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Lung macrophages are substantially distinct from other tissue-resident macrophages.
They act as frontier sentinels of the alveolar-blood interface and are constantly exposed to
various pathogens. Additionally, they precisely regulate immune responses under
homeostatic and pathological conditions to curtail tissue damage while containing
respiratory infections. As a highly heterogeneous population, the phenotypes and
functions of lung macrophages with differing developmental ontogenies are linked to
both intrinsic and extrinsic metabolic processes. Importantly, targeting these metabolic
pathways greatly impacts macrophage functions, which in turn leads to different disease
outcomes in the lung. In this review, we will discuss underlying metabolic regulation of lung
macrophage subsets and how metabolic circuits, together with epigenetic modifications,
dictate lung macrophage function during bacterial infection.
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INTRODUCTION

Macrophages are renowned for tightly regulating multiple functions via metabolic activities. Many
fundamental discoveries in macrophage immunometabolism were made by studying in vitro-
polarized classically- (M1) and alternatively- (M2) activated macrophages, also known as the M1
and M2 paradigm of macrophage activation (O’neill et al., 2016; Van Teijlingen Bakker and Pearce,
2020). Briefly, M1 macrophages use glycolysis for ATP generation that supports production of pro-
inflammatory cytokines. In contrast, M2 macrophages largely rely on mitochondrial oxidative
phosphorylation (OXPHOS) activity fueled by fatty acid oxidation (FAO) and glucose oxidation.
This area has been reviewed extensively elsewhere (Pearce and Pearce, 2013; O’neill et al., 2016;
O’neill and Pearce, 2016). While the M1 and M2 paradigm has provided greater understanding of
macrophage biology, this classification has no doubt oversimplified the actual complexity
of macrophage phenotypes and fails to fully recapitulate immunological functions of tissue-
resident macrophages in homeostasis and during in vivo infection. Macrophages in the lung
function as key regulators of host defense and homeostasis. As the most abundant immune cells in
the lung under homeostatic conditions, pulmonary macrophages are distinct from macrophages in
other tissues due to their constant exposure to foreign particles and various respiratory pathogens.
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Therefore, these cells must employ unique strategies to minimize
and resolve tissue damage induced by inflammatory responses,
while eliminating and/or tolerating insults, such as pathogens
and pathogen products. For instance, compared to other tissue-
resident macrophages, alveolar macrophages (AMs), the major
macrophage population in the lung alveolar space, are less able to
initiate effective immune responses as they express low levels of
MHCII, but high levels of regulatory molecules such as CD200R
and CD172a (Hussell and Bell, 2014). On the other hand,
interstitial macrophages (IMs), located in the lung interstitium,
express different cell surface proteins and have distinct
transcriptional profiles (Hussell and Bell, 2014; Gibbings et al.,
2017; Leach et al., 2020). In this review, we will discuss recent
findings regarding the metabolic reprogramming in lung
macrophages during bacterial infection and highlight cellular
metabolic pathways that influence infection outcomes.
ALVEOLAR MACROPHAGES AND
MITOCHONDRIAL METABOLISM

AMs are embryonically-derived and mainly arise from yolk sac
and fetal monocytes (Guilliams et al., 2013; Gomez Perdiguero
et al., 2015). Due to the uniqueness of their location, AMs are
soaked in fluid that contains high levels of surfactant. Pulmonary
surfactant, produced by type-II alveolar cells, is composed of
phospholipids and surfactant proteins (Trapnell et al., 2003). To
adapt to this lipid-rich environment, AMs express high levels of
peroxisome proliferator-activated receptor g (PPARg), a critical
transcription factor that regulates expression of genes involved in
lipid metabolism to catabolize surfactant (Baker et al., 2010)
(Figure 1). Mitochondria, the central hub of cellular signaling
pathways, function as the master regulators for energy
metabolism and effector functions in AMs under various
conditions. Murine AMs exhibit higher OXPHOS but lower
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glycolysis compared to bone marrow-derived macrophages
(BMDMs) and peritoneal macrophages in steady state
(Svedberg et al., 2019; Woods et al., 2020). A recent study
further demonstrated that disrupted mitochondrial
homeostasis impairs AM maturation and maintenance in vivo
(Gao et al., 2022) (Figure 1). The mitochondrial transcription
factor A (TFAM) is critical for mitochondrial transcription
initiation and DNA replication. Specific knockout of TFAM in
AMs impairs OXPHOS and mitochondrial fitness, and results in
a dramatic reduction in the number of mature AMs. While
TFAM deficiency does not influence AM development, it has a
profound effect on their proliferative capacity, leading to
accumulation of surfactants in the lung (Gao et al., 2022).
Moreover, the lung environment also influences AM
metabolism, as ex vivo-cultured AMs up-regulate expression of
genes involved in glucose uptake and glycolysis, whereas
peritoneal macrophages drastically reduce glucose uptake when
intranasally transferred to the lung (Svedberg et al., 2019). These
observations underpin the great impact of yet to be defined tissue
signals or cues from the lung niche on AM mitochondrial
metabolism and metabolic adaptations.
ALVEOLAR MACROPHAGE METABOLISM
DURING BACTERIAL INFECTION

Much o f ou r cu r r en t know l edg e r e g a rd i n g AM
immunometabolism in the context of bacterial infection has
resulted from studying Mycobacterium tuberculosis (Mtb)
infection. Being the first host cells that Mtb encounters during
infection, infected AMs promote Mtb dissemination to other
innate immune cells by relocating from airways to the
interstitium in an IL-1R-dependent manner (Cohen et al.,
2018). Use of Mtb reporter strains reveals that AMs are a
permissive cellular niche for Mtb growth during early stages of
FIGURE 1 | Lung macrophages exhibit distinguished metabolic pathways during bacterial infections. AMs reside in the alveolar space and express high level of
PPARg to promote FFA uptake and FAO. Nrf2 activation leads to mitochondrial fusion which in turn promotes OXPHOS in AMs. Additionally, TRAM-mediated
mitochondrial metabolism is essential for AM maintenance and function. Hif1a is the key transcription factor to promote glycolysis in AMs. b-catenin is required for
this process, at least during viral infection. AMs represent a permissive cellular niche for Mtb, likely because of the high FAO. Glycolysis inhibits intracellular Mtb
growth, whereas it promotes L. pneumophila replication. On the other hand, IMs originate from monocytes and control Mtb infection, largely due to the high
glycolytic activity mediated by Hif1a. b-catenin, however, promotes mitochondrial respiration in IMs. One subset of IMs expresses folate receptor, an indication of
their capability to utilizing folic acid. FFA, free fatty acids; FAO, fatty acid oxidation.
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infection (Huang et al., 2018). Such permissiveness appears to be
regulated by AM metabolism. Mtb-infected AMs increase fatty
acid uptake, display higher OXPHOS, and engage in FAO,
whereas monocyte-derived lung IMs that control Mtb growth
exhibit greater glycolytic activity (Huang et al., 2018). Inhibition
of FAO using etomoxir in BMDMs suppresses Mtb growth and is
associated with a reduction in expression of IFN-b, a detrimental
cytokine to Mtb (Mayer-Barber et al., 2014; Ji et al., 2019). These
data agree with a separate study demonstrating the pivotal role of
mitochondrial fatty acid metabolism in supporting type 1
interferon production by plasmacytoid dendritic cells (Wu
et al., 2016). In addition, oxfenicine and trimetazidine, two
FAO inhibitors, restrict Mtb growth in BMDMs similar to
carnitine palmitoyltransferase 2 (Cpt2)-deficient BMDMs
where FAO is prohibited (Chandra et al., 2020). Overall, both
pharmacological and genetic data highlight the critical role of
macrophage FAO in controlling Mtb, at least in vitro. While
blockade of FAO in BMDMs has been proposed to promote
recruitment of NADPH oxidase to autophagosomes to eliminate
Mtb (Chandra et al., 2020), the function of AM FAO remains
unclear during Mtb and other bacterial infections in vivo,
including pathways that may fuel mitochondrial metabolism in
AMs during infection.

Glycolysis is another major metabolic pathway that generates
ATP and is typically elevated in pro-inflammatory macrophages
during bacterial infection via pattern recognition receptor
signaling. Glycolytic metabolism is required for activation,
phagocytosis, and production of pro-inflammatory cytokines in
M1 macrophages (O’neill and Pearce, 2016). However, whether
AMs can engage in glycolysis in vivo is elusive. Murine AMs can
secrete IL-6 and TNF-a upon LPS stimulation. Unlike M1
macrophages, such pro-inflammatory responses are not
affected in glucose-free medium or when lactate dehydrogenase
(LDH) is inhibited (Woods et al., 2020). On the other hand,
human AMs skew metabolism toward OXPHOS with a high
glycolytic capacity (Gleeson et al., 2018). Mtb-infected human
AMs produce more lactate, the end-product of glycolysis, and
display impaired control of Mtb growth in glucose deprivation or
when blocking host LDH, indicating metabolic reprogramming
toward glycolysis (Gleeson et al., 2016). Importantly, increased
susceptibility to Mtb infection in smokers has been linked to the
attenuated glycolytic metabolism in AMs (Gleeson et al., 2018).
Moreover, extracellular flux analysis reveals Mtb infection
impairs glycolysis and drives mitochondrial stress in AMs by
inducing type 1 interferon (Olson et al., 2021). As the lung
environment substantially impacts AM metabolism, in vitro and
ex vivo analyses must be interpreted carefully. Notably, glycolysis
in AMs can be beneficial for bacteria during pulmonary
infections. For example, Legionella pneumophila , an
intracellular pathogen that mainly targets AMs and neutrophils
(Copenhaver et al., 2014), can secrete MitF effector, a GTPase
activator to induce mitochondrial fission in human monocyte-
derived macrophages. The fragmented mitochondria impair
OXPHOS and ultimately lead to elevated glycolysis that favors
L. pneumophila replication in macrophages (Escoll et al., 2017).
However, these results merit further validations in AMs in vivo.
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Mechanistically, several transcription factors have recently
been linked to regulation of AM function by promoting
metabolic reprogramming (Figure 1). Hypoxia-inducible
factor-1a (HIF-1a) is a key oxygen sensor that controls gene
expression to adapt cellular metabolism to hypoxia and
inflammation. Stabilization of HIF-1a in AMs with
dimethyloxalylglycine (DMOG) enhances expression of
enzymes that promote glycolysis and lead to a marked
reduction in OXPHOS (Woods et al., 2020). During Mtb
infection, HIF-1a is required for the metabolic shift to
glycolysis in macrophages and control of infection in vivo
(Braverman et al., 2016; Braverman and Stanley, 2017).
Harnessing HIF-1a using an iron chelator, desferrioxamine,
supports functions of primary human macrophages during Mtb
infection by promoting glycolysis that further boosts production
of IL-1b and TNFa (Phelan et al., 2020). Additionally, exposing
AMs to the HIF-1a stabilizer DMOG or the FAO inhibitor
etomoxir induces lipid droplet formation in the presence of Mtb
lipids (Genoula et al., 2020), consistent with another study
demonstrating an indispensable role of HIF-1a in lipid droplet
formation and maintenance in macrophages during Mtb
infection (Knight et al., 2018). Furthermore, many pathogenic
bacteria use virulence factors to target b-catenin signaling and
promote growth and disease progression (Silva-Garcia et al.,
2019). Traditionally, canonical b-catenin signaling is critical for
cell growth and proliferation (Valenta et al., 2012). However, b-
catenin can bind to HIF-1a which in turn promotes glycolysis
and suppresses mitochondrial metabolism in AMs following
influenza virus infection (Zhu et al., 2021). Therefore, this non-
canonical b-catenin-HIF-1a axis functions as a fine-tuning
regulator for balancing pro-inflammatory responses and self-
renewal of AMs through metabolic reprogramming.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is another
transcription factor that serves as a key regulator of cellular
metabolism (He et al., 2020; Ryan et al., 2022). Nrf2 can be
activated by itaconate, one of the most abundant metabolites in
LPS-stimulated macrophages, generated from cis-aconitate in
the mitochondrial Krebs cycle through expression and activity of
aconitate decarboxylase 1 (Acod1) (Mills et al., 2018). Activation
of Nrf2 in macrophages has been postulated as an essential
regulatory mechanism to limit inflammation during infection
(Thimmulappa et al., 2006; Athale et al., 2012). Some bacterial
species modulate Nrf2 activity to facilitate their own survival in
AMs. Coxiella burnetii (C. burnetii), the causative agent of
human Q fever, is well-known for using multiple strategies to
perturb host cell signaling that facilitates growth in a lysosome-
derived vacuole in macrophages. C. burnetii activates Nrf2
signaling by preventing its degradation and promoting
translocation to the nucleus in human AMs (Winchell et al.,
2018). Infected human AMs also increase production of
transglutaminase 2 and shift to an M2-like phenotype, a
preferred cellular niche for C. burnetii replication (Dragan
et al., 2019). In addition, a newly identified C. burnetii effector
protein, mitochondrial Coxiella effector protein C (MceC),
interacts with components of the mitochondrial quality control
machinery, highlighting the possibility of manipulating
July 2022 | Volume 12 | Article 934460
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macrophage metabolism to facilitate intracellular growth
(Fielden et al., 2021). Similarly, Mtb-infected AMs up-regulate
an Nrf2-associated gene signature (Rothchild et al., 2019).
Disruption of Nrf2 in myeloid cells and CD11c+ cells improves
control of Mtb growth and activation of AMs in mice (Rothchild
et al., 2019), in line with another study revealing that Nrf2
regulatory activity is mediated by blocking RNA polymerase II
recruitment to inhibit pro-inflammatory cytokine transcription
(Kobayashi et al. , 2016). Moreover, proteomics and
metabolomics analyses demonstrate that Nrf2 activation
promotes mitochondrial fusion and reprogramming of the
metabolic landscape in macrophages (Fielden et al., 2021).
Lastly, activation of Nrf2 enhances nutrient uptake, OXPHOS,
and glycolysis in myeloid-derived suppressor cells (MDSCs) and
contributes to MDSC expansion (Ohl et al., 2018). Altogether,
Nrf2 finetunes macrophage metabolism and likely bridges host
cell metabolism and bacterial infection. It remains unknown the
extent to which Nrf2 is required for bacterial infection-mediated
metabolic reprogramming of AMs, and the specific metabolic
pathways that Nrf2 targets during infection.
INTERSTITIAL MACROPHAGE
METABOLISM

Pulmonary IMs are monocyte-derived lung resident
macrophages with great heterogeneity of phenotypes and
functions. At steady state, at least two populations of IMs can
be identified based on differential expression of Lyve1, CD206,
MHCII, and CCR2 (Gibbings et al., 2017; Chakarov et al., 2019;
Schyns et al., 2019; Dick et al., 2022). Interestingly, the
anatomical niche harboring IMs subsets are distinct.
Lyve1lowMHCIIhi IMs are associated with nerves, whereas
Lyve1hiMHCIIlow IMs are near blood vessels, further indicating
divergent functions (Chakarov et al., 2019). Unlike AMs, the IM
metabolism is much less understood. Recently, expression of
folate receptor 2 (Folr2) has been shown in a subset of IMs across
organs, including the lung, highlighting the metabolic need for
folic acid in these cells (Dick et al., 2022). The folate cycle belongs
to one-carbon metabolism that provides methyl groups for
methylation reactions, synthesis of DNA, amino acids, and
phospholipids (Ducker and Rabinowitz, 2017). While the role
of one-carbon metabolism is not fully elucidated in innate
immune cells, a recent study demonstrated a pivotal role for
serine biosynthesis, part of one-carbonmetabolism, in promoting
M2 macrophage activation (Raines et al., 2022). Inhibition of
phosphoglycerate dehydrogenase (Phgdh) or knockout of
phosphoserine aminotransferase 1 (Psat1), two key enzymes in
serine biosynthesis, attenuates mitochondrial metabolism and
JMJD3-mediated histone demethylation to suppress
immunosuppressive M2 polarization in macrophages (Raines
et al., 2022). Moreover, increased Folr2 expression is associated
with M2 macrophage activation in tumors (Puig-Kroger et al.,
2009), consistent with the Folr2+ lung IM subset displaying
increased CD206 expression (Dick et al., 2022). Altogether,
these studies highlight a previously underappreciated metabolic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
pathway that regulates macrophage function and merits further
investigation of its role in lung IMs.

During early stages of Mtb infection, compared to AMs, IMs
are less permissive for Mtb, which is likely attributed to increased
glycolytic activity (Huang et al., 2018) (Figure 1). IMs fromMtb-
infected mice produce more lactic acid than AMs and exhibit
impaired production of IL-1b and TNFa upon glycolysis
inhibition, recapitulating metabolic signatures described in M1
macrophages (O’neill and Pearce, 2016; Huang et al., 2018).
However, IMs can incorporate and use exogenous long chain
fatty acids, indicating active mitochondrial metabolism (Huang
et al., 2018). Indeed, stimulating IMs with bacterial CpG leads to
IM expansion and elevated production of IL-10 (Sabatel et al.,
2017), a cytokine that can eliminate dysfunctional mitochondria
by autophagy and maintain mitochondrial integrity by
suppressing mTOR signaling in LPS-stimulated macrophages
(Ip et al., 2017). These data further underpin the essential role of
mitochondrial metabolism in IMs. Finally, mitochondrial
respiration in IMs can be specifically regulated by b-catenin
signaling activated by the endothelial cell-derived Wnt molecule
Rspondin3 in the LPS-induced lung injury model (Zhou et al.,
2020). While these data highlight active crosstalk between IMs
and structural cells in the lung, whether this mechanism is
triggered during bacterial infection needs further examination.
Altogether, IM metabolism is context-specific and highly plastic.
Given their heterogeneous nature, diverse metabolic profiles may
reflect distinct metabolic signatures in different IM subsets.
TRAINED IMMUNITY IN
LUNG MACROPHAGES

Trained immunity is an emerging field that integrates cellular
functionality, metabolism, and epigenetic regulation of
macrophages. This version of immunity consists of long-term
functional reprogramming of innate immune cells, particularly
macrophages, that leads to a more robust, yet non-specific,
response to secondary insult. Altered functionality of trained
macrophages is now believed to be mediated by metabolic
reprogramming and sustained changes in epigenetic
modifications (Netea et al., 2020). Initially, many studies in this
field were performed in vitro. However, recent studies using in vivo
models demonstrate that trained immunity can be induced at
multiple levels, including in the bone marrow and in resident lung
macrophages (Figure 2). For example, intravenous injection of
Bacillus Calmette-Guérin (BCG) leads to transcriptional profile
changes in hematopoietic stem cells that induce an enhanced
myelopoiesis in the bone marrow (Kaufmann et al., 2018). BCG
injection elicits stronger protective responses against Mtb
infection in a monocyte-dependent manner, suggesting pre-
programmed alteration of monocyte precursors in the bone
marrow upon BCG stimulation (Kaufmann et al., 2018).
Intraperitoneal injection of mice with b-glucan also induces a
comparable response in the bone marrow and promotes a
protective response against Mtb infection (Moorlag et al., 2020).
It is still unclear whether systemic administration of BCG or b-
July 2022 | Volume 12 | Article 934460
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glucan induces trained immunity in tissue resident cells at specific
mucosal sites. In a separate study, AMs reprogrammed by
inoculation of an adenoviral vaccine exhibited sustained
protection against Streptococcus pneumoniae infection (Yao
et al., 2018). Trained AMs display enhanced activation, cytokine
production, and glycolysis that relies on CD8+ T cell-derived IFNg,
underscoring a cooperative network between trained and adaptive
immunity (Yao et al., 2018). Moreover, not all inflammatory
stimulation triggers development of trained immunity in AMs.
Primary pneumonia induced by bacteria or influenza virus can
induce AM paralysis characterized by significantly reduced
phagocytosis upon secondary challenge (Roquilly et al., 2020).
AM paralysis is associated with altered histone H3 Lys27
acetylation in NF-kB-regulated genes (Roquilly et al., 2020).
Interestingly, paralyzed AMs still produce lactate upon LPS
stimulation, indicating active glycolysis (Roquilly et al., 2020).
While the specific metabolic pathways that mediate these
responses remain unclear, mitohormesis triggered by TLR-
dependent mitochondrial ROS and reactive electrophilic species
may promote macrophage tolerance (Timblin et al., 2021).
Additionally, whether trained immunity confers protection
against infection by inducing alteration of macrophage ontogeny
merits further investigation. Influenza infection induces
generation of persistent CCR2+ monocyte-derived AMs that
exhibit chromatin accessibility and transcriptional profiles
distinct from resident AMs (Aegerter et al., 2020). Importantly,
monocyte-derived AMs have reduced lipid metabolism and are
more protective against secondary bacterial infection, although
this protective signature wanes over time, suggesting re-adaptation
of macrophages to the lung environment (Aegerter et al., 2020).
This study highlights the importance of macrophage origin as a
novel determining factor of trained immunity.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
DISCUSSION

The location of lung macrophages warrants unique phenotypic and
metabolic heterogeneity when encountering pulmonary bacteria,
which provide numerous potential targets for therapeutics and
novel vaccine strategies. However, many remaining questions
need to be addressed in this exciting new field. One should be to
interrogate crosstalk between lung macrophages and structural cells
during bacterial infection. A recent study demonstrated the central
role of the alveolar epithelium in communicating with lung immune
cells across the airway and enhancing glycolysis-dependent
inflammation in monocytes to promote antibacterial defense (Liu
et al., 2020), implicating the impact of extrinsic signaling of non-
immune cells on lung macrophage metabolism. Moreover, our
current method for lung macrophage extraction may have a
substantial impact on metabolism and also lead to a loss of spatial
location. Indeed, use of Mtb reporter strains reveals differential
replication of bacteria at the core and cuff of lung granulomas (Lavin
and Tan, 2022), which demonstrates the importance of considering
spatial relationships of host-bacteria interactions and the possibility
of using bacterial reporters to probe lung macrophage metabolism
in situ (Macgilvary and Tan, 2018). Finally, one of the most
important perspectives is to translate our discoveries into human
treatments. We must better understand underlying metabolic
regulation of human lung macrophages during bacterial infection
using novel platforms such as primary human lung macrophages or
human precision-cut lung slices (hPCLS) (Dragan and Voth, 2021).
Integration of these primary tissue platforms, reporter bacterial
strains, and metabolic analyses will no doubt greatly advance
understanding of lung macrophage metabolism and provide
insight on how to manipulate lung macrophage metabolism for
treating pulmonary bacterial infection.
FIGURE 2 | Trained immunity in lung macrophages promotes host defense against bacterial infection. Systemic administration of BCG or b-glucan activates HSC and
induces myelopoiesis in the bone marrow and generates trained monocytes/macrophages. Direct administration of various stimuli to the alveolar space also triggers trained
immunity in AMs, which is dependent on IFNg from CD8+ T cells. Monocytes are recruited to the inflamed lung and differentiate into monocyte-derived AMs, a population
which displays reduced lipid metabolism and enhanced bacterial killing. Trained lung macrophages alter chromatin accessibility and undergo extensive metabolic rewiring,
which result in elevated glycolysis and cytokine production to further promote bacterial clearance in the lung. HSC, homeostatic stem cell.
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