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Planar cell polarity and anisotropic cell behavior play critical roles in large-scale epithelial
morphogenesis, homeostasis, wound repair, and regeneration. Cell–Cell communication
and mechano-transduction in the second to minute scale mediated by E-cadherin
complexes play a central role in the coordination and self-organization of cellular
activities, such as junction dynamics, cell shape changes, and cell rearrangement.
Here we review the current understanding in the interplay of cell polarity and cell
dynamics during body axis elongation and dorsal closure in Drosophila embryos with
a focus on E-cadherin dynamics in linking cell and tissue polarization and tissue-scale
shape changes.

Keywords: Drosophila embryonic epithelium, DE-cadherin, planar polarity, non-muscle myosin-II, tissue-scale
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INTRODUCTION

Epithelia constitute the surface of organs in multicellular organisms and the units of many
morphogenetic processes. Epithelial cells adhere to one another to form two-dimensional sheets
and constitute permeability barriers for compartmentalization of the body, which is essential for
the physiology and protection of the organs and even the whole organisms. Despite their physical
integrity and stability, epithelial sheets are intrinsically dynamic and able to restructure in a time
scale as fast as minutes (Gumbiner, 1992; Leptin, 1994; Lye and Sanson, 2011; Lv et al., 2019).
During morphogenesis, epithelia undergo tissue-scale morphology changes, such as extension,
closure, invagination, tubulation, and wrapping. Underlying those morphogenetic processes are
cellular activities such as junction remodeling, cell shape changes, and cell rearrangement.

Planar polarity is based on molecular asymmetries within the epithelial sheet and cells and
impinges on the cellular activities leading to tissue-scale shape changes. Cell junctions are at the
center of the transition from cells to tissue. The mechanical link between is constituted by adherens
junctions with E-cadherin (E-cad)–catenin complexes as the central component. Together with
numerous associated proteins varying between cell types and developmental stages, the E-cad
complex provides a mechanical link between the actomyosin networks of adjacent cells and
coordinates their activities via mechanotransduction (Maître and Heisenberg, 2013; Leckband and
de Rooij, 2014; Charras and Yap, 2018).

In this review, we will focus on recent progress in two processes of Drosophila embryogenesis,
i.e., germband extension and dorsal closure. With these two case studies, we will discuss how cell
and tissue polarization are coordinated to give rise to tissue-scale changes in visible morphology.
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DROSOPHILA EMBRYONIC EPITHELIUM

The first epitheliogenesis, termed cellularization, in Drosophila
development is initiated when the zygotic genome is activated
at the transition from syncytial to cellular morphology (Schmidt
and Grosshans, 2018). Cell polarization and epithelial sheet
formation are intrinsically linked during cellularization. As the
plasma membrane ingresses, the cell cortex becomes polarized
as visible by segregation of cortical markers. Initially assembling
into spot junctions distributed along the lateral furrow, the
E-cad–catenin complex coalesces into unmatured adherens
junctions at the typical subapical position only by the end of
cellularization. During gastrulation, the epithelial epidermis
undergoes stage and position-dependent morphogenetic
movements, such as tissue invagination (Leptin, 2005; Martin,
2020), folding (Wang et al., 2012), convergent extension (Kong
et al., 2017; Paré and Zallen, 2020), compartmental boundaries
formation (Sharrock and Sanson, 2020), and dorsal closure
(Hayes and Solon, 2017; Kiehart et al., 2017) to name the
most prominent ones.

DE-CADHERIN AND ADHERENS
JUNCTIONS

Drosophila E-cadherin (DE-cadherin, DE-cad), known as
Shotgun (Shg) in Drosophila, was identified as Armadillo
(β-catenin) associated glycoprotein (Oda et al., 1994) and by
the zygotic lethal mutation shotgun (Tepass et al., 1996; Uemura
et al., 1996). Similar to classical cadherins in vertebrates, DE-cad
is a single-transmembrane protein with seven cadherin repeats
at its extracellular N-terminal region, followed by a cysteine-
rich region, an EGF-like region and a laminin G domain.
The cytoplasmic part contains binding sites for p120-catenin
(Myster et al., 2003) and β-catenin (Pai et al., 1996), which
leads to the assembly of the stereotypic cadherin–catenin
complex at the core of adherens junctions (Figure 1A). DE-
cad is proteolytically cleaved at its cysteine-rich region into
two fragments after translation. The two fragments remain
associated, however, via non-covalent interactions to form
the mature protein (Oda and Tsukita, 1999). E-cad molecules
undergo stable Ca2+-dependent homotypic interactions in trans
between adjacent cells (Oda et al., 1994). The mammalian E-cad
contains five cadherin repeats at its N-terminal portion. Of
these, the most N-terminal-most cadherin domain engages in
homophilic binding. In Drosophila, the four N-terminal-most
cadherin domains have been reported to mediate the trans
interaction (Figure 1B) (Nishiguchi et al., 2016). Beside the
polypeptide backbone, post-translational modifications, such as
glycosylation and phosphorylation, are essential for the functions
of DE-cad and epithelial morphogenesis (Zhang et al., 2014;
Chen et al., 2017).

In the fertilized egg and syncytial stage, DE-cad is more
or less uniformly distributed within the plasma membrane
and intracellular vesicles. The first junctions involving DE-
cad are observed during cellularization (Cox et al., 1996;
Müller and Wieschaus, 1996). Generic adherens junctions at

a subapical position with an F-actin belt form and mature
during late cellularization and gastrulation (stage 7–9), when
the DE-cad density increases and coalesces into clusters and
stable microdomains (Harris and Peifer, 2004; Cavey et al.,
2008; Truong Quang et al., 2013). Beside the Ca2+-dependent
interactions in trans, E-cadherin molecules bind to each other in
cis within the same lipid bilayer to form super-molecular clusters
(Figure 1B). Similar to mammalian cells (Engl et al., 2014; Wu
et al., 2015), the DE-cad clusters require interactions with F-actin
(Truong Quang et al., 2013). Non-muscle Myosin-II (Myosin-
II) dependent tensile forces promote DE-cad clustering at cell
contacts (Kale et al., 2018). However, the detailed mechanisms
by which the cell cortex impinges on the DE-cad clusters remain
elusive. In vitro studies revealed a function of the intracellular
cadherin–catenin complex as a force sensor. Mechanical forces
from actin cytoskeleton induce long-lived bonds in the cadherin-
catenin complex (Buckley et al., 2014) and promote binding of
the actin-binding protein Vinculin to α-catenin. In this way, a
self-reinforcing system is established to strengthen the linkage
between E-cad clusters and the actin cytoskeleton.

Armadillo is the Drosophila homolog of β-catenin, whose 13
copies of so-called Armadillo repeats are its characteristic feature
(Peifer and Wieschaus, 1990). The N-terminal region and the first
Armadillo repeat bind to α-catenin, while Armadillo repeats 3–
8 are necessary and sufficient for DE-cad binding (Orsulic and
Peifer, 1996; Pai et al., 1996), thus generating a bridge between
the plasma membrane with E-cad and α-catenin with F-actin.

Within α-catenin, the VH1 domain mediates the interaction
with ß-catenin (Oda et al., 1993; Pai et al., 1996) and
the VH3 domain, binding to F-actin (Pokutta et al., 2008).
Vertebrate α-catenin undergoes a reversible force-dependent
change between two stable conformations (Choi et al., 2012;
Rangarajan and Izard, 2012; Yao et al., 2014; Charras and
Yap, 2018; Ishiyama et al., 2018). In the open conformation,
when force is applied, α-catenin is bound on the one side
to the Cadherin complex and the other side via the central
mechanosensitive modulatory (M) domain to the D1 domain
of Vinculin, thus bridging adherens junctions and F-actin. In
contrast, when no force is applied, α-catenin changes into closed
conformation with an inaccessible M-domain. In the closed
conformation, α-catenin binds only to the Cadherin complex
but not to Vinculin and its associated F-actin (Figure 1A). In
Drosophila embryos, Vinculin colocalizes with E-cad (Kale et al.,
2018), which is promoted by intracellular contracting forces and
reduced following tissue relaxation (Kong et al., 2019).

p120-catenin is involved in endocytosis of the dynamic
E-cadherin and Bazooka complexes in Drosophila embryos
(Bulgakova and Brown, 2016). Binding of p120-catenin also
appears to be mechanosensitive as recent research from
Drosophila wing epithelium. In this system, p120-catenin is
involved in E-cadherin turnover and epithelial viscoelasticity
(Iyer et al., 2019). The numerous proteins associated with
adherens junctions beyond the core complex have been discussed
and reviewed by Harris (2012), for example.

In summary, adherens junctions with the E-cad–catenin
complex at its core link the actin cytoskeletons of two
neighboring cells in an epithelium (Figure 1). Spatial and
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FIGURE 1 | Drosophila embryonic epithelium. (A) The cadherin–catenin complex in Drosophila (modified from Harris, 2012). The single-transmembrane protein,
DE-cadherin mediates cell–cell adhesion through homophilic interactions between its extracellular domain. In contrast, its cytoplasmic domain binding with
p120-catenin, β-catenin, and α-catenin as cadherin–catenin complex forms the core of adherens junctions. Protein domains and interacting regions are indicated.
(B) Confocal image of lateral epithelium from an embryo expressing E-Cad-GFP, scale bar is 10 µm. The close-up view on the bottom shows the adherens junctions
and DE-cad clusters in Drosophila epithelium. DE-cad forms the adherens junctions via homophilic binding of N-terminal-most four extracellular cadherin domains,
while the cytoplasmic domain binding with actomyosin network via Arm/ß-catenin and α-catenin.

temporal modulation of the complexes is a central feature of
dynamic epithelia during embryogenesis.

GERMBAND EXTENSION: FROM
ANTERIOR–POSTERIOR PATTERN TO
PLANAR POLARITY TO CELL
INTERCALATION

Drosophila germband extension serves as a paradigm for axis
elongation by convergence and extension of an epithelial sheet
(Figures 2A–C) (Kong et al., 2017). During germband extension,
the lateral epidermis increases its length more than two-fold
along the anterior–posterior (AP) axis, while correspondingly
narrowing along the dorsal–ventral (DV) axis. The elongation
of the tissue is largely due to polarized cell rearrangement by
neighbor exchanges (Figures 2A–C) (Irvine and Wieschaus,
1994), whose key process is junction remodeling similar to
a topological T1 transition (Figure 2C) (Weaire and Rivier,
1984). T1 transitions consist of two phases: (1) collapse of a
junction (DV orientation, AP interfaces) leading to fusion of
two 3x vertices into a single 4x vertex and (2) expansion of a
new junction in perpendicular orientation (AP direction, DV
interfaces) creating two new 3x vertices out of the transient
4x vertex (Figure 2C) (Bertet et al., 2004). A complex variant

of T1 transitions, rosettes, are observed later in germband
extension when multiple junctions collapse simultaneously to
generate multiple fold vertices (rosette), which subsequently
resolved by the formation of multiple new junctions (Figure 2C)
(Blankenship et al., 2006).

Myosin-II and the junction-associated actomyosin network on
the one side and Baz/PAR-3 and adherens junction proteins on
the other side show a complementary and polarized distribution
at the junctions and thus reflect a planar polarity (Figure 2B)
(Bertet et al., 2004; Zallen and Wieschaus, 2004; Blankenship
et al., 2006). Myosin-II and F-actin, enriched at AP interfaces,
generate contractile forces leading to junction collapse (Bertet
et al., 2004; Zallen and Wieschaus, 2004; Blankenship et al., 2006;
Rauzi et al., 2008; Fernandez-Gonzalez et al., 2009). The force
is probably generated by a flow of contractile filaments away
from the adherens junctions at the apical cortex (medial). In an
isotropic case, this leads to apical contractions (Martin et al.,
2009; Kong et al., 2019). In the planar polarized situation of the
lateral epidermis, the force acts in an anisotropic fashion mainly
on the junctions with a DV orientation to induce a junction
collapse (Rauzi et al., 2010).

The cortical and junctional actomyosin network is the force-
generating machinery in the cell. Myosin-II exists as an inactive
hexametric complex, consisting of two heavy chains, two essential
light chains (ELC) and two regulatory light chains (RLC)
(Hartman and Spudich, 2012). The Rho signaling pathway
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FIGURE 2 | Two tissue-scale shapes change events during Drosophila embryogenesis. (A–C) Germband extension. (A) Schematic drawing of germband extension.
(B) Polarized planer polarity of the lateral epidermis during germband extension. Myosin-II is enriched explicitly at AP interfaces, and Bazooka/PAR-3 is enriched at
DV interfaces conversely in the intercalating cells. (C) Schematic representation of a simple and rosette-type T1 transition. (D–F) Dorsal closure. Schematic drawing
of dorsal closure. Images modified from Hartenstein (1993) (D). It involves two different types of epithelial tissues and their coordination: amnioserosa (yellow) and
epidermal cells (E). Confocal image of an embryo expressing E-Cad-GFP. The magnified view on the right shows the interface of amnioserosa and epidermal cells.
The blue arrows indicate cell contraction. The leading edge cells polarize by the accumulation of filamentous actin and myosin II at the epidermis–amnioserosa
interface in the form of an F-actin cable. (F) Time series of an embryo expressing E-Cad-GFP shows the shape of surrounding epidermal cells elongates along the
dorsal–ventral axis during dorsal closure. The red arrows indicate the movements of epidermal cells during dorsal closure.

is essential for this polarization in the lateral epidermis and
Myosin-II activity. Myosin-II is activated by phosphorylation of
the RLCs by Rho-kinase (Rok) among other protein kinases.
During germband extension, Rok is enriched at AP interface
(de Matos Simões et al., 2010), and activated by the G protein-
coupled receptor (GPRC)-Rho1 signaling (Kerridge et al., 2016),
involving Dp114RhoGEF and the subunits of trimeric G proteins,
Gβ13F/Gγ1 (De Las Bayonas et al., 2019). The asymmetry in
Rho1 and Rok activation leads to polarized Myosin-II activation
at AP junctions (de Matos Simões et al., 2010; Simões et al.,
2014). Ligands of the FGF family control the assembly of
rosette-like mechanosensory organs in the migrating lateral line
primordium of the zebrafish (Lecaudey et al., 2008; Nechiporuk
and Raible, 2008). It was revealed that Fgfr-Ras-MAPK signaling
is required for apical constriction via apical positioning of Rho-
associated kinase (Harding and Nechiporuk, 2012), which could
be a potential further mechanism for acto-myosin activation
during Drosophila germband extension. In parallel Rho1 also
activates the formin Diaphanous (Dia), which initiates DE-cad
endocytosis leading to depletion of α-catenin (Levayer et al.,
2011) and Baz/PAR-3 at AP interface (de Matos Simões et al.,
2010; Simões et al., 2014).

The initial signal for polarization is provided by the striped
expression of anteroposterior patterning genes (Irvine and
Wieschaus, 1994). The striped and staggered expression of the

primary pair-rule genes, runt, eve, and paired imposes a planar
polarity on the tissue, which guides the orientation of T1
transitions and thus the directionality of cell intercalation. AP
patterning of Drosophila embryo is controlled by a hierarchical
genetic cascade starting with localized maternal determinants to
the zygotic gap, pair-rule, and segment polarity genes (Nasiadka
et al., 2002). The link between patterning genes and planar cell
polarity is mediated by members of the Toll receptor (protein)
family (Paré et al., 2014). The staggered expression of primary
pair-rule genes induces a corresponding stripe-like expression
of Toll-2, 6, 8 (Eldon et al., 1994; Kambris et al., 2002).
Heterophilic interfaces at the AP interfaces between these Toll-
2,6,8 proteins, lacking at DV interfaces, induce specific signaling
different between AP and DV interfaces (Paré et al., 2014;
Tetley et al., 2016). The molecular link between Toll receptors
and Myo-II may be provided by the adhesion GPCR Cirl,
which can bind to Toll-8 (Lavalou et al., 2020). The Toll-8-Cirl
complex self-organizes to generate local asymmetric interfaces
which are essential for planar polarizations of contractile
interfaces. In addition to Toll-Rho signaling, the classical planar
polarity system involving Frizzled and which mediates planar
polarity in wings and eye imaginal discs may also be involved
in germband extension (Yang and Mlodzik, 2015). Although
Frizzled was reported to be enriched on vertical junctions
during cell intercalation (Warrington et al., 2013), neither the
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Frizzled nor the major Wnt effector Disheveled appears to be
required for germ-band extension (Zallen and Wieschaus, 2004;
Warrington et al., 2013).

DORSAL CLOSURE

Dorsal closure is another prominent morphogenetic process in
Drosophila embryogenesis (Figures 2D–F) (Hayes and Solon,
2017; Kiehart et al., 2017). Dorsal closure involves two types
of epithelial tissues and their coordination, i.e., the squamous
amnioserosa and the columnar dorsal–lateral epidermis. After
germband retraction, the extraembryonic amnioserosa bridges
the left and right sheets of the dorsal epidermis (Figure 2E).
Within about 4 h, the two lateral epidermal sheets on both
sides of the embryo move toward the dorsal midline while the
amnioserosa retreats and finally disappears (Figure 2D). The
mechanical forces for the directed movement are provided from
both tissues and their interface. The squamous amnioserosa
cells display pulsatile isotropic contractions which lead to very
regular oscillations of the cross-sectional area. On the tissue scale,
the oscillations balance out each other due to their asynchrony
during the stationary phase preceding dorsal closure. During
dorsal closure, however, the contractions take over and lead to
a gradual decrease of the total area of the amnioserosa. The
decreasing area is compensated or promoted by the movement
of the adjacent epidermis. Given several recent excellent reviews
on the role of the amnioserosa cells (Hayes and Solon, 2017;
Kiehart et al., 2017; Perez-Vale and Peifer, 2020), we will focus
on the surrounding epidermis for the closure process in the
following paragraphs.

The interface between the two tissues plays an important role.
The dorsal-most epidermal cells, the leading edge cells, polarize
by an accumulation of F-actin at the interface between their
dorsal edge and the amnioserosa interface, which generates a
prominent and contractile F-actin cable (Figure 2E) (Young et al.,
1993; Kiehart et al., 2000). Meanwhile, the leading edge cells
dramatically elongate along the DV direction as if they were
pulled by the amnioserosa (Figure 2F) (Jacinto et al., 2002). This
notion has remained untested. Both models are conceivable. In
the passive model, the elongation of epidermal cells is due to
pulling by the amnioserosa cell/actin cable contractions. In the
active model, the epidermal cells elongate by an autonomous
mechanism within the epidermis and thus generate a pushing
force. A combination of both models would also be possible.

Tissue restricted Myo-II depletion in the amnioserosa or
surrounding epidermis revealed that the Myo-II dependent
contractions within the amnioserosa tissue but not actin cable
are required for dorsal closure (Pasakarnis et al., 2016). However,
the kinetics of the overall closure process appeared slower when
Myo-II was depleted in the epidermis. Myo-II depletion in
epidermis affects the contractility of all cells of the epidermis, not
only the leading edge cells and the actin cable. Yet unidentified
autonomous mechanisms could be affected within the epidermis.
It is worth noting that Myo-II depletion specifically within the
amnioserosa, also affected the actin cable structure (Pasakarnis
et al., 2016). In these embryos, the actin cable initially formed

but the cable structure disassembled partially during dorsal
closure. These observations suggest a role of amnioserosa cell
contractions for the cable structure. The elongation of epidermal
cells might be due to pulling by the actin cable tension. The
tension along the actin cable increases steadily over time, as
revealed by the recoil velocity following UV laser-induced
junction cutting (Saias et al., 2015). Opposing a role of the
actin cable comes from the analysis of Zasp52 mutants embryos,
which lack any actin cable but undergo an apparently normal
dorsal closure (Ducuing and Vincent, 2016). Interestingly, the
elongation of epidermal cells is still observed in Zasp52 mutants.
These observations suggest that the elongation of epidermal cells
is not only due to pulling by the actin cable.

ADHERENS JUNCTIONS AT THE
LEADING EDGE CELLS

Although the amnioserosa cells behave isotropically with respect
to their oscillations, the cell junctions at the interface are
polarized as seen not only by the actin cable but also by
the junction and junction-associated proteins. The epidermis
connects with amnioserosa cells via E-cad and integrin-mediated
adhesions (Narasimha and Brown, 2004). Reduced E-cad levels
impair cell contacts between leading edge cells and amnioserosa
(Gorfinkiel and Arias, 2007). Correspondingly interface defects
within the actin cable and edge cells of the amnioserosa
were observed in α-catenin mutant embryos, in which the
actin-binding domain was specifically deleted (Jurado et al.,
2016). Further actin-binding proteins associated with adherens
junctions were recently identified to localize at the interface.
Although Canoe and Polychaetoid are not essential for the actin
cable, the architecture and morphology of leading-edge cells were
impaired in embryos depleted for those proteins (Manning et al.,
2019). The Ajuba LIM protein (Jub), a force-sensitive protein, is
enriched at the interface, and loss of Jub enhances dorsal closure
defects in mutants defective for cell adhesion (Razzell et al., 2018).
This protein accumulates at adherens junctions under tension
and acts as a critical component of a negative-feedback loop,
which stabilizes and distributes tension at adherens junctions
at the interface (Rauskolb et al., 2019). These studies strongly
suggest that adherens junctions have fundamental functions in
adapting to mechanical forces and coordinate the tissue and cell
interactions leading to morphogenesis.

CONCLUSION AND REMARKS

Within the lateral epidermis during gastrulation, the AP
patterning system establishes a system of planar cell polarity,
which polarizes junctional and cytoskeletal dynamics and
subsequently directs cell rearrangement for the tissue-scale
changes in morphology. The finding that members of the Toll-
family of membrane receptors are involved in the polarization
of the tissue has started to open the black box of molecular
links between the transcriptional patterning machinery for
axis formation and the cell biological machinery of contractile
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actomyosin clusters and cell adhesion complexes (Paré et al.,
2014; Tetley et al., 2016; Lavalou et al., 2020). E-cad adhesion
complexes are at the core of mechanical coordination between
neighbors in epithelia. Its potential functions and the interactions
with contractile actomyosin networks and other interaction
partners provide ample options for fine-tuning sensory and
signaling functions.

Yet missing is an integrative systems-type analysis involving
mechanisms of coordination among the direct neighbors but
also long-ranging influences to second and third neighbors.
Analysis of the temporal and spatial coordination of the identified
contractile and adhesive activities will be needed for the step from
understanding the individual events such as a junction collapse to
the tissue-scale shape changes during morphogenesis. Drosophila
embryos provide a suitable and highly tractable system to study
such questions in vivo.

Beyond the individual tissue, polarized and anisotropic
tensions from the neighboring tissues have a potentially big
impact on morphogenetic processes. The anisotropic tension by
the posterior midgut during gastrulation pulls on the lateral
epidermis, which is visible by a corresponding AP stretching of
the cells during the onset of germband extension (Lye et al., 2015).
This anisotropic tension with a gradual increase toward the
posterior tip of the embryos transiently orientates newly formed
junctions (Collinet et al., 2015). During germband extension cell
stretching is diminished by cell rearrangement, even though the
polarized tension remains on the tissue scale (Collinet et al.,
2015; Lye et al., 2015). For a full understanding, it needs to
be investigated whether and how E-Cad complexes and its
interacting partners are involved in the coordination of local and
tissue-scale forces during epithelium morphogenesis.

Similar tissue interactions are essential for the morphogenesis
of the amnioserosa and dorsal closure. The two sheets of the

dorsal epidermis are exposed to an anisotropic tension from the
pulsating and contracting amnioserosa as well as the contractile
actin cable. Cell elongation occurs not only in the leading edge
cells but also in the further distant second and third and so
forth neighbors in the epidermis (Figure 2F). It has remained
unclear to which degree the elongation of the epidermal cells
contributes to the closure process. How does the dorsal epidermis
respond to and coordinate the polarized anisotropic tension with
the cell shape changes? Adherens junctions and the binding
proteins could be the potential candidates. For example, Arf-
GEF Steppke is recruited to the myosin-rich adherens junction
via coiled-coil heterodimerization with an adaptor protein, where
the complex downregulates junctional tension and facilitates
tissue stretching (West et al., 2017; Zheng et al., 2019). It is
worth expanding the research focus from the amnioserosa and
actin cable to the surrounding epidermis. As stated above the
numerous proteins and processes associated with E-cad core
complexes provide ample options for regulation and fine-tuning
of morphogenetic processes.
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