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Abstract: The development of yellow color is an important aspect of fruit quality in yellow fleshed
kiwifruit during fruit ripening, and it has a large influence on consumer preference. The yellow
color is determined by carotenoid accumulation and chlorophyll degradation and is likely affected
by ethylene production. This study investigates the expression of carotenoid, chlorophyll degra-
dation, and ethylene response factors in ‘Qihong’ fruit, which had reached the near ripening stage
(firmness ≈ 20 N) and were either left untreated (controls) or treated with 0.5 µL L−1 of 1-MCP
for 12 h. Both the accumulation of β-carotene (not lutein) and degradation of chlorophyll a and b
increased in response to the 1-MCP treatment, resulting in more yellow colored flesh in the 1-MCP
treated fruit with higher carotenoid and lower chlorophyll contents. 1-MCP up-regulated AcLCY-β,
AcSGR1, and AcPAO2, but reduced the expression of AcCCD1. These four genes were correlated with
the concentrations of β-carotene and the chlorophylls. The expression of three ethylene response
factors, including Acc29730, Acc25620, and Acc23763 were delayed and down-regulated in 1-MCP
treated fruit, showing the highest correlation with the expression of AcLCY-β, AcSGR1, AcPAO2, and
AcCCD1. Dual-Luciferase assays showed that 1-MCP treatment not only eliminated the inhibition of
Acc23763 on the promoters of both AcPAO2 and AcLCY-β, but also reduced the activation of Acc29730
and Acc25620 on the AcCCD1 promoter. Our findings indicate that Acc29730, Acc25620, and Acc23763
may play an important role in the response to 1-MCP treatment during the fruit eating ripe stage,
which likely altered the promoter activities of carotenoid and chlorophyll-related genes (AcPAO2,
AcLCY-β and AcCCD1) to regulate their transcripts, resulting in more yellow color in the fruit flesh of
‘Qihong’.

Keywords: kiwifruit; beta-carotene; chlorophyll degradation; 1-MCP; eating ripe stage

1. Introduction

Kiwifruit (Actinidia chinensis) is known as the ‘king of fruit’ because of its unique
flavor and exceptional nutritional value (e.g., vitamin C), and has become one of the
most recently developed and economically important fruit crops worldwide [1]. Yellow
fleshed kiwifruit has become more widely preferred by consumers due to its brilliant color
and rich carotenoids, compared with their green-fleshed cousins. Chlorophyll degrada-
tion and β-carotene accumulation are associated with changes in flesh color, and both
kinds of pigments are responsible for the development of yellow color in kiwifruit during
ripening [2–4].

Chlorophyll degradation is an important component of the de-greening process nec-
essary for marketability of most yellow climacteric fruit during ripening (e.g., citrus,
papaya, and banana) [5–8], and thus has become a special focus for an increasing number
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of researchers. It has been previously shown that ethylene is involved in chlorophyll
degradation in fruit. For example, exogenous ethylene treatment accelerates chlorophyll
degradation in mature green banana, citrus, and avocado fruit [9–11]. Treatment with the
ethylene antagonist 1-methylcyclopropene (1-MCP) leads to retention of the green color in
fruit by reducing chlorophyllase activity [6,12–14].

Ethylene also regulates carotenoid biosynthesis during fruit maturation. Hoeberichts
et al. reported that ethylene treatment stimulates the PSY transcript level in tomato fruit [15].
Marty et al. suggested that applying ethylene to mature green apricots postharvest increases
expression of the PSY and PDS genes, resulting in the accumulation of phytofluene and
phytoene [16]. In durian fruit, ethylene affected the carotenoid accumulation by regulating
the gene expression in the carotenoid pathway, including zeta-carotene desaturase (ZDS),
lycopene beta-cyclase (LCYB), chromoplast specific lycopene beta-cyclase (CYCB) and
beta-carotene hydroxylase (BCH) [17]. 1-MCP treatment inhibits carotenoid biosynthesis in
some fruit. However, this depends on the carotenoid compounds and whether the fruit can
be induced by endogenous ethylene during ripening [16,18,19]. Carotenoid accumulation
decreases in response to 1-MCP treatment of papaya fruit, compared to untreated control
fruit [20]. 1-MCP applied before ripening also reduces carotenoid synthesis by inhibiting
transcript levels of the PSY, ZDS, LCYB, and BCH genes in nectarines [21]. A slight
inhibition of carotenoid accumulation and PSY expression were detected in 1-MCP-treated
apricot [18].

Kiwifruit are classified as a climacteric fruit [22], and four distinct softening phases
were clearly described during postharvest ripening [23]. Fruit at phase 1 and phase 2 did
not produce endogenous ethylene but were highly sensitive to exogenous ethylene, and
many fruit quality characters (e.g., color, flavor, and taste) were affected by the application
of exogenous ethylene [18,24–28]. When fruit firmness decreased to about 20% of their
harvest value (phase 3), fruit was considered to be in the eating ripe stage for consumers.
At this stage, fruit started to produce autocatalytic ethylene, and about one week after,
fruit became over-ripe and senescence (phase 4). Richardson et al. suggested that the color
change of ‘Hort16A’ finished at stage 85, when the outer pericarp turned yellow with a
100◦ hue angle [29]. But in fact, the final hue value of ‘Hort16A’ is ~97◦ in fully ripened
fruit [30], indicating the flesh yellow color change may still occur at the phase 3 stage, and
it is also an important eating quality character for consumers. However, the changes in
carotenoids and chlorophylls and the transcript of related genes during this stage are not
fully clear.

In our previous study, we found the color indexes a* and b* of ‘Qihong’ (yellow
outer pericarp and red inner pericarp) were significantly changed during their eating ripe
window with firmness ≈ 20 N to 8 N [31]. It was noteworthy that, similar to the loss of
firmness, the color changes were obviously affected by 1-MCP treatment [31], which greatly
delayed and reduced the production of autocatalytic ethylene and resulted in the stronger
yellow color and lower hue angle (Figure 1A).
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Figure 1. The fruit physiology indicators and flesh color after 1-MCP treatment. (A) fruit firmness and ethylene produc-
tion; (B) SSC, TA, DM, and color of kiwifruit after 1-MCP treatment; (C) the phenotype of control fruit at D6 and 1-MCP 
treated fruit at D14; (D) h value during the eating ripe stage. Data are mean ± SE (n = 3). Values with different letters 
represent significant differences in the same group (1-MCP group or control group) during ripening (P < 0.05). Asterisk 
represents a significant difference between the control (CK) and 1-MCP treated fruit (* P< 0.05, ** P< 0.01 and *** P< 0.001). 
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in ‘Qihong’ during the eating-ripe stage. This includes the crucial changes in the concen-
trations of chlorophylls and carotenoids and the transcript profiles of genes related to pig-
ment metabolism and ethylene response factors (ERFs). The final aim of our study was to 
reveal the correlation between ethylene and yellow color changes in ‘Qihong’ fruit and to 
provide a theoretical basis for improving their eating quality. 

2. Materials and Methods 
2.1. Fruit Materials and Treatment 

Actinidia chinensis cv. ‘Qihong’ fruit sampled from a commercial orchard in Shannxi 
Province, China, in 2019 was used in this study. The harvested fruit (firmness 100.74 N, 
SSC 13.9%, DM 19.8%) was stored at room temperature (23 ± 1 °C) until they reached near 
eating firmness (20 N, 60 fruits were used to determine the eating firmness), uniform fruit 
without visible wound signals were selected for further treatment. About 600 fruit were 
divided into control (CK) and 1-MCP groups. The control group without any treatment 
was placed directly into a 90 L sealed container for 12 h at 23 °C. The second group was 
treated with 0.5 μL L−1 1-MCP (SmartFresh®, AgroFresh, Spring House, Philadelphia, PA,  
USA) in the same size sealed container for 12 h, 23 °C. Subsequently, the two groups of 
kiwifruit were transferred to a storage room at 23 °C [31]. At each sampling point, 27 fruit 
were collected from each group and divided into three replicates. The outer pericarp was 
immediately frozen in liquid nitrogen and stored at −80 °C pending analysis. 

2.2. Measurement of Physiological Indices 
About 1 mm thick and 1 cm2 peel at the two opposite cheeks of each fruit were re-
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Figure 1. The fruit physiology indicators and flesh color after 1-MCP treatment. (A) fruit firmness and ethylene production;
(B) SSC, TA, DM, and color of kiwifruit after 1-MCP treatment; (C) the phenotype of control fruit at D6 and 1-MCP treated
fruit at D14; (D) h value during the eating ripe stage. Data are mean ± SE (n = 3). Values with different letters represent
significant differences in the same group (1-MCP group or control group) during ripening (p < 0.05). Asterisk represents a
significant difference between the control (CK) and 1-MCP treated fruit (* p < 0.05, ** p < 0.01 and *** p < 0.001).

Therefore, this study investigates the effect of 1-MCP on the flesh yellow color change
in ‘Qihong’ during the eating-ripe stage. This includes the crucial changes in the concentra-
tions of chlorophylls and carotenoids and the transcript profiles of genes related to pigment
metabolism and ethylene response factors (ERFs). The final aim of our study was to reveal
the correlation between ethylene and yellow color changes in ‘Qihong’ fruit and to provide
a theoretical basis for improving their eating quality.

2. Materials and Methods
2.1. Fruit Materials and Treatment

Actinidia chinensis cv. ‘Qihong’ fruit sampled from a commercial orchard in Shannxi
Province, China, in 2019 was used in this study. The harvested fruit (firmness 100.74 N,
SSC 13.9%, DM 19.8%) was stored at room temperature (23 ± 1 ◦C) until they reached near
eating firmness (20 N, 60 fruits were used to determine the eating firmness), uniform fruit
without visible wound signals were selected for further treatment. About 600 fruit were
divided into control (CK) and 1-MCP groups. The control group without any treatment
was placed directly into a 90 L sealed container for 12 h at 23 ◦C. The second group was
treated with 0.5 µL L−1 1-MCP (SmartFresh®, AgroFresh, Spring House, Philadelphia, PA,
USA) in the same size sealed container for 12 h, 23 ◦C. Subsequently, the two groups of
kiwifruit were transferred to a storage room at 23 ◦C [31]. At each sampling point, 27 fruit
were collected from each group and divided into three replicates. The outer pericarp was
immediately frozen in liquid nitrogen and stored at −80 ◦C pending analysis.
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2.2. Measurement of Physiological Indices

About 1 mm thick and 1 cm2 peel at the two opposite cheeks of each fruit were
removed first, then the GS-15 Fruit Texture Analyzer (Strand, Cape Town, South Africa)
with an 8 mm plunger was used to determine the fruit firmness [32]. Two juice samples from
the equatorial part of each fruit were used to measure the soluble solid content (SSC) and
titratable acidity (TA) with the PAL-1 (Atago, Tokyo, Japan). A slice sampled from the fruit
equator was used to measure dry matter content. The transverse fruit slices (2 mm) were
weighed to record their fresh weights (FW) and were placed at 75 ◦C (DZF-6050, Shanghai,
China) for 24 h (DW). Dry matter content was determined by: FW/DW × 100% [33]. Flesh
color (L*, a* and b*) was measured using a CR-400 chromameter (Konica Minolta, Tokyo,
Japan) [34]. Three replicates were carried out for these physiological indices.

2.3. Carotenoid and Chlorophyll Measurements

The chlorophylls and carotenoids were extracted from the kiwifruit according to
previous methods [3,4]. The extracts were quantified using a high performance liquid
chromatography (HPLC) system (1260 Infinity II, Agilent Technologies, Palo Alto, CA,
USA) equipped with a DAD detector and a C-18 column (250 nm × 4.6 mm, 5.0 µm,
GL Sciences Inc., Tokyo, Japan). The injection volume was 20 µL, the post-run time was
5 min, and the flow rate was 0.7 mL min−1 at 40 ◦C. The solvent consisted of 90% (v/v)
acetonitrile/water (A) and ethyl acetate (B). The gradient profile was 100% A (0 min),
20% A (14 min), 20% A (20 min), and 100% A (30 min). Chlorophyll a was simultaneously
monitored at 430 nm, while lutein, β-carotene, and chlorophyll b were monitored at 450 nm.

2.4. Gene Identification and Quantitative Polymerase Chain Reaction (qPCR) Analysis

All gene sequences to be tested were obtained from the kiwifruit genome database
as a reference [35,36]. The transcriptome data (PRJNA277383) was used to analyze the
responses of the AcERFs to ethylene treatment and the results are shown as a heatmap.
Total RNA was extracted using the Plant RNA Kit (Omega Bio-tek, Norcross, GA, USA).
Then, approximately 1 µg of total RNA was used for cDNA synthesis with the Prime-Script
RT reagent kit (TaKaRa, Dalian, China). Quantitative real-time PCR (20 µL) was monitored
on the LightCycler 96 system (Roche, Basel, Switzerland) with the SYBR Premix ExTaq II
Kit (TaKaRa). The amplification program was 98 ◦C for 30 s for one cycle, 95 ◦C for 5 s
for 40 cycles, and 57 ◦C for 30 s. Gene expression levels were normalized with the 2−∆∆CT

method [37] using the AcActin and AcPP2A genes as internal standards. All analyses were
repeated three times using biological replicates. The specific primers are listed in Table S1.

2.5. Correlation Analysis and Network Visualization

A correlation analysis was performed between the contents of β-carotene, chlorophyll
b, and chlorophyll a, and the expression of all tested genes was carried out using OmicShare
tools (http://www.omicshare.com/tools). Results were visualized as a network using
Cytoscape (v3.7.1).

2.6. Promoter Analysis

Using the kiwifruit genome database as a reference [34,35], the promoter sequences of
AcPAO2, AcSGR1, AcLCY-β, and AcCCD1 were isolated. Newplace was used to analyze
potential ERF binding motifs [38].

2.7. Dual-Luciferase Assays

According to previous reports [39,40], the promoter sequences were cloned into the
pGreenII 0800-LUC vector forming the reporters, the full CDS were cloned into the pGreenII
62-SK and used as the effectors (Table S1, Figure S3). The A. tumefaciens strain GV3101-
pSoup were used to introduce the fused constructs. The cultures with OD600 of 0.8 were
infiltrated with buffer (10 mM MgCl2, 10 mM MES, 200 mM acetosyringone and pH 5.8).
The different Agrobacterium mixtures were injected into the N. benthamiana leaves of 6-

http://www.omicshare.com/tools
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week-old plants. Then, tested tobaccos were classed into two groups—control (without
any treatment) and 1-MCP treatment (0.1 µL L−1, 2 h, 23 ◦C). After 48 h, according to
the manufacturer’s instructions, the Dual-Luciferase Reporter Assay System (Promega,
Madison, WI, USA) was used to detected the luciferase activity.

2.8. Statistical Analysis

The results were analyzed by one-way analysis of variance in SPSS 22.0 software
(SPSS Inc., Chicago, IL, USA) to compare significant differences among treatments, using
Duncan’s multiple range test (p < 0.05) and Student’s t-test (* p < 0.05, ** p < 0.01 and
*** p < 0.001). All results are presented as mean ± standard error.

3. Results and Discussion
3.1. The Fruit Physiology Indicators and Flesh Color after 1-MCP Treatment

The firmness of climacteric fruit is influenced by the concentrations and exposure
duration to exogenous and endogenous ethylene [7]. Based on our published report [31],
profiles of firmness and ethylene production were further compared between 1-MCP treated
and untreated groups (see Figure 1A). 1-MCP significantly delayed and reduced the peaks
of the ethylene production compared with the control fruit during storage at 23 ± 1 ◦C and
90–95% RH. The firmness of control fruit declined until day 8 (D8), reaching 8.65 ± 0.30 N
at D6, which is the optimum period for eating (best flavor, taste, and texture) [29]. As
expected, the 1-MCP treatment reduced the softening rate, and firmness declined to the
key value at D14 with firmness 9.27 ± 0.23 N, resulting in a longer shelf life, which was
similar to a previous study [25]. The combined ethylene production and firmness change
meant that stage D6 and D14, respectively, identified the final stage of the eating ripe
window in control and 1-MCP treated fruit (Figure 1A). No differences (p < 0.05) in SSC,
TA, SSC/TA, or DM and L*, were found between the control (D6) and 1-MCP treated fruit
(D14). However, the flesh of the 1-MCP treated fruit at D14 was more yellow in color (lower
a*, b* value and h value) than that of the control fruit at D6 (Figure 1B–D), indicating that
the 1-MCP treatment led to higher exterior quality of ’Qihong’ fruit.

3.2. The Fruit Carotenoid Contents in 1-MCP Treated Fruit and Control Fruit

Carotenoid, including lutein and β-carotene, are the pigments responsible for flesh
coloration in yellow fleshed kiwifruit, and β-carotene is mainly responsible for the gold-
yellow color of kiwifruit [3,4].

Among the quantified carotenoid of the two types, the concentration of lutein de-
creased in both the control and 1-MCP treated groups before D6, then increased in the
1-MCP treatment groups (Figure 2A). β-carotene decreased gradually in the control fruit
during eating ripe window; while in 1-MCP treated fruit, it rapidly increased and reached
a peak on D6, then was relatively smooth until D14 (Figure 2B). The β-carotene content in
the 1-MCP treated fruit (7.24 ± 0.10 mg kg−1 FW) was higher during the final stage than
that in the control (only 4.76 ± 0.12 mg kg−1 FW). Thus, the 0.5 µL L−1 1-MCP treatment
may have delayed kiwifruit senescence and led to normal β-carotene biosynthesis. Our
findings differ from those of previous reports [17,20], who suggested that 1-MCP treatment
delays the accumulation of carotenoid due to the time difference in the 1-MCP application.
Both studies applied 1-MCP before fruit ripening at a time when the fruit had not finished
post-ripening metabolic processes, while our study applied 1-MCP near the eating period
(initiation of phase 3) when the fruit had basically finished post-ripening (phase 1 and 2),
such as starch degradation, rapid accumulation of SSC, and chlorophyll degradation.
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Figure 2. The contents of carotenoid and chlorophyll in treated fruit as measured by HPLC. β-Carotene (A), lutein (B), total
carotenoids (C), chlorophylls b and a (D,E), and total chlorophylls (F). Data are mean ± SE (n = 3). Different letters represent
significant differences in the same group during ripening (p < 0.05). Asterisk represents a significant difference between the
control (CK) and 1-MCP treated fruit (* p < 0.05, ** p < 0.01, *** p < 0.001).

3.3. The Fruit Chlorophyll Contents in 1-MCP Treated and Control Fruit

Chlorophyll degradation is an important trait that accompanies fruit ripening in most
species [6]. Exogenous ethylene accelerates the degradation of chlorophylls in mature
green citrus and avocado fruit [9–11]. Exogenous 1-MCP applied to citrus, banana, apple,
and pear inhibits fruit softening and delays degradation of chlorophylls during fruit
ripening [6,14,41,42]. Interestingly in this study, as shown in Figure 2D–F, the 1-MCP
treatment sped up the decrease in chlorophyll b, chlorophyll a, and chlorophyll a + b
content, while there was a small difference in chlorophyll contents through all of the
sampled days in untreated fruit. The contents of chlorophyll b, a, and a + b, in treated
fruit during the best eating period (the final stages) were 3.42 ± 0.06, 3.78 ± 0.01, and
7.20 ± 0.08 mg kg−1 FW, respectively, which was 12.35, 5.36, and 7.67% lower than that in
untreated fruit. These findings seem inconsistent with previous reports [14,25,41].

To better explain this conflict, the reports of Xu et al. [25] and Lv et al. [14] were
further investigated. Xu et al. suggested that, in green kiwifruit ‘Hayward’, 1-MCP
treatment inhibited the process of chlorophyll degradation [25]. It was noteworthy that
the chlorophyll content in untreated fruit was approximately 6.9 g kg−1 (Figure S1), which
was obviously higher than that in 1-MCP treated fruit, which was about 4.5 g kg−1 at the
best eating ripe stage (firmness ~9 N) [25]. The same result has also been found in apple
fruit; it exhibited lower chlorophyll content and hue angle (H◦) at 49 days (ethylene peak)
compared to untreated fruit at 28 days (Figure S2), though 1-MCP delayed the degradation
of chlorophyll during ripening [14].

3.4. Expression of Genes Involved in Carotenoid Biosynthesis and Degradation

The carotenoid metabolic pathway has been studied in many fruit species [17], in-
cluding kiwifruit, as shown in Figure 3A [2,35]. The expression of carotenoid metabolic
pathway genes was investigated in the untreated and treated groups. AcZDS, AcCHYs,
and AcNCEDs expression was not detected in any of the samples. The expression levels of
AcPSY1, AcCRTISO, AcPDS, AcLCY-ε, and AcLCY-β, which are in the carotenoid biosyn-
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thetic pathway, were lower in control fruit than those in 1-MCP treated fruit, and gradually
increased at the early stage but then decreased. The expression profiles of AcZEP1 in
the 1-MCP-treated fruit increased from D2 to D6 and decreased on D8 compared with
the controls. AcCCD1 is an important gene responsible for β-carotene degradation [3]. It
increased in control fruit during storage, and maximum expression was detected on D6.
This level was always higher than that in 1-MCP treated fruit. This finding indicated that
the 1-MCP treatment inhibited the expression of AcCCD1.
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3.5. Expression of Genes Involved in Chlorophyll Degradation

The nine genes related to chlorophyll degradation were selected (Table S1) and in-
vestigated during the post-treatment period (Figure 4). AcSGR2, AcPAO1, AcPPH2, and
AcRCCR were not expressed in treated or untreated fruit. It has been shown that ASGR1
and AcPAO2 are the key genes responsible for chlorophyll degradation in kiwifruit [2,3].
In this study, the expression of both genes increased gradually and reached a peak on D2
but then decreased sharply in control fruit; while in 1-MCP treated fruit, the expression
of them was higher than that in control fruit during storage except at the D2 stage. The
expression levels of AcCBR, AcCLH, and AcPPH1 changed similarly between the control
and 1-MCP treated fruit during storage. Overall, our findings suggest that the effect of
1-MCP is to delay the increase in the expression of chlorophyll degradation genes within a
short time, but it up-regulated their expression during later stages of storage.
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degradation pathway in kiwifruit. (B) Effect of 1-MCP on the expression profiles of chlorophyll degradation-related genes
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of the mean. Data were analyzed with Student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001).

3.6. Expression of Ethylene Related Genes in Kiwifruit during Storage

Our previous study showed that use of 1-MCP delayed the peaks of the ethylene
production [31] (Figure 1A), thus it was supposed that ethylene may play an important role
in the difference formation of ‘Qihong’ flesh color. ACO and ACS are the main ethylene
producing enzymes in various fruit, such as tomato [43,44], apple [45], pear [46], and
melon [47]. In kiwifruit, AdACO1 and AdACS1 have been functionally verified to be
responsible for ethylene biosynthesis during fruit ripening [23,27]. As shown in Figure 5,
AcACO1 and AcACS1 expression levels were similar during storage. Both genes increased
from D0 and reached a peak on D4 then decreased in control fruit. The expression of these
two genes in 1-MCP treated fruit was significantly lower than that in control fruit from
D0 to D6. Expression then increased after this stage and reached a peak on D12. These
findings agree with Wu et al. [27], who suggested that 1-MCP treatment delays AdACO1
and AdACS1 expression.
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It is well-known that the AP2/ERF transcription factors (TFs) play an important role
in the response to 1-MCP treatment [6]. In this study, 153 individual AcAP2/ERF TFs
were found in the Red 5 genome. Among them, 18 ERFs, which were up-regulated by
the ethylene treatment during storage (Figure S1), were investigated further by qPCR
(Figure 5). Acc22453 and Acc00583 expression was not detected in treated or untreated
fruit. Acc04742, Acc08308, and Acc17931 were expressed at higher levels from D2 to D6 in
control fruit than in 1-MCP treated fruit. Acc12843 and Acc29209 expression increased in
control fruit during storage, and higher transcript levels were detected during D4–D6 than
those in treated fruit. Notably, three genes (Acc23763, Acc25620, and Acc29730) increased
continuously and reached peaks on D6 in the control fruit, while the transcript levels and
the highest peaks (both abundance and time) of these genes were inhibited and delayed by
the 1-MCP treatment. Acc02741 was highly expressed in 1-MCP treated fruit from D2 to D8,
and the level was significantly higher than that in control fruit. In contrast, the expression
of other genes, including Acc13617, Acc15592, Acc02069, Acc16667, Acc05146, Acc27909,
and Acc29407 was complex and no significant pattern was found between the control and
1-MCP treated fruit.

3.7. Correlation Analysis of Pigment Contents and Expression of Related Genes

The correlations between the contents of β-carotene, chlorophyll b, and chlorophyll
a and the expression of all tested genes were assessed and visualized using Cytoscape
(v3.7.1). As shown in Figure 6A, β-carotene content was positively correlated with the
AcLCY-β transcript changes, but was negatively correlated with the AcCCD1 transcript.
These results are consistent with previous studies suggesting that AcLCY-β and AcCCD1
are responsible for β-carotene biosynthesis and degradation in kiwifruit, respectively [2,3].
Similar to the findings of these two reports, negative correlations were detected between
chlorophyll contents and the AcPAO2 and AcSGR1 transcript levels. Furthermore, Acc25620,
Acc29730, and Acc23763 were negatively correlated with AcLCY-β, AcPAO2, and AcSGR1,
but positively correlated with AcCCD1. A partial least-squares discriminant analysis (PLS-
DA) showed that pigment contents and the expression of several genes in the samples were
classified into the control and 1-MCP treatment groups (Figure 6B).

3.8. The Activation of AcSGR1, AcPAO2, AcLCY-β and AcCCD1 Promoters by Acc25620,
Acc29730 and Acc23763 after 1-MCP Treatment

The ERF TFs have been reported to play important roles (either positive or negative)
in plant growth and stress response [48,49]. In this study, all three ERFs contained the
ERF motif, and an EAR motif also found in the C-terminal region of Acc23763 (Figure S2),
indicating it may act as a repressor [48]. Moreover, at least three ERF binding motifs
(WBOXNTERF3 or ERELEE4) [6] were found in the AcPAO2, AcSGR1, AcLCY-β, and
AcCCD1 promoters (Figure 6C).
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In citrus, CitERF13 enhances activity of CitPPH by directly binding to its promoter,
therefore accelerating chlorophyll degradation [6]. In this study, as shown in Figure 7A,
the promoters of AcSGR1 were not activated, in both control and 1-MCP treatment groups.
Acc23763 strongly reduced the promoters of both AcPAO2 and AcLCY-β, however, this
reduction was eliminated by 1-MCP treatment (Figure 7B, C). The promoter of AcLCY-β
was activated by Acc25620 in both control and 1-MCP groups. Acc29730 and Acc25620
strongly activated the AcCCD1 promoter by approximately 3.46- and 8.72-fold; while it
was noteworthy that 1-MCP treatment reduced above activation, no difference (p < 0.05)
was found between the empty vector and Acc29730 and Acc25620 (Figure 7D).
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4. Conclusions

In this study, we showed that 1-MCP treatment affected yellow color formation of
flesh in ‘Qihong’, which affected carotenoid accumulation and chlorophyll degradation in
kiwifruit. This effect was correlated with the expression of key pathway genes, such as Ac-
PAO2, AcSGR1, AcLCY-β, and AcCCD1. The expression of three ERFs, including Acc29730,
Acc25620, and Acc23763 was delayed and down-regulated by the 1-MCP treatment, show-
ing higher correlation with the expression of AcLCY-β, AcSGR1, AcPAO2, and AcCCD1.
Dual-Luciferase assays showed that the inhibition of Acc23763 on the promoters of both
AcPAO2 and AcLCY-β, and the reduction of the Acc29730 and Acc25620 on the AcCCD1
promoter were obviously eliminated by 1-MCP treatment. In summary, the development
of the yellow flesh color in ‘Qihong’ appears to be regulated by 1-MCP, which modulated
the expression of Acc25620, Acc29730, and Acc23763. These ERFs affected the promoter
activities of carotenoid and chlorophyll related genes (AcPAO2, AcLCY-β and AcCCD1)
to regulate their transcript levels, leading to more yellow color in ‘Qihong’ fruit flesh
with higher carotenoid content and lower chlorophylls content. However, this conclusion
requires additional studies to verify. Overall, our study provides a theoretical basis for
improving the eating quality of ‘Qihong’ fruit.
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10.3390/foods10123017/s1, Figure S1: The firmness and chlorophyll content during storage in the
report of Xu et al. 2019, Figure S2: The ethylene production, H value and chlorophyll content during
storage in the report of Lv et al. 2020, Figure S3: Heatmap of AcERFs in kiwifruit during ripening.
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