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Abstract: The conformation of a molecule strongly affects

its function, as demonstrated for peptides and nucleic acids.
This correlation is much less established for carbohydrates,

the most abundant organic materials in nature. Recent ad-
vances in synthetic and analytical techniques have enabled
the study of carbohydrates at the molecular level. Recurrent
structural features were identified as responsible for particu-

lar biological activities or material properties. In this Minire-

view, recent achievements in the structural characterization
of carbohydrates, enabled by systematic studies of chemical-

ly defined oligosaccharides, are discussed. These findings
can guide the development of more potent glycomimetics.
Synthetic carbohydrate materials by design can be envi-
sioned.

Introduction

The function of a molecule is strongly connected to its three
dimensional shape.[1] Structural studies of proteins and nucleic

acids were fueled by synthetic and gene expression technolo-

gies.[2] Well-defined synthetic materials serve as standards to
establish definitive structure–function correlations.[3] Analytical

techniques, such as X-ray crystallography[4] and cryogenic elec-
tron microscopy (cryo-EM),[5] have enabled subnanometer reso-

lution images. In addition, spectroscopic techniques like circu-
lar dichroism (CD) and NMR have made structural studies rou-

tine in most chemistry laboratories.[6] These results permitted

the development and validation of highly accurate computa-
tional tools that can predict and suggest the fabrication of ma-

terials by design (e.g. , DNA origami and de novo proteins).[7]

In contrast, structural studies of carbohydrates, the most

abundant organic materials in nature, are rare.[8] Carbohydrates
are mainly extracted from natural sources, resulting in ill-de-

fined mixtures of compounds.[9] Chemical synthesis offers a

valid alternative to isolation, but requires a huge synthetic
effort. The advent of one-pot synthesis and automated tech-

niques has allowed for the access to collections of related
compounds, as ideal probes for structural studies.[10] Oligosac-

charides with defined composition, length, and substitution
are now available for structural elucidation. Importantly, the in-
sertion of specific modifications, such as NMR active nuclei

(i.e. , 13C and 19F) can be easily achieved, offering a tremendous
advantage during analysis.[10b, 11] Unnatural functionalities able

to lock particular conformations or to disrupt particular geo-
metries can be imagined and used for the creation of glycomi-

metics.[12] Even though such strategies remain limited by syn-
thetic challenges, examples of structurally designed glycomi-

metics with high affinity for a target protein suggest the po-
tential of this approach.[13]

An additional bottleneck in the structural analysis of carbo-

hydrates is that standard characterization techniques are often
not applicable.[8b] Carbohydrates’ high flexibility prevent the

formation of single crystals suitable for X-ray analysis, sensitivi-
ty to electron beam makes them poor candidate to EM charac-

terization, and lack of chromophores prevents standard CD
analysis. NMR remains the most useful characterization tech-

nique; however, the analysis is hindered by severe chemical

shift degeneracy, often requiring special pulse sequences or
the insertion of labels.[14] Due to the lack of validating stand-

ards, computational tools are far less developed as compared
to peptides and nucleic acids.[15] To date, the combination of

chemical synthesis, NMR analysis, and molecular dynamics
(MD) simulations permitted to identify recurrent structural fea-

tures common for some glycan classes.[13a, 16]

Here, we review the recent results obtained in the field of
glycan conformational analysis. We discuss four classes of gly-

cans and their structural features. Particular focus is given to
the synthetic strategies that were employed to help the char-

acterization.

Glycans Conformation

When considering conformation of glycans, the monosacchar-

ide unit is generally treated as a rigid block.[15a] The geometry
of the glycosidic bond is of fundamental importance and it is

identified by using standard descriptors (Figure 1). Two torsion
angles define the relative orientation of the two monosacchar-

ides connected through the glycosidic bond: F (H1-C1-Ox-Cx)
and Y (C1-Ox-Cx-Hx). For 1,6-linkages, the additional torsion
angle w (O6-C6-C5-O5) is required.

Several factors can affect these torsion angles (Figure 1).[15a]

Hyperconjugation between the exocyclic oxygen lone electron

pair and the antibonding orbital (s*) of the endocyclic C@O
bond stabilizes the exo-syn(F) conformation (exo-anomeric

effect).[17] Steric interactions mostly affect the Y dihedral, favor-

ing the anti(Y) conformer.[18] Electronic effects can promote
particular w geometries (gauche effect).[19] Hydrogen bonds be-

tween hydroxyl groups can stabilize particular conformational
states.[20] Water has a huge effect on the conformational free-

dom of glycans. Indeed, water can easily disrupt intermolecular
hydrogen bonds, resulting in highly flexible conformations,
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and plays a major role in glycan–protein interactions. Modeling

the process of solvation remains a major challenge for compu-
tational chemists, limiting our ability to reliably predict glycans’

conformations, and their recognition processes.[21] Moreover,
several glycans bear ionic functionalities that further compli-

cate the description.
Upon interaction with a protein, additional parameters can

come into play. Hydrogen bonding and coordination to calci-
um ions can contribute to carbohydrate binding.[22] Moreover,
despite the high hydrophilicity of glycans, carbohydrate-aro-

matic interactions are often involved in carbohydrate recogni-
tion.[23] These noncovalent interactions between two or three

CH groups of the pyranose unit and the p electron density of

the aromatic ring are able to stabilize particular conformations
and favor binding. Stereoelectronic effects also play a role in

glycan recognition.[24]

All these factors need to be considered to develop reliable

tools to predict glycans’ conformations. Force fields, specifically
optimized for carbohydrates, are available and MD simulations

have become substantially more accurate.[15a, 25] Still, the com-
putational predictions require constant validation with synthet-

ic standards. To date, NMR analysis has offered the best solu-
tion with scalar J-couplings and residual dipolar couplings

(RDCs) being relatively easy measurements and extremely in-
formative.[14a] However, glycans’ intrinsic flexibility often leads

to an averaged 3D structure, merging the contributions from
multiple conformational states.

N-Linked-glycans

N-Glycans are oligosaccharides covalently linked to secreted
and membrane-bound proteins through an N-glycosidic bond.

They play central roles in the folding, sorting, and transport of
proteins as well as mediating cell-cell interactions.[26] The N-gly-

cans chemical structure features a pentasaccharide core motif,

consisting of a chitobiose (GlcNAcb1!4GlcNAc) and three
mannose units. Depending on the residues attached to this

core structure, N-glycans are classified into three main catego-
ries: oligomannose, complex, and hybrid (Figure 2). Due to

their important biological roles, much research has been de-
voted to their structural analysis.

NMR spectroscopy is the most frequently used method to

get insight into the shape and dynamics of N-glycans in solu-
tion. Still, the complexity of these oligomers poses a severe

bottleneck for structural studies. In a pioneering work, the
three-dimensional structure of the high mannose-type N-

glycan domain (-(N-acetylglucosamine)2-(mannose)5–8) decorat-
ing the glycoprotein CD2 was elucidated.[28] The sample was

extracted from Chinese hamster ovary cells. The geometric re-
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Figure 1. Standard definition of dihedral angles used for the description of a
glycosidic bond exemplified for a b-glycosidic linkage and common interac-
tions that can affect these angles.
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straints identified through NOE signals suggested a structural
model with one of the glycan arms folded toward the

GlcNAc1-GlcNAc2-Man3 trisaccharide core. The comparison of
13C NMR peak widths shed light on the N-glycan flexibility,

upon interaction with a protein. These results indicated that

the N-glycan does not directly mediate the binding of CD2 to
its counterreceptor CD58, since the N-glycan is oriented in the

opposite direction to the binding site of CD2. Instead, the
main role of this N-glycan is to stabilize the folding of CD2,

counterbalancing the energetically unfavorable cluster of posi-
tive charges arising from five lysine residues.

Due to the heterogeneity of N-glycans in biological systems,

extracted N-glycans exists as a mixture of compounds, which
leads to ambiguity in NMR peak assignment. This lack of pure

and well-defined glycans hinders detailed structure-functionali-
ty correlations. Genetic engineering provides tools to facilitate
glycan structural studies. The biosynthesis of high-mannose N-
glycans in yeast takes place in the endoplasmic reticulum,

where an undecasaccharide Man9GlcNAc2 (M9) is constructed.

Subsequently, an a-mannosidase yield the decasaccharide
Man8GlcNAc2 (M8B), which is then transported to the Golgi ap-

paratus for further structural modifications. By knocking out
the genes encoding for specific enzymes in this route, M9 and

M8B were overexpressed and isolated (Figure 3). Moreover, by
feeding 13C-labeled glucose to the yeast, isotopic labeling can

be achieved, which greatly helps the NMR analysis. Following

this approach, it was confirmed that the mannose outer
branch (D2 and D3) folds back toward the core chain, similarly

to what observed for the above mentioned high mannose-
type glycans in CD2. Notably, compared to M9, a significantly

different NOE network and enhanced back-folding was ob-
served for M8B (Figure 3).[29]

Further difficulties in the NMR analysis of N-glycans arise

from the multiantennary pseudo-symmetry that leads to signal
overlapping. In addition, NOEs and scalar couplings only afford

local structural information (up to 5 a). For N-glycans with

sizes of several nanometers, analyzing methods able to detect
long-range interactions are required. Paramagnetic lanthanide

ions can generate strong chemical shift variations, pseudo-con-
tact shifts (PCS), and provide global geometric information. A

lanthanide-binding tag was attached at the reducing end of a
complex-type N-glycan (Figure 4 a). The shift of the NMR sig-

nals caused by the paramagnetic ion resulted in 34 1H NMR

PCS, that can be interpreted into atom-atom distances in a
range of 30 a. By computing the obtained conformational in-

formation, a T-shaped rotamer at the Mana1-6Man portion

Figure 2. Representative examples of the three main classes of N-glycans.
The monosaccharides are represented following the symbol nomenclature
for glycans (SNFG).[27]

Figure 3. Chemical structure of oligomannose-type N-glycan M9 and M8B
and NOE network. The D2 and D3 branch folds back onto the main chain.
NOE signals detected for: both M9 and M8B (red lines), M9 only (blue lines),
M8B only (green lines).

Figure 4. Lanthanide-tagged N-glycans for structural analysis. A T-shaped
rotamer at the Mana1-6Man portion (red bond) was identified as the major
conformer. The monosaccharides are represented following the symbol no-
menclature for glycans (SNFG).[27]
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(Figure 4 a, red bond) was revealed as the major conformer
among the five suggested by MD.[30] This approach was then

applied to revisit the structure of oligomannose-type N-glycans
(Figure 4 b),[31] supporting the previous observations with a

more quantitative description of the glycan dynamics and flexi-
bility in solution.

While it is clear that N-glycans exercise their biological func-
tions through interaction with proteins, the structural basis of

this process is not yet solved. Due to the synthetic and analyti-

cal difficulties, most studies on glycan–protein interactions are
based on fragments of natural glycans. Still, the assumption

that the binding behavior of natural N-glycans can be extrapo-
lated from glycan fragments can be misleading. With the

recent advancement in both chemical synthesis and NMR tech-
nologies, the binding pattern of natural complex-type N-gly-
cans to different lectins can be carefully studied. A collection

of synthetic N-glycans, including several smaller fragments,
was synthesized.[32] Saturation-transfer difference NMR (STD-

NMR) analysis showed that the interaction between glycan and
protein highly depends on the chemical nature of both com-

ponents and cannot be predicted from simplified mono-
domain models. Lanthanide tags were also employed for the

structural study of glycan-protein recognition.[33] With this

method, the four antennae of the complex-type N-glycan can
be discriminated and thus information with unprecedented

resolution was obtained. The involvement of each individual
branch of the N-glycan in the recognition was described based

on PCS (Figure 5). The use of paramagnetic NMR was also ap-
plied to the study of the conformation of multiantenna N-gly-

cans and their interaction with HK/68 hemagglutinin from in-

fluenza viruses. This study was enabled by chemoenzymatic
synthesis of long-chain N-glycans containing poly-LacNAc and

Neu5Ac residues, followed by conjugation with a lanthanide
binding tag.[34]

An alternative method to break the chemical shift degenera-
cy observed for multiantennary N-glycans relies on the intro-
duction of unnatural and NMR active nuclei. The chemical shift

of 19F is very sensitive to subtle changes in the chemical envi-
ronment and spans from approximately @60 to around
@220 ppm. Therefore, the substitution of a hydroxyl group
with a fluorine atom enables the use of fluorine-based NMR

methods for epitope mapping, as exemplified for the triman-
noside core structure (Figure 6). In order to minimize the

impact of the deoxifluorination on binding to Pisum sativum
agglutinin, the modification was installed at the C2 of the
mannose rings, following the consideration that the 2-OH does

not participate in this recognition event. 2D NOESY-TOCSYreF
experiments revealed two binding modes in which either man-

nose I or mannose II are involved. In both modes, the manno-
se III residue contributes to the binding through collateral

effect.[35]

Histo-blood group antigens

Histo-blood group antigens (HBGAs) are a family of oligosac-

charides found on the surface of red blood and tissue cells or
as soluble antigens.[36] HBGAs are biosynthesized from two pre-

cursors (type 1 and 2 chains) by glycosyltransferases and can

be classified as ABH or Lewis antigens (Figure 7). ABH antigens
determine the blood phenotype (A, B, AB, or O) of humans

and recent studies suggest that they also affect the susceptibil-

ity to bacterial and viral infection.[37] The abnormal expression
of HBGAs might contribute to the increased mobility of tumor

cells, resulting in poor prognosis.[38] Structural studies of
HBGAs and HBGAs-protein complex are crucial to unravel the

molecular basis of the HBGAs recognition by pathogens.[8a, 39]

Among the Lewis antigens, sialyl Lewis X (sLex) is the most

intensively studied structure due to its vital role in cell-cell

communication, upon interaction with selectins. The core
structure, Lewis X (LeX), possesses a trisaccharide motif that

adopts a defined conformation in solution as revealed by
NMR[40] and molecular dynamics.[40] Such conformation is stabi-

lized by the exo-anomeric effect, steric compression, and hy-
drophobic interactions. In 1996, the first crystal structure of LeX

Figure 5. PCSs and minimum-energy conformations of tetra-antennary N-
glycan as obtained by NMR measurement and MD simulations. Adapted
with permission from Ref. [34] . Copyright 2017, The Authors. Published by
Wiley-VCH Verlag GmbH & Co. KGaA.
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was reported, showing the dense network of hydrogen bonds
that stabilize its conformation.[41] To better understand the so-

lution phase conformation, the LeX trisaccharide was synthe-
sized and covalently linked to an isotopically labelled bacterial

protein.[42] This strategy permitted to slow down the oligosac-
charide tumbling and, therefore, favored the detection of

NOEs. Nine inter-residue NOEs were detected, while only three

could be visualized for the free LeX. No NOEs were detected
between LeX and the protein, confirming that these results are

representative of the conformation of free LeX. This study pro-
vided important structural information on the torsion angles of

the glycosidic bonds and the overall shape of LeX. In particular,
a nonconventional C@H···O H-bonding between the fucose and

the galactose residue was identified and confirmed by the
downfield chemical shift of the H5 of the fucose residue (Fig-
ure 8 a). Such interaction stabilizes the „closed“ conformation
of the LeX trisaccharide motif. The existence of this unconven-

tional C@H···O H-bonding was later confirmed in sLex with ex-
tensive NMR study.[43] A systematic analysis of several fucose
containing oligosaccharides showed that this particular C@H···O
H-bonding is a common secondary structural element in a
wide range of bacterial and mammalian oligosaccharides and

can be generalized with the X-b1,4-[Fuca1,3]-Y and X-b1,3-
[Fuca1,4]-Y description (Figure 8 b).[16a]

Upon binding to most lectins, the “closed” conformation of
LeX is preserved, as confirmed by crystallographic and NMR

analysis.[44] In these cases, fucosylation seems to be responsible
for the HBGAs high binding affinity to lectins, by promoting a

“pre-organization” that eliminates the step of conformational

selection. To systematically prove this hypothesis, A- and B-
blood-group tetrasaccharides (type II), as well as their non-fu-

cosylated analogues were synthesized (Figure 9).[45] STD-NMR
suggested that the b-Gal residue (Figure 9, dashed boxes) di-

rectly participates in the binding to galectin-3, while the
fucose residue does not interact with the lectin. This proved

that Fuc-containing glycans share the same binding mode

with the non-fucosylated analogues, even though exert higher
affinity to the lectin. Thermodynamic and kinetic parameters

suggest that the fucose residue contributes indirectly to the
binding, reducing the conformational flexibility and so mini-

mizing the entropic penalty of binding.

Figure 6. Deoxifluorination breaks the chemical shift degeneracy of glycan
NMR and enable epitope mapping. Adapted with permission from
Ref. [35b]. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA.

Figure 7. Classification of histo-blood group antigens. The monosaccharides
are represented following the symbol nomenclature for glycans (SNFG).[27]

Figure 8. Nonconventional C@H···O H-bonding identified by NMR (a). This is
a recurrent secondary structural element in a wide range of fucose contain-
ing oligosaccharides (b). Figure 8 a is reprinted with permission from
Ref. [42] . Copyright 2013, American Chemical Society.
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Similarly, a large entropy contribution drives the binding be-

tween sLeX and E-selectin. Commonly, the interaction between
glycans and lectins is entropically unfavorable, but driven by

the favorable binding enthalpy.[46] However, in case of sLeX-E-
selectin interaction, the pre-organization of sLeX serves as a

surrogate for the water cluster present in the binding site.[47]

Upon binding, water is released from the binding site, result-

ing in an entropic benefit for the overall process. In addition,

the pre-organization of sLeX offers an array of directed H-
bonds increasing the specificity of the binding.

In contrast, upon binding with Ralstonia solanacearum
lectin, distortion of the LeX “closed” conformation was ob-

served.[48] Several “open” conformers, in which the fucose resi-
due forms H-bonds with the lectin, were identified by using

highly detailed MD simulations of the glycan in water and its

interaction with the lectin. This deformation releases the steric
hindrance between the galactose residue and a Trp residue of

the lectin. Such an adaptive conformation of LeX can be chemi-
cally tuned for the design of high affinity glycomimetics. For

example, the substitution of the terminal galactose with a
mannose unit was shown to disrupt the conformational rigidity

of LeX and stabilize the “open“ conformation required for bind-

ing (Figure 10).[13b] The reduced steric hindrance of this unnatu-
ral analogue resulted in a 17 times higher affinity for the lectin
than the native counterpart.

Bacterial glycans

Glycans in bacteria are mostly present as glycoconjugates,

such as glycolipids and peptidoglycans.[49] These glycoconju-
gates play key roles in the protection of the bacteria from the

host immune system and control cellular permeability.[50] Com-
pared to mammalian glycans, bacterial glycans exhibit a much

greater diversity, especially in terms of monosaccharide com-
position.[51] These “uncommon” monosaccharides play impor-

tant roles in the local conformations of bacterial glycans. For

example, l-rhamnose is absent in most mammals, but widely
distributes in lipopolysaccharides (LPS) of Gram-negative bac-

teria and in capsular polysaccharides of Gram-positive bacteria.
The conformational preference of rhamnose-containing gly-

cans was studied with a disaccharide model (a-l-Rhap-(1–2)-a-
l-Rhap-OMe, Figure 11, top).[52] NMR and computational analy-

sis permitted the identification of two preferred conformations
in water, existing in a 3:2 ratio. Another sugar motif commonly

found in bacterial glycans is the 3-amino-3,6-dideoxy-a-d-gal-
actopyranose (Figure 11, bottom).[53] Particular attention was
paid to the conformation of its N-formyl and N-acetyl deriva-
tives. The N-acetyl derivative exhibits a higher preference
(DG8&@2.5 kcal mol@1) for the trans conformation compared
to its N-formyl counterpart (DG8&@0.8 kcal mol@1), with a cal-
culated transition energy barrier of around 20 kcal mol@1. Quan-

tum mechanics energy calculations suggest intramolecular H-
bonds between the oxygen of the amide and the axial OH4 or
the equatorial OH2.

The great variety of monosaccharide composition, substitu-
tion, and connectivity observed in bacterial glycans is reflected

in great structural diversity that can trigger particular immuno-
logical responses. LPS on the surface of Gram-negative bacteria

are based on repetitive polysaccharides that can adopt differ-

ent shapes.[54] Due to the structural flexibility, multiple models
are generally employed to represent the low energy conforma-

tions of these polysaccharides, as in the case of the O-antigen
polysaccharides of Escherichia coli O5ac and O5ab.[55] These

structures share the same tetrasaccharide repeating unit con-
nected via different linkages. The conformational preference of

Figure 9. Chemical structures (top) and MD models (bottom) of synthetic
glycans showing different flexibility depending on the presence of the
fucose residue. Adapted with permission from Ref. [45]. Copyright 2019, The
Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Figure 10. The substitution of the terminal galactose with a mannose unit
disrupts the non-conventional H-bond that stabilized the “closed” conforma-
tion. Chemical structure (a) and 3D model of major conformers (b), reprinted
with permission from Ref. [13b]. Copyright 2019, American Chemical Society.

Figure 11. Chemical structure of disaccharide a-l-Rhap-(1–2)-a-l-Rhap-OMe
(top) and 3-amino-3,6-dideoxy-a-d-galactopyranose (bottom).
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these two polysaccharides was studied with NMR methods, in-
cluding 1H,1H-NOESY, and NOE build-up curves, showing the

co-existence of several different conformers. This structural
flexibility could explain the cross-reactivity of the O5ac and the

O5ab antigens in immunological assays.
Similarly, group B Streptococcus serotypes Ia and Ib capsular

polysaccharides (CPS) share the same monosaccharide constit-
uents with the only difference being one of the glycosydic link-

age (GlcNAcb1-3Gal vs. GlcNAcb1-4Gal, respectively). To com-

pare the conformation adopted by these two capsular polysac-
charides, the pentasaccharide repeating units were synthe-

sized.[56] Conformational studies revealed that the difference in
GlcNAc-Gal linkage mainly affects the orientation of the

Neu5Aca2-3Gal branching, with the Neu5Aca2-3Gal linkages
adopting the exo-anti(F) conformation for Ia and the exo-

syn(F) for Ib (Figure 12). This different conformational prefer-

ence might justify the different immunological activity of Ia
and Ib capsular polysaccharides.

Much work has been devoted to correlate the glycan struc-
ture to an immunological response.[57] Zwitterionic polysaccha-

rides (ZPs) from pathogenic bacteria can elicit T-cell prolifera-
tion,[58] whereas carbohydrates are generally poor T-cell stimu-

lator.[59] Conformational studies on extracted ZPs revealed an

extended right-handed helix with positive and negative charg-
es alternately distributed on the molecular surface. This three

dimensional structure features a regularly distributed groove,
which serves as primary binding domain.[60] To confirm the cor-

relation between the helical structure and the interaction with
antibodies, a collection of zwitterionic Streptococcus pneumo-

niae serotype 1 oligosaccharides was chemically synthetize-

d.[13a] Structures with lengths of 3 to 12 monosaccharide units
were prepared, following a preglycosylation–oxdidation strat-

egy. A strong correlation between the length of sugar chain
and the antibody binding affinity was demonstrated, with the

highest affinity for the nonasaccharide, able to adopt a full hel-

ical turn (Figure 13).

A similar length-dependent immunological activity was ob-
served for the Haemophilus influenzae b antigens.[61] Chemically

synthesized glycoconjugates containing oligoribosyl-ribitol-
phosphate (PRP) with 4 to 10 repeating units show different

immunogenicities, with the tetramer and octamer able to elicit
the highest antibody levels. This chain length dependence

could be the result of a particular three dimensional structure,

best adopted with a certain number of repeating units (i.e. , 4
and 8 repeating units).

Carbohydrate materials

Polysaccharides serve as important biomaterials in nature and

are attractive resource of raw material for textile, food, paper,
energy, and pharmaceutical industries.[62] Their primary struc-

ture determines their conformational preference and aggrega-
tion patterns, which eventually influence the material property.

Still, these correlations are far from being established.
Cellulose, the most abundant biomass in Nature, consists of

repeating glucose units, connected through b-1,4-glycosidic

bonds.[63] Conformational studies based on natural cellulose
have yielded considerable knowledge on its 3D structures

owing to its high crystallinity, which allows for substantial X-
ray diffraction analysis.[64] To date, four types of cellulose crys-

talline forms based on different H-bonging patterns have been
characterized (Cellulose I–IV).[65]

Figure 12. A superimposition of representative 3D structures of the CPS Ia
(lime) and Ib (grey) pentasaccharides, with the major conformation around
the Neu5Aca2-3Gal linkage. Reprinted from Ref. [56] . Copyright, 2019, The
Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Figure 13. Representative conformations of zwitterionic Streptococcus pneu-
moniae serotype 1 hexasaccharide, nonasaccharide, and dodecasaccharide
as obtained by MD simulations. Reprinted with permission from Ref. [13a] .
Copyright, 2019, American Chemical Society.
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Chemical modifications can alter cellulose crystallinity and
modulate cellulose properties.[9, 66] However, the lack of regiose-

lective modification strategies yields ill-defined compounds
that prevent detailed structural studies. Automated glycan as-

sembly (AGA) enabled rapid access to cellulose analogues with
defined lengths.[67] A set of “unnatural” monosaccharide build-

ing blocks permitted the AGA of chemically modified ana-
logues. With this approach, methylated, deoxygenated, deoxy-
fluorinated, as well as carboxymethylated cellulose analogues

are synthesized with full control over the length (six or twelve
units) and modification pattern (Figure 14). The modifications

were designed to precisely tune the network of H-bonds, the
steric bulk, and the electronic properties of cellulose.

The powder XRD profile of the non-modified analogues is
identical to native cellulose (Cellulose II), indicating that short

oligomers (i.e. , hexasaccharides) adopt the same arrangement
as the polysaccharide counterpart (Figure 15). MD simulations

revealed that modifications result in an increased conforma-

tional flexibility, which is reflected in an increased water solu-
bility. Notably, methylated analogues with the same degree

but different pattern of modification show drastic conforma-
tional differences. The analogue with evenly distributed meth-

ylation displays a quasi-linear structure, whereas more com-
pacted geometries are observed with a block-wise modifica-

tion pattern (Figure 15). This also affect the solid state arrange-

ment, with a higher “cellulose character” observed for the
evenly methylated analogue and a totally amorphous character

for the block oligomer. This synthetic approach was then ex-
tended to ionic cellulose analogues, bearing amino groups

and/or carboxylic acids.[68] Structural analysis reveals how the
charge pattern affects glycan conformation.

Different classes of oligo- and polysaccharides resembling

natural and unnatural structures were synthesized with
AGA.[10b] MD simulations and NMR analysis indicate that each

oligomer presents a different geometry and flexibility. For ex-
ample, a a-1,6-oligomannoside adopts a flexible linear struc-
ture in water, while the analogue b-1,6-oligoglucoside displays

a more compact helical structure (Figure 16). The synthetic ap-
proach permitted the synthesis of 13C-labeled analogues, ena-

bling NMR analysis. A 13C6-labeled glucose unit was inserted in
specific position of the hexasaccharide chain, allowing for the

measurement of J-couplings that confirmed the MD model.
Glycosaminoglycans (GAGs) are an important class of struc-

tural materials, with vital biological roles in mammals.[69] GAGs
are negatively charged polysaccharides composed of disac-
charide repeating units. Hyaluronate (HA), chondroitin sulphate

(CS), dermatan sulphate (DS), keratan sulphate (KS), heparan
sulphate (HS) and heparin are the most common GAGs. Their

structural diversity and conformational flexibility hampers their
structural analysis. Chemical strategies to access well-defined

structures are still very labor demanding,[70] and big collections

of related synthetic GAGs are not yet available. In addition,
their densely distributed charges drastically influence their in-

teraction with water and metal ions, often resulting in the for-
mation of gels.[71] Most GAGs are calculated to exhibit left-

handed helices, except for chondroitin and dermatan sulfate,
which display a right-handed helical structure. Fragments of

Figure 14. Tailor-made cellulose oligosaccharides bearing specific modifica-
tions and representative oligosaccharides conformations as obtained by MD
simulations. Reproduced from Ref. [67] . Copyright, 2019, The Authors. Pub-
lished by Wiley-VCH Verlag GmbH & Co. KGaA.

Figure 15. Representative conformations of a cellulose oligomer (A6) and
two methylated analogues obtained from MD simulations. Powder XRD
analysis and solubility test show differences in the aggregations of these
compounds. The chemical structure of the monosaccharides A and B is re-
ported in Figure 14. Reproduced from Ref. [67] . Copyright, 2019, The Au-
thors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Chem. Eur. J. 2020, 26, 9814 – 9825 www.chemeurj.org T 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim9822

Chemistry—A European Journal
Minireview
doi.org/10.1002/chem.202001370

http://www.chemeurj.org


chondroitin and hyaluronan were used as models to identify
the highly dynamic intramolecular H-bonds responsible for

their conformation.[72] Most structural studies on GAGs oligo-
mers are focused on local conformational changes. While most

monosaccharides maintain a fixed chair conformation (i.e. , 4C1

and 1C4), l-iduronic acid, found in heparin and heparin sul-
phate, adopts several conformations. NMR analysis of a syn-

thetic pentasaccharide identified an unusual 2S0 skew-boat
conformer as the major conformer of l-iduronic acid.[73] To un-

derstand the biological meaning of this abnormal conforma-
tion, three pentasaccharides were synthesized with the l-idur-

onic residue locked into the 4C1, 1C4, or 2S0 conformations

(Figure 17).[74] Only the 2S0-locked pentasaccharide strongly
binds to antithrombin and potentiates the inhibition of the

blood coagulation protease factor. This unambiguously dem-
onstrates that the 2S0 skew-boat geometry is necessary for the

control of blood coagulation. The importance of the 2S0 confor-
mer was further investigated by using NMR experiments, crys-
tallography, and computational methods, ultimately resulting

in the visualization of the 2S0 conformer by X-ray diffraction.[75]

The sulfation pattern also plays an important role in GAGs

conformation and dynamics. Fragments of hyaluronic acids
with different sulfation patterns (sHA) were synthesized and

covalently linked to a surface.[76] Electrochemical impedance
spectroscopy (EIS) suggested that the interaction between

GAGs and metal ions is governed by the sulfation pattern
rather than by the glycan core.

Summary and Outlook

For years, the complexity and inherent flexibility of glycans has
hampered their conformational analysis. As a result, our knowl-

edge of carbohydrate structures dwarf in comparison to that
of peptides and proteins. Recent discoveries have given a new

impetus to the structural analysis of glycans, showing that gly-

cans can adopt defined secondary structures.[10b, 16a] Chemical
synthesis has produced well-defined materials to simplify the

analysis.[11] Several automated techniques are now available for
the quick production of collections or related oligomers, as

ideal probes for systematic structural studies.[10a, 77] Powerful
NMR spectrometers have enabled detailed analysis, requiring a

minute amount of compounds.[14a] These data is vital for the

developments of reliable computational methods.[15a] Still,
structural analysis of carbohydrates is far from being routine in

most synthetic laboratories.
Collaborative efforts between synthetic and analytical ex-

perts have proven that even relatively short oligosaccharides
can adopt defined conformations. These structural features

play an important role in protein recognition and can be ex-

ploited for the design of more potent glycomimetics.[12] To this
end, chemical strategies able to disrupt or stabilize particular

conformations need to be developed. The conformational
space accessible by an oligosaccharide define its aggregation,

strongly influencing the carbohydrate material properties.[67] A
better understanding of these interactions could drive the cre-
ation of carbohydrate materials by design.

To date, most analytical techniques produce ensemble-aver-
aged results and might neglect important structural features
responsible for a particular activity. Novel single-molecule
imaging techniques can overcome this limitation and allow for

definitive structure–function correlations.[78] A cooperative
effort between synthetic, analytical and computational chem-

ists is required to ultimately understand glycans at the molecu-
lar level.
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