, distinct differences have been identified.8,9

Nucleus pulposus cells of the IVD, which had generally
been referred to as “chondrocyte-like” or “notochordal” cells,
have been profiled and characterized in detail. The cells of the
mature human nucleus pulposus are primarily chondrocyte-
like cells, but in young individuals and in adults of some
species, there is a second population of large cells with
cytoplasmic inclusions. These are the “notochordal cells.”
The notochordal cells express type IIA collagen, the differen-
tially spliced form of type II collagen typical of prechondro-
cytes, rather than the alternate type IIB collagen, which is

expressed by mature chondrocytes; they also express small
proteoglycans mRNAs such as versican and decorin, more
characteristic of fibroblast. These characteristics are of crucial
importance for the success of regenerative and repair strate-
gies, considering the structural and mechanical distinctions
between IVD and cartilage tissues.

Effect of Degenerative Changes on
Intervertebral Disk Cell Signaling

Major Intracellular Signaling Pathways
for IVD Degeneration
With increasing age and degeneration, the most significant
biochemical change to occur in IVD degeneration is loss of
proteoglycans. These proteoglycans enable the nucleus pul-
posus to retain water, thereby cushioning and absorbing the
considerable loads placed on the tissue. With increasing age
and degeneration, the nucleus pulposus eventually becomes
more fibrous tissue, and the peripheral anulus fibrosus is

Fig. 1 Proposed scheme of the degenerative changes on intervertebral disk cell. Abbreviations: AF, annulus fibrosus; EP, end plate; NP, nucleus
pulposus.
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forced to carry larger loads, leading to tears, bulging, rupture,
and herniation. In addition, loss of proteoglycans in degener-
ate disks influences the movement of molecules into and out
of the IVD. Specifically, loss of aggrecan and type II collagen
would allow increased penetration of largemolecules such as
growth factor complexes and cytokines into the IVD, affecting
cellular behavior and possibly the progression of degenera-
tion (►Fig. 1). Therapeutic strategies for the biological treat-
ment of IVD degeneration include the use of cellular
components (mesenchymal stem cells, chondrocytes, and
culture-expanded nucleus pulposus cells), matrix derivatives,
molecules influencing disk-cell metabolism, and tissue-engi-
neering strategies to restore function to the IVD
degeneration.10–14

Focusing on molecular therapy, some groups have re-
ported that the biochemistry of IVD degeneration is com-
monly attributed to the dual effects of increased catabolic
factors, such as matrix metalloproteinases (MMPs) and inter-
leukin (IL)-1, and decreased anabolic factors such as trans-
forming growth factors (TGFs) and bone morphogenetic
proteins (BMPs). The balance between synthesis and break-
down ofmatrixmacromolecules by the intracellular signaling
pathways determines the quality and integrity of the matrix,
and thus the mechanical behavior of the IVD.15–18 Under this
paradigm, it follows that various cytokines and neurotrophic
factors are secreted from the cells of the nucleus pulposus and
annulus fibrosus, and these factors activate the nerve termi-
ni.19 Therefore, the gene expression and function of potential
molecular mediators in IVD degeneration have been a major
topic of research interest (►Table 1).20–40 This review de-
scribes each major intracellular signaling that potentially
plays vital roles in mediating the molecular events responsi-
ble for the initiation and progression of IVD degeneration. In a
recent review,Wuertz et al suggested that major intracellular
signaling factors, such as nuclear factor kappa β (NF-κβ) and
mitogen-activated protein kinases (MAPKs) play vital roles in
mediating the molecular events responsible for the initiation
and progression of IVD degeneration.41 Indeed many genes,
including several proinflammatory mediators, are regulated
by NF-κβ in the IVD.42,43 For example, Wang et al demon-
strated that the expression of ADAMTS4 (A Disintegrin And
Metalloproteinase with Thrombospondin Motifs) and
ADAMTS5, the two major aggrecanases, is controlled by NF-
κβ-dependent mechanisms.44 Furthermore, stimulation by
exogenous and endogenous proinflammatory mediators,
such as IL-1 or tumor necrosis factor-α (TNF-α), can activate
NF-κβ, in the cells of the IVD.45–47

MAPK signaling research in the IVD has shown that the
p38 and extracellular signal-regulated kinase (ERK) signaling
pathways play a significant role in extracellular metabolism,
because treatment with targeted kinase inhibitors signifi-
cantly counteracted cytokine-induced changes in proteogly-
can content, synthesis, and release.20,48 In addition, several
signaling intermediates and factors of the MAPK pathway
have been identified in IVD cells.49,50 Some groups have
reported that TGF, nerve growth factor (NGF), platelet-de-
rived growth factor, insulin-like growth factor-I, and basic
fibroblast growth factor, all known to be overexpressed in

Table 1 Reports of signaling pathways in IVD cells

Signaling pathway Reference

Nuclear factor kappa β Wang et al 201244

Fujita et al 201225

Oh et al 201047

Yu et al 200946

Ohba et al 200945

Wako et al 200842

Hoylland et al 200843

Mitogen-activated
protein kinase

Kim et al 201255

Pratsinis et al 201231

Hiyama et al 201179

Xia et al 201156

Mavrogonatou and Kletsas 201032

Studer et al 200820

Uchiyama et al 200753

Tsai et al 200740

Pratsinis and Kletsas 200751

Séguin et al 200648

Risbud et al 2005, 200649,50

Protein kinase B Pratsinis et al 201231

Mavrogonatou and Kletsas 201032

Cheng et al 200933

Risbud et al 200549

Nerve growth factor Gruber et al 201234

Lee et al 201135

Richardson et al 200936

Yamauchi et al 200937

Abe et al 200793

Freemont et al 200292

Wnt Smolder et al 201280

Wang et al 201282

Ye et al 201129

Kondo et al 201130

Hiyama et al 2010, 201178,79

Fibroblast growth factor Li et al 200859

Tsai et al 200752

Peng et al 200660

Nagano et al 199558

Protein kinase C Arai et al 201227

Ellman et al 201228

Hypoxia-inducible factor Gogate et al 201222

Fujita et al 201223

Risbud et al 200624

Notch Hiyama et al 201126

Shh Dahia et al 201238

Choi and Harfe 201139
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degenerated disk tissue, can stimulate p38/ERK signaling in
IVD of various species.51–53 Furthermore MMPs, inducible
nitric oxide synthase, tissue inhibitor of metalloproteinases,
aggrecan, type II collagen, Sox-9, acid-sensing ion channel,
and tonicity-responsive enhancer-binding protein have all
been identified as target genes of ERK in IVD cells.38,47,54–56

In addition, fibroblast growth factor-2 (FGF-2) has been
identified as an anabolic mediator of disk homeostasis, an
effect that may result from FGF-2-mediated stimulation of
proteoglycan synthesis, such as seen in a canine IVD tissue
culture system, or upregulation of cell proliferation such as
seen in rat disks.57,58 In contrast, the findings of Li et al and
Peng et al suggest that FGF-2 primarily has a catabolic role in
disk homeostasis.59,60 Based on these apparently conflicting
findings, it seems likely that FGF-2 plays multiple roles in
disk homeostasis, and also that this may change depending
on the stage of degeneration and the nature of the disease
process.

Against the background of these intracellular signaling
pathways, cell or growth factor therapies have recently been
suggested to induce IVD repair in these signals and/or factors
as target. However, one problem with the use of growth
factors and/or cytokines in clinical trials is their high cost and
safety. For these concern, Mwale et al have reported that Link
N (DHLSDNYTLDHDRAIH) can stimulate the synthesis of
aggrecan and collagen in the bovine IVD cells in vitro,61,62

as well as in the IVDs of rabbits in vivo.63 The changes in
proteoglycan synthesis with Link N are similar to those
reported previously with the same concentration of osteo-
genic protein-1 (OP-1). Link N agent can be treated with the
low cost than OP-1 for the IVD degeneration. Link N therefore
represents a potential economical therapeutic agent with
beneficial effects. Their group has reported that Link N is
also able to downregulate MMP expression in the degenerate
IVDs, enhance the chondrogenic differentiation, and down-
regulate hypertrophic and osteogenic differentiation of
human MSCs.64

Roll of Wnt Signaling in IVD Cells
In recent years, it has been also reported that Wnt signaling
may play a crucial role of the cellular responses that lead to
IVD inflammation and catabolism, much as they are involved
in bone and cartilage metabolism. Wnts are secretory pro-
teins of �40 kDa that control multiple aspects of develop-
ment, including the proliferation, fate specification, polarity,
and migration of cells.65,66 In addition, Chou et al reported
that Wnt-1 and Wnt-3a both inhibit NGF-induced neurite
outgrowth from PC12 cells.67 These results showed that
sensory nerve receptors and neurotrophic markers cooperate
withWnt signals in regulatingmany biological processes, but
the mechanisms of their interaction remain poorly defined in
the IVD.

Wnt signaling can occur via the canonical Wnt/β-catenin-
dependent pathway (hereafter called Wnt) or the noncanon-
ical β-catenin-independent pathway, which itself can be
divided into the planar cell polarity pathway and the Wnt/
Ca2þ pathway.68 Among these, the canonical pathway is the
most well characterized. Wnt proteins are glycoproteins that

bind to the N-terminal extracellular cysteine-rich domain of
the Frizzled (Fz) receptor family, of which there are 10
variants in humans. Fz is a seven-transmembrane-span pro-
tein with topological homology to G-protein-coupled recep-
tors. In addition to the interaction between Wnt and Fz, co-
receptors are also required for mediating the Wnt signaling.
For example, the low-density-lipoprotein-related protein 6 is
required tomediateWnt signaling via the canonical pathway.
On activation of this pathway, the cytoplasmic β-catenin is
translocated to the nucleus, where it promotes binding of the
transcription factor, T-cell factor/lymphocyte-enhancing fac-
tor, thereby accelerating the expression of target genes.69–71

It is well known thatWnt signaling plays a major role in bone
metabolism. It has been shown that although the Wnt
signaling suppresses differentiation of mesenchymal stem
cells into chondrocytes and adipocytes, it accelerates their
differentiation into osteoblasts and osteocytes. Following
activation of the Wnt signaling, osteoprotegerin, which is a
decoy for the receptor activator of NF-κβ ligand, is generated
from osteoblasts, and ossification is accelerated as a result of
inhibiting the activation of osteoclasts. Moreover, cross talk
between Wnt signaling and other pathways that regulate
ossification, such as the BMP pathway, is also known.72,73 In
cartilage metabolism, it has been suggested that β-catenin is
involved in the modulation of both anabolic and catabolic
activities, suggesting that Wnt signaling also modulates
inflammatory cytokine expression.74–76 Furthermore, it
also appears that the activation of Wnt signaling may cause
cellular senescence and thereby contribute to the process of
IVD degeneration.77

Hiyama et al reported that rat nucleus pulposus cells
undergo aging when treated with LiCl, consistent with the
fact that LiCl is an activator of Wnt signaling that sup-
presses cell proliferation.78 Moreover, it has been reported
that the activation of Wnt signaling in the IVD induces
other pathways, including the TGF/BMP pathway, and that
it is the cross talk between these pathways that ultimately
controls the turnover of the extracellular matrix.79 More-
over, Smolders et al have reported that the activation of
Wnt signaling occurs primarily in the notochordal cells
during the initial stage of IVD degeneration.80 Similarly,
Ukita et al have shown that Wnt signaling in the notochord
progenitor cells (NPCs) is essential for posterior extension
of the notochord in Not-Cre; β-cateninflox/flox embryos. In
addition, they demonstrated both the expression of noto-
chord-specific genes and the size of the notochord decline
in the absence of Wnt signaling, and this is probably
because Wnt signaling is essential for stabilization of the
NPC phenotype.81 Wang et al also investigated the gene
expression of catabolic factors with β-catenin conditional
(cAct) mice and found that the expression of both MMP13
and ADAMTS-5 was increased in the IVDs of β-catenin
knockouts, consistent with the observed IVD degeneration.
Moreover, they found that IVD degeneration was sup-
pressed when an inhibitor of MMP13 was administered
to β-catenin cAct mice. From these results, it was concluded
that β-catenin is a key factor responsible for the mainte-
nance of the IVD tissue structure.82
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To date, although there are a lot of studies of the
intracellular signaling pathways in IVD, we should keep
in mind that the final effect of the activation of signaling
depends on their “signaling cross talk”with other activated
signaling pathways. Therefore, it is necessary to investigate
the importance of elucidating the cellular mechanisms
of IVD degeneration and to build map of intracellular
signaling pathways in IVD.

Pain and Innervations for the IVD
The normal IVD is considered to be a poorly innervated organ
that is supplied only by sensory and sympathetic perivascular
nerve fibers. Furthermore, there is widespread agreement
that an important priority is to identify factors sensitizing the
sensory nerves of the degenerated IVD. Regarding the neu-
ropathology of IVDs studied in Japan, the analysis performed
on surgical samples in 1970 by Shinohara was the first to
describe a novel nerve terminal in the process of invading the
annulusfibrosus.83 Subsequently, Yoshizawa et al and Bogduk
et al searched for nerve cells inside degenerated IVDs and
reported their presence in the outer layers of the annulus
fibrosus.84,85 Moreover, Freemont et al examined nerve
growth in degenerate IVDs associated with chronic low
back pain.86 They collected 46 IVDs from 38 patients during
spinal fusion and used standard immunohistochemical tech-
niques to describe the abundance and location of a general
nerve marker, a nociceptive neurotransmitter (substance-P),
and a protein expressed during axonogenesis (growth-asso-
ciated protein 43 [GAP43]). They reported that although
nervefiberswere not present in the inner layer of the annulus
fibrosus (or the nucleus pulposus) of normal human IVDs,
theywere present in the inner layer of the annulus fibrosus of
degenerate IVDs.86 Subsequently, Roberts et al reported the
presence of mechanoreceptors in the IVD and anterior longi-
tudinal ligament.87 Burke et al have compared the levels of L-
6, IL-8, and prostaglandin E2 in disk tissue from patients
undergoing diskectomy for sciatica (n ¼ 63) with that from
patients undergoing fusion for diskogenic low back pain
(n ¼ 20). They suggested that the presence of inflammatory
mediators IL-6 and IL-8 in the IVDmight be involved in axonal
ingrowth.88 LeMaitre et al demonstrated that herniated disks
and degenerated disks from patients with chronic back pain
showed a higher expression of IL-1β and TNF-α than non-
degenerated disks derived from normal postmortem tissue.89

Weiler et al also demonstrated that surgical disk tissue from
symptomatic back pain patients contained more TNF-α-posi-
tive cells than asymptomatic autopsy samples, with a positive
correlation to the degree of IVD degeneration.90 These find-
ings suggest that inflammation promotes the growth of
afferent fibers in the disk and that this growth might be the
cause of low back pain. To elucidate the cause of diskogenic
low back pain, we also think that these points are very
important.

Furthermore, the predominant nerve cells of the IVD have
been characterized in recent years using activating transcrip-
tion factor 3 (ATF3) as amarker of nerve injuries and GAP43 as
a marker of axonal growth. In one study, Inoue et al charac-
terized nerve cells in a rat model of IVD disease by creating a

punch hole connecting the outside of the annulus fibrosus
and the nucleus pulposus. They concluded that the procedure
induced nerve injury and resulted in nerve ingrowth into the
disks.91 A role for NGF in the ingrowth was indicated by
subsequent studies showing enhanced levels in degenerated
IVDs. Indeed, the study of neural and neurotrophic markers
has been a very active area of IVD research in recent
years.92–96 For example, neurotrophins have been shown to
enhance the survival and differentiation of discrete popula-
tions of peripheral nerve neurons. The neurotrophins NGF
and brain-derived neurotrophic factor (BDNF), which are
associated with stimulation of axonal outgrowth and noci-
ception by neuronal cells, are both expressed by nucleus
pulposus cells, with BDNF levels increasing with disease
severity.

Meanwhile, the pain transmitters in the sensory nerves
dominating the IVDs have also been characterized, and it has
been shown that neuropeptides such as substance-P and
calcitonin gene-related peptide are expressed in the outer
layer of the annulus fibrosus.97 In addition, sensory nerve
receptors such as NGF receptors, tyrosine kinase A, p75
neurotrophin receptor, and transient receptor potential V1
are present in IVDs.98 Moreover, degenerative conditions
have been shown to induce the expression of receptor ligands
and could modify the perception of pain.

Regarding modulation of the afferent pathway of IVD-
related low back pain, it is generally accepted that nerve
excitation is enhanced by inflammation of the nerves and by
mechanical stress. In terms of the specific afferent pathways
involved, in 1993 Takahashi et al reported that the L5–6 IVD
in the rat is innervated bilaterally from the L1 and L2 dorsal
root ganglia through the paravertebral sympathetic trunk.99

The authors found that injection of capsaicin, a C-fiber
stimulator, into the anterior portion of a lumbar IVD of rats
pretreated intravenously with Evans blue caused dye extrav-
asation of the pigment in the groin skin. Evans Blue is an azo
dye which has a very high affinity for serum albumin. Vascu-
lar permeability was assessed by measuring Evans blue dye
extravasation. These results suggested the presence of dichot-
omizing sensory C-fibers, which innervate both the IVDs and
the groin skin in the L2 spinal nerve.99 Subsequently, to
elucidate the afferent pathways of diskogenic low back pain
in humans, Nakamura et al hypothesized that low back pain
was transmitted mainly by sympathetic afferent fibers in the
L2 nerve root, and selective local anesthesia of this nerve was
employed in 33 patients. Low back pain disappeared or
decreased significantly in all patients after the injection.100

Furthermore, to investigate the innervation of annulus fibro-
sus in the posterior region of the IVD, Ohtori et al used a 21-
gauge needle with the tip filled with the nerve tracer, Fluoro-
Gold (FG) crystals.15,101 The tracer was injected along the axis
connecting a point 4 mm from the ventral surface of the disk
to themost dorsal region, and it was found that sensory fibers
from the upper dorsal root ganglions innervated the dorsal
portion of the disks via the paravertebral sympathetic trunks.
However, fibers from the lower dorsal root ganglions were
found to be innervated via the sinuvertebral nerves, showing
that the innervation of the dorsal portion of the disks was
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under the control of both the paravertebral sympathetic
trunks and the sinuvertebral nerves.15,101 Moreover, Kuro-
kawa et al employed double fluorescent labeling using two
types of neurotracers, 1,1-dioctadecyl-3,3,3,3- tetramethy-
lindocarbocyanine perchlorate and FG, in rat lumbar disks
and reported that one sensory nerve was innervating lumbar
disks at multiple levels.16

From these basic research results, it is believed that when
IVD degeneration occurs, such as inflammation within the
annulus fibrosus and/or herniation of the nucleus pulposus,
nerves with mainly C-fibers germinate from the annulus
fibrosus inward, thereby causing neurogenic inflammation
and leading to aggravation of pain.

Accordingly, clarifying the pathophysiologic mechanism
by which IVD degeneration occurs will be required for any
improvement in the current treatments for diskogenic low
back pain.

Summary

Low back pain is attributed to several medical disorders
including lumbar herniation, scoliosis, and muscle and liga-
ment damage, although most importantly, IVD degeneration
is associated with up to 40% of individuals under 30 years of
age.102

In recent years, attention has begun to focus on the cellular
and molecular mechanism and signaling of IVD in the search
for an understanding of the pathophysiology of low back pain
(►Fig. 2). In terms of molecular alterations, the balance
between matrix anabolism and catabolism that exists in
the nondegenerate IVD is shifted toward catabolism in de-
generation, due to the production of matrix-degrading en-
zymesMMPs and ADAMTSs byMAPKand/orNF-κβ pathways,
among others. The most significant molecular alteration is
thought to be the upregulated expression of inflammatory
cytokines and/or neurotrophins. In addition, it was demon-
strated recently that Wnt signaling is a key pathway to
regulate andmaintain the IVD homeostasis. However, degen-
eration of the IVD is an incredibly complex disorder; more-
over, many of the results implicating molecular signaling
were obtained with cells and tissues from rodent models.
Therefore, much research is needed to gain a better under-
standing of these signals and how their “cross talk”with other
pathways will be likely to influence the outcome of treat-
ments for IVD degeneration in vivo. Recent studies have
demonstrated the presence of cell niches and progenitor cells
in the IVD.103,104 Kim et al have reported that end plate
chondrocytes of the IVD, like articular chondrocytes, are
capable of migration and that soluble factors produced by
notochordal cells stimulate the migration.105 The identifica-
tion of progenitor cells within IVD indicates that natural
repair mechanisms exist within the IVD andmay be activated
for regeneration, although the signal mechanisms and func-
tion of these cells need to be elucidated. Sakai et al also
showed for the first time an experimental model of nucleus
pulposus differentiation induced from functional progenitor
cells in vivo. They suggested that Tie2 is a sensitive marker of
aging and degeneration of IVDs andwill be a usefulmarker for
the diagnosis of IVD degeneration.106 Future studies are
needed to examine whether progenitor cells can be used to
inhibit nerve ingrowth or nociceptor formation in degenerate
IVDs. Novel biological strategies will be more successful to
treat and prevent disk degeneration and finally contribute to
treatment of the low back pain if the specific disk cell
phenotypes, functions, and molecular signaling are taken
into consideration.
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