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When working in an unfamiliar online environment, it can be helpful to have an observer

that can intervene and guide a user toward a desirable outcome while avoiding

undesirable outcomes or frustration. The Intervention Problem is deciding when to

intervene in order to help a user. The Intervention Problem is similar to, but distinct

from, Plan Recognition because the observer must not only recognize the intended goals

of a user but also when to intervene to help the user when necessary. We formalize

a family of Intervention Problems and show that how these problems can be solved

using a combination of Plan Recognition methods and classification algorithms to decide

whether to intervene. For our benchmarks, the classification algorithms dominate three

recent Plan Recognition approaches. We then generalize these results to Human-Aware

Intervention, where the observer must decide in real time whether to intervene human

users solving a cognitively engaging puzzle. Using a revised feature set more appropriate

to human behavior, we produce a learned model to recognize when a human user is

about to trigger an undesirable outcome. We perform a human-subject study to evaluate

the Human-Aware Intervention. We find that the revised model also dominates existing

Plan Recognition algorithms in predicting Human-Aware Intervention.

Keywords: plan recognition, automated planning, behavior classification, intervention, human-aware intervention

1. INTRODUCTION

Even the best plan can go wrong. Dangers arise from failing to execute a plan correctly or as a
result of actions executed by a nefarious agent. Consider route planning where a driver is unaware
of upcoming road damage or a traffic jam. Or consider cyber-security where a user is unaware of
an unsafe hyperlink. In both, plans achieving the desirable goal have similar prefixes to those that
result in undesirable outcomes. Suppose an observer watches the actions of a user working in a
risky environment where plans may be subverted to reach an undesirable outcome. We study the
problem of how the observer decides whether to intervene if the user appears to need help or the
user is about to take an action that leads to an undesirable outcome.

We introduce Plan Intervention as a new computational problem and relate it to plan
recognition. The Plan Intervention problem can be thought of as consisting of two sub-problems:
(1) Intervention Recognition and (2) Intervention Recovery. In the Intervention Recognition phase,
the observer needs tomake a decision whether or not the user’s likely plan will avoid the undesirable
state. Thus, it is possible to argue that if the observer implements an existing state-of-the-art
plan recognition algorithm (e.g., Plan Recognition as Planning Ramırez and Geffner, 2009), then
intervention can take place when the likely goal of the recognized plan satisfies the undesirable state.
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In fact, using existing plan recognition algorithms to
identify when intervention is required has been studied in
several works (Pozanco et al., 2018; Shvo and McIlraith,
2020). A key strategy in these solutions is to reduce the
pending goal hypotheses set to expedite recognition. In
this paper, we propose a different approach to perform
recognition where the observer uses automated planning
combined with machine learning to decide whether the user
must be interrupted to avoid the undesirable outcome. Our
long term objective is to develop this intervention model as
an assistive teaching technology to gradually guide human
users through cognitively engaging tasks. To this end, for the
Intervention Recovery phase we want to enable the observer
to actively help the human user recover from intervention
and continue the task. We leave Intervention Recovery for
future work.

We show that the Intervention Problem carries subtleties
that the state-of-the-art Plan Recognition Algorithms do not
address where it is difficult for the observer to disambiguate
the desirable and the undesirable outcomes. We propose
two complementary solutions for Plan Intervention:
(1) Unsafe Suffix Intervention and (2) Human-aware
Intervention. We show that these two complementary
solutions dominate state-of-the-art plan recognition
algorithms in correctly recognizing when intervention
is required.

Typically, the state-of-the-art plan recognition algorithms
reconstruct plan hypotheses from observations. Ramırez and
Geffner (2009) and Ramırez and Geffner (2010) reconstruct
plan hypotheses by compiling the observations away and
then using an automated planner to find plans that are
compatible with the observations. Another approach generates
the plan hypotheses by concatenating the observations with
a projected plan obtained from an automated planner
(Vered and Kaminka, 2017). The costs of the reconstructed
plan hypotheses then lead to a probability distribution over
likely goals of the user. Existing plan recognition algorithms
require that prior probabilities of likely goals be provided
as input.

For intervention, providing goal priors is difficult because
certain facts about the domain are hidden to the user and
unintended goals may be enabled during execution regardless
of the priors. Furthermore, human actors may not construct
plans the same way as an automated planner. They may make
mistakes early on during tasks having a steep learning curve.
Partial knowledge about the domain may preclude the human
user from knowing the full effects of his actions or he may not
be thinking about the effects at all. Therefore, the observer may
not always be able to accurately estimate what the users are
trying to do.

We study two kinds of Intervention Problems. In
Unsafe Suffix Intervention, the observer uses automated
planners to project the remaining suffixes and extract
features that can differentiate between safe and unsafe
plans. We evaluate the recognition accuracy of Unsafe
Suffix Intervention on benchmark planning problems. In
Human-aware Intervention, the observer uses the observed

partial solution to extract features that can separate safe and
unsafe solutions. We evaluate the accuracy of Human-aware
Intervention on a new Intervention Planning benchmark called
Rush Hour.

The contributions of this paper are:

• formalizing the online Intervention Problem to determine
when to intervene;
• modeling the observer’s decision space as an Intervention

Graph;
• defining features to assess the criticality of a state using the

Intervention Graph and the sampled plans;
• extending existing benchmarks by Ramırez and Geffner

(2009; 2010) to incorporate Intervention and evaluating our
intervention approach for the extended benchmarks;
• introducing a new Plan Intervention benchmark domain

called Rush Hour. This is a cognitively engaging puzzle solving
task where a player moves vehicles arranged on a grid to clear
a path for a target vehicle.
• formalizing the Human-aware Intervention Problem for the

Rush Hour planning task and designing features to estimate
the criticality using behavior features derived from the
observed partial plan;
• presenting the results from a human-subjects study where we

collected human behavior on Rush Hour;
• extending an existing plan recognition model to the

Intervention Problem; and
• training and evaluating the classification models using Rush

Hour puzzle solutions collected from a human subject
experiment and showing that the approach works well for the
Rush Hour problem.

The rest of this paper is organized as follows. In Section 2,
we distinguish intervention from plan recognition. In Section 3
we define a general form of the Intervention Problem and
introduce three variants: (1) Intervention for a Single User,
(2) Intervention in the Presence of a Competitor and (3)
Human-aware Intervention. In Section 4, we present approaches
for Intervention for a Single User and Intervention in the
Presence of a Competitor, both of which use the Intervention
Graph and the sampled plans to recognize unsafe suffixes.
Section 5 presents our evaluation of Unsafe Suffix Intervention.
We compare the accuracy of our proposed algorithms against
the state-of-the-art plan recognition algorithms on planning
domains from the International Planning Competition (IPC).
In Section 6, we present Human-aware Intervention, that uses
machine learning to determine when to intervene. We introduce
a new planning domain called Rush Hour and study how human
users solve Rush Hour puzzle as a planning task. We discuss
the accuracy of Human-aware Intervention compared to the
state-of-the-art plan recognition algorithms when predicting
intervention for human users in Section 7. In Section 8,
we discuss the state-of-the-art in plan and goal recognition
and human user behavior classification. The discussion in
Section 9 presents our analysis on why plan recognition falls
short in solving Intervention Problems. Section 10 presents
the open questions for future research in designing human-
aware Intervention models. Section 11 details the human subject
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experiment we conducted to collect the data required for
Human-aware Intervention.

2. DISTINGUISHING INTERVENTION FROM
PLAN RECOGNITION

Wemodel intervention in environments where a user is trying to
achieve desirable goal(s), denoted d, while avoiding undesirable
outcomes, denoted u. Some environments include a competitor
who may also take actions in the world, but we assume the user is
not aware of the competitor’s actions.

We define the observer to be the intervening assistant agent.
An observer receives each action and decides whether to 1)
intervene, or 2) to allow the action to be executed. The observer
holds a history of previous observations H = (o1, o2, . . . , oi−1)
that indicate the actions executed by the user or competitor.
Based on these observations, the observer must decide the user
is about to do something unsafe (u) or is moving too far away
from a desirable goal (d) by creating a projection of possible
actions. We call such a projection a suffix. We denote a single
suffix projection as X and the set of projections as X3 because
there will usually be many projections.

At first glance, it might seem that intervention is a
variant of Plan Recognition for d and u. However, there are
several subtleties that make intervention unique, which we
now discuss.

• Intervention is an online problem. In most cases Plan
Recognition (e.g., Ramırez and Geffner, 2009, 2010; Sohrabi
et al., 2016a) is an offline problem; there are a few notable
exceptions (Mirsky et al., 2018). However, intervention is
inherently online and dynamic. The observer decides whether
to intervene (or not) every time the user(s) presents an
action oi. In order to make the decision, the observer
uses the observation history H, which contains accepted
actions. Intervention is a multi-agent problem as well. This
has ramifications in environments where the user and the
competitor compete to achieve close but different goals. With
intervention, the observer can help the user by accepting
actions into H that only help further the user’s goal. This is
not possible with offline Plan recognition.
• Agents may have distinct views of the problem. The user and

the competitor are modeled with different domain definitions.
The user wants to satisfy the desirable state (d), while the
observer wants to avoid the hidden undesirable state (u). The
competitor is trying to subvert the user’s goal by enabling
preconditions for u without the user’s knowledge. This follows
from many real world applications such as cyber-security,
where an attacker sends an email to trick the user into visiting a
phishing website and reveal a password.When the user and the
competitor (if present) reveal their plan(s) incrementally, the
observer needs to decide whether the revealed actions make
it impossible for the user to avoid state u considering the
plans from the user’s and the competitor’s domain definitions
collectively. Any action that make it impossible for the user to
avoid u must be for flagged for intervention.

We cannot assume that only the competitor’s actions will
satisfy u. In the cyber-security example, the attacker only sends
the click-bait email. The user, while executing routine tasks on
the computer, in fact follows the link and submits password
to the phishing web site satisfying u. If the plans for u and d
share a long common prefix, it may be difficult for the observer
to disambiguate between the goals in time to help the user
avoid u.
• Partitioned suffixes. The observer should allow the user to

pursue suffixes leading to d and intervene when actions are
presented from suffixes that get “too close” to u. Our key
insight is to model the “goals” of the user and competitor,
which justifies our use of planning to find these suffixes. The
observer needs to consider two kinds of goals that might
require intervention:

1. Cases where the user is headed toward an undesirable
outcome u. These cases can be solved by plan recognition.

2. Cases where the user unwittingly enables an undesirable
outcome u by taking actions toward a desired outcome
d. There is an inherent trade-off between intervening and
allowing the user some freedom to pursue d. Suppose that
some suffix Xu leads to u and suffix Xd leads to d. Then it
can happen that by simply following the plan leading to d,
the user enables u when there is enough overlap between
Xu and Xd. To manage these cases, we must consider plans
leading to both d and u together. We use the notation u∪ d
to identify when the satisfying d also satisfies u as a side
effect. A planning problem with u ∪ d as the goal must
generate plans that satisfy both u and d as solutions. The
recognition approach we present in this paper focuses on
identifying plan suffixes that satisfy d and also will satisfy u
as a side effect. Our approach relies on features extracted
from the planning problem representation to generate
learned models that can solve this recognition problem.

Partitioning the suffixes allows the observer to learn the
differences between the safe and the unsafe suffixes and
balance specific unsafe actions against allowing users to pursue
their goals. For example, in a malicious email attack such as
phishing, the user will still want to check email. When u and
d are too close, disambiguation based on plan cost may not be
sufficient (we will demonstrate with an example shortly).

• Goal priors cannot be estimated reliably. Plan Recognition
algorithms use a prior probability distribution over the goal
hypotheses to estimate the posterior probability of the likely
goals given the observations. We assume the user does not
intend to reach the undesired state u (i.e., prior probability
≈ 0). In contrast, a competitor does intend to achieve u (i.e.,
prior probability≈ 1). In general, if the priors are not accurate,
it can be difficult to disambiguate between plans that reach
desirable and undesirable goal states.

• Emphasis on suffix analysis. In Plan Recognition, the
observer usesH to derive the user’s likely plan.H can be either
an ordered sequence of actions (Ramırez and Geffner, 2009,
2010) or an ordered sequence of states (Sohrabi et al., 2016a).
Here, our approach deviates from existing plan recognition
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FIGURE 1 | In this Grid Navigation domain, a rational user who is unaware of

u, may choose to execute plans A, B, or C because they are of equal (optimal)

cost. Observer must recognize that intervention is required if the user is

executing plans B or C before u is satisfied.

problem formulation. In the first form of intervention, the
observer considers the remaining plans (i.e., suffixes) in safe
and unsafe partitions (instead of H) to learn to recognize
unsafe suffixes in order to help the user avoid u. We call the
first intervention model, Unsafe Suffix Intervention. In the
second form of intervention, the observer learns to recognize
that the user is not making progress toward d by analyzing
the H. However, in contrast to existing plan recognition,
which uses the plan cost to recognize the user’s plan, we use
domain-specific features to recognize in advance that the user’s
current plan will satisfy u. In the next phase of this work, we
intend to study how to enable the observer to help the user
recover from intervention to guide the user toward d. The
second intervention model is particularly useful when the user
is a human, who may not precisely follow an optimal plan.
Therefore, we call the second intervention model, Human-
aware Intervention.

We will present two examples for Unsafe Suffix Intervention.
The Grid Navigation domain example is used to illustrate
intervention with the user and observer. In the grid navigation
task illustrated in Figure 1, the user navigates from W1 to Z3
by moving vertically and horizontally and Y3 contains a pit
the user cannot see: d = (AT Z3) and u = (AT Y3). Plans
corresponding to paths A, B, C are all feasible solutions to the
user’s planning task. However, plans B and C are unsafe because
they satisfy {u ∪ d}.

Table 1 shows how an observer modeled as an offline Plan
Recognition agent will recognize the goals given observations
O for the Grid Navigation problem in Figure 1. Let us

TABLE 1 | Observer modeled as a plan recognition agent for the grid navigation

example in Figure 1.

O (Move w1 x1)
(Move w1 x1

Move x1 y1)

(Move w1 x1

Move x1 y1

Move y1 y2)

(Move w1 x1

Move x1 y1

Move y1 y2

Move y2 y3)

c(u|O)− c(u|O) 4− 4 = 0 4− 4 = 0 4− 4 = 0 4− 4 = 0

c(d|O)− c(d|O) 5− 5 = 0 5− 5 = 0 5− 5 = 0 5− 5 = 0

Most likely goal No decision No decision No decision Fail

assume that the observer implements the Plan Recognition as
Planning algorithm introduced by Ramırez and Geffner (2010)
to disambiguate between u and d. They show that the most
likely goal will be the one that minimizes the cost difference
c(g|O) − c(g|O), g ∈ {d, u}. For each incrementally revealed O
(shown in columns), the observer finds the most likely goal that
agrees with O. We assumed that the user is following a satisficing
plan to achieve goals. For the Grid Navigation example, the
observer cannot correctly disambiguate between d and u. More
importantly, the final last column satisfies u and it is too late for
the user to avoid u.

Now let us consider a situation where there may be some
additional agent. For example, in a cyber-security application,
a second agent may insert malicious code in a file to gain
access to a privileged information. More generally, we call this
additional agent a competitor, since it is not always the case
that they are “attacking” a user. The Blocks Word domain
example from Ramırez and Geffner (2009) is used to illustrate
intervention with the user, the competitor and the observer.
In the Intervention Problem illustrated in Figure 2A, the
competitor’s goal u = {(CLEAR C)(ON C U)(ON U T)}(i.e.,
CUT) and the user’s goal d = {(CLEAR C)(ON C U)(ON U
P)}(i.e., CUP). The user cannot recognize the block T (shown
in red). The competitor only modify the state of block T
and executes actions with the block T. As shown in the first
column, initially, all four blocks are on the table. Both the
user and the competitor incrementally reveal their plans. The
user’s and the competitor’s rows in Figure 2A show a reveal
sequence from left to right. The row for the table shows
the resulting states after each reveal. The observer needs to
recognize that when the competitor reveals STACK T P, it
becomes impossible for the user to avoid u. However, the user
may continue to reveal actions because he cannot recognize
the post-condition of STACK T P. The Yes labels in the
observer’s row indicate that intervention is required. Note that
in the Blocks Words example, d and u are distinct enough to
disambiguate early.

Table 2 shows how an observer modeled as an offline Plan
Recognition agent will recognize the goals for the Blocks
Words problem in Figure 2A. Similar to the Grid Navigation
example, the Plan Recognition agent implements the Plan
Recognition as Planning algorithm introduced by Ramırez and
Geffner (2010) to disambiguate between u and d. All other
assumptions in the Grid Navigation Plan Recognition task also
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FIGURE 2 | (A) User and competitor intervention modeled in the Blocks Words domain, where u = (CUT) and d = (CUP). (B) User and competitor intervention where

u = (BAD) and d = (TAD). Initially, all four blocks are on the table. An action in the user or competitor row indicates the Intervention Suffix. The Yes label in the

observer’s row indicates that intervention is required. The No label indicates that intervention is not required.

hold in this problem. The observer distinguishes u and d
somewhat better than the Grid Navigation example, because
the goals are different enough. The most likely goal identified
by the observer aligns with the Yes/No decisions in Figure 2A.
However, in the last reveal, the observer correctly identifies u
as the goal. However, the observer cannot help the user avoid
u in the final reveal because O satisfies u by definition of O in
Plan Recognition as Planning. With the proposed intervention
algorithms, which learn the distinctions between unsafe and
safe plans, we hope to improve the intervention recognition
accuracy for the observer, while allowing the user some freedom
to satisfy d avoiding u. Furthermore, by accepting actions that
only help the user advance toward d safely into the observation
history H, our intervention algorithm ensures that the user
avoids u.

3. DEFINING INTERVENTION PROBLEMS

In this section we outline our main assumptions (Section 3.1),
discuss the STRIPS planning model (Section 3.2), discuss an
important notion of direct or indirect actions leading to u
(Section 3.3), and define the general form of the Intervention

Problem as well as highlight the family of problems we study in
this paper (Section 3.4).

3.1. Preliminaries and Assumptions
Because the observer’s objective is to help the user safely reach
d, an intervention episode (i.e., a sequence of intervention
decisions) is defined from the initial state s0 until d is
satisfied. If the competitor is present, the observer decides
which actor’s presented action to process first, randomly. The
actor(s) take turns in presenting actions from their respective
domain definitions to the observer until the intervention
episode terminates.

We make some simplifying assumptions in this study.
Observability: The observer has full observability, and knows
about states d and u. u is unknown to the user. d is unknown
to the competitor. When we say unknown, it means that the
agent does not actively execute actions to enable the unknown
goal. The user cannot recognize the effects of a competitor’s
actions. Plans: The user follows a satisficing plan to reach d,
but may reach u unwittingly. There is a satisficing plan to reach
u ∪ d and we assume that it has a common prefix with a plan
to reach d. We assume that the user continues to present the
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TABLE 2 | Observer modeled as a Plan Recognition agent for the Blocks Words example in Figure 2A.

O (PICKUP U)
(PICKUP U

PICKUP T)

(PICKUP U

PICKUP T

STACK T P)

(PICKUP U

PICKUP T

STACK T P

STACK U T)

(PICKUP U

PICKUP T

STACK T P

STACK U T

PICKUP C)

(PICKUP U

PICKUP T

STACK T P

STACK U T

PICKUP C

STACK C U)

c(u|O)− c(u|O) 4− 4 = 0 8− 4 = 4 8− 4 = 4 8− 4 = 4 8− 4 = 4 8− 4 = 4

c(d|O)− c(d|O) 4− 4 = 0 6− 4 = 2 10− 4 = 6 16− 4 = 12 18− 4 = 14 20− 4 = 16

Most likely goal No decision d u u u Fail

observer with actions from his original plan even after the first
positive flag and does not re-plan. Competitor: When present,
the competitor only performs actions using objects hidden to the
user; this restriction follows from many security domains where
an attacker is a remote entity that sets traps and expects the user
to become an unwitting accomplice. The user and the competitor
are (bounded) rational agents.

3.2. The Intervention Model
We model the users in the intervention environment as STRIPS
planning agents (Fikes and Nilsson, 1971). A STRIPS planning
domain is a tuple D = 〈F,A, s0〉 where F is the set of fluents,
s0 ⊆ F is the initial state, and A is the set of actions. Each
action a ∈ A is a triple a = 〈Pre(a),Add(a),Del(a)〉 that
consists of preconditions, add and delete effects, respectively,
where Pre(a),Add(a),Del(a) are all subsets of F. An action
a is applicable in a state s (represented by subsets of F) if
preconditions of a are true in s; pre(a) ∈ s. If an action a is
executed in state s, it results in a new state s′ = (s\del(a)∪add(a)),
and defined by the state transition function γ (s, a) = s′. A
STRIPS planning problem is a tuple P = 〈D,G〉, where D is the
STRIPS planning domain and G ⊆ F represents the set of goal
states. A solution for P is a plan π = {a1, . . . , ak} of length k
that modifies s0 into G by execution of actions a1, . . . , ak. The
effect of executing a plan is defined by calling γ recursively:
γ (. . . γ (γ (s0, a1), a2) . . . , ak) = G.

The Intervention Problem requires domain models that are
distinct for the user, observer, and competitor. Let us define the
user’s domain model as Duser = (Fuser,Auser, s0). The competitor
can see the effects of the user but cannot take user actions. We
denote the domain model for the competitor as Dother = (Fuser ∪
Fother,Aother, s0). Although the observer can see the actions of
the user and the competitor, it does not execute actions. This
is because we are only focused on the recognition aspect of
the Intervention Problem. So the observer’s domain model is
Dobserver = (Fuser ∪ Fother,Auser ∪ Aother, s0).

3.3. The Unsafe Intervention Suffix and
Direct/Indirect Contributors
As seen in Section 2, when presented with an action, the observer
must intervene after analyzing the remaining plans considering u
and u∪ d. The Intervention Suffix analysis allows the observer to
identify the observations that help the user avoid u.

Definition 1 (Intervention Suffix). Let ak be an action that
achieves some goal g from state sk−1 (i.e., γ (sk−1, ak) = g). An
Intervention Suffix Xg = (a1, a2, . . . , g) is a sequence of actions
that starts in a1 and ends at g ⊂ {u, u ∪ d}.

Suppose that we want to determine a path to u where the
Intervention Suffix is Xu = (oi, . . . , u). By replacing g with u,
or u ∪ d, an automated planner can be used to generate an
Intervention Suffix. We use the set of Intervention Suffixes (X3),
where Xu,Xu∪d ∈ X3 generated by the Top-K planner (Riabov
et al., 2014) to evaluate Unsafe Suffix Intervention in Section 5.
We refer to a single suffix (i.e., plan) leading to u as πu and a set
of such plans as 5u. Similarly, we refer to suffixes leading to d
and avoids u as πd and a set of such plans as 5d.

Actions may directly or indirectly contribute to u. The
direct and indirect contributors express different degrees of
urgency to intervene. A directly contributing action indicates
that u is imminent and intervention must happen immediately.
An indirectly contributing sequence indicates that u is not
imminent, but intervention may still be an appropriate decision.
Next, we define directly contributing actions and indirectly
contributing sequences.

Definition 2 (Direct Contributor). A directly contributing
action acrit occurs in an undesirable plan πu ∈ 5u and execution
of acrit in state s results in a state s′ such that γ (s, acrit) = u.

Example of a directly contributing action. In the example
illustrated in Figure 2B, d = {(ON T A)(ON A D)}(i.e., TAD)
and u = {(ON B A)(ON A D)} (i.e., BAD). The user may
enable d when he reveals {(STACK USER A D)}, but at the
same time this create an opportunity for the competitor to reach
u first. However, the observer flags {(STACK COMPETITOR B
A)} for intervention (marked Yes) because the post-condition of
STACK B A satisfies u. Therefore, STACK COMPETITOR B
A is a directly contributing action.

Definition 3 (Indirect Contributor). An indirectly
contributing sequence qcrit is a totally ordered action sequence
in an undesirable plan in 5u and the first action in qcrit is
equal to the first action in the Intervention Suffix x1 ∈ Xu∪d.
Executing actions in qcrit from state s results in a state s′ such that
γ (s, qcrit) = {u ∪ d}.
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Example of an indirectly contributing sequence. Figure 2A

illustrates an indirectly contributing sequence. The totally ordered
sequence {STACK COMPETITOR T P, STACK USER U
T, PICKUP USER C, STACK USER C U} is an indirectly
contributing sequence because the actions in the sequence
together satisfies u ∪ d. Any Intervention Suffix Xg containing
actions from an indirectly contributing sequence must be flagged
for intervention.

We next formally define the Unsafe Intervention
Suffix Xunsafe.

Definition 4 (Unsafe Suffix). An Intervention Suffix X of length
k is unsafe if there is at least one action xi ∈ X(1 ≤ i ≤ |X|)
such that xi is a directly contributing action or xi is in a indirectly
contributing sequence.

In the example in Figure 2B, Xunsafe = (PICKUP USER
A, STACK USER A D, PICKUP COMPETITOR B, PICK
USER UP T, STACK COMPETITOR B A, u ) because of
the directly contributing action STACK COMPETITOR B A.
In the example in Figure 2A, Xunsafe = (PICKUP USER
U, PICKUP COMPETITOR T, STACK COMPETITOR T P,
STACK COMPETITOR T P, STACK USER U T, PICKUP
USER C, STACK USER C U, u ∪ d) because it contains the
actions from an indirectly contributing sequence.

3.4. The Family of Intervention Problems
We now define a general form of the Intervention Problem. Let
plan(oi, g) be some general method to generate suffixes for πd and
πu; in Section 4.2 we will show how we can use classical planning.

Definition 5 (Intervention Problem). Let I =

(D, d, u,H, oi,X3) be a tuple where D = 〈F,A, s0〉 is a planning
domain, d ⊂ F is a desirable state, u ⊂ F is an undesirable state,
H = (o1, o2, . . . , oi−1) is a history of previously observed actions,
oi is the presented action that the user would like to perform,
and X3 = {Xj = plan(oi, g)|∀g ∈ {u, u ∪ d}} for j ≥ 0 is a set
of suffixes leading to u and u ∪ d. The Intervention Problem is
a function intervene(I) : I → {No,Yes} that determines for the
presented action oi whether to intervene.

To decide whether X3 contains an unsafe suffix, the observer
analyzes suffixes for plan(oi, u), and plan(oi, u∪d). If the observer
finds thatX3 contains an unsafe suffix then oi is not accepted into
H. Let history H = (o1[s1], o2[s2], . . . , oi−1[sH]) be a sequence
of previously observed actions, which started from s0 with the
implied resulting states in brackets. The state resulting from
applying history to s0 is sH = γ (s0,H). If oi is accepted,
then H′ = {H ∪ oi} and the effect of oi is represented in
state as defined by γ (sH , oi). A solution to I is sequence of
{No,Yes} decisions for each step i of observations. We next
explore special cases of the Intervention Problem, namely single-
user intervention, competitive intervention, and themost general
form of multi-agent intervention.

3.4.1. Intervention for a Single User
When only the user and the observer are present, the user
solves the planning problem Puser = 〈Fuser,Auser, s0, d〉,

and incrementally reveals it to the observer. At each
point in the plan solving Puser, the observer must analyze
I = (Duser, d, u,H, oi,X3), where X3 is generated in some
sensible way.

3.4.2. Intervention in the Presence of a Competitor
If a competitor is present, the user’s planning problem Puser
is the same as before. However, the competitor also solves a
planning problem Pother = 〈Fuser ∪ Fother,Aother, s0, u〉. Note
that the competitor has a limited set of actions in Aother to
create states that will lead to u and Aother ∩ Auser = ∅. The
user’s and the competitors solutions to Puser and Pother are
revealed incrementally. Therefore, H,X3 ⊂ {Auser ∪ Aother}.
To decide whether X ∈ X3 is unsafe, the observer analyzes
I = (Dother, d, u,H, oi,X3), whereDother= 〈Fuser∪Fother,Aother∪

Auser, s0〉. The observer accepts oi into H as before.

3.4.3. Human-Aware Intervention
When performing tasks with a steep learning curve (e.g., a puzzle,
problem solving), human users may initially make more mistakes
or explore different (sub-optimal) solution strategies. Over time,
a human may learn to make better choices that result in more
efficient plans. Because of the inconsistencies in solution search
strategy, we cannot accurately project the goals of the human
user. Learning properties about the history H will help the
observer recognize when the user is about to make a mistake
and use that information to guide the search task on behalf of
the user. When humans are solving problems in real time, the
criteria for intervention may place more emphasis on the history
H than on the suffixes X3. In Section 6, we consider the special
case where X3 = ∅.

4. RECOGNIZING UNSAFE SUFFIXES

We present two solutions for recognizing unsafe suffixes. Recall
that in Definition 5, the observer’s decision space X3 is derived
such that X3 = {Xj = plan(oi, g)|∀g ∈ {u, u ∪ d}} for j ≥ 0.
In the first solution, we implement the function plan(oi, g) as
an Intervention Graph (in Section 4.1 and Section 4.2). In the
second solution, we implement plan(oi, g) by sampling the plan
space using an automated planner and use plan distance metrics
to make the decision about whether to intervene (Section 4.3).

4.1. The Intervention Graph
The Intervention Graph models the decision space of the
observer for the Intervention Problem I . We can extract several
features from the Intervention Graph to derive functions that
map the presented observation oi to intervention decisions. The
Intervention Graph captures where u, and u ∪ d lie in the
projected state space from sH . We can use properties of the graph
to evaluate how close the current projection H is to u and u ∪ d
and identify directly and indirectly contributing actions.

The Intervention Graph consists of alternating state and
action layers where each state layer consists of predicates that
have beenmade true by the actions in the previous layer. The root
node of the tree is sH . An action layer consists of actions (defined
in Duser or Dother) whose preconditions are satisfied in the state
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Algorithm 1: Build Intervention Graph

Require: D, sH , g
1: i = 0; si ← s0
2: procedure EXPANDGRAPH(D, sH , g)
3: if si |H g then return 〈V ,E〉
4: else

5: for action a where Pre(a) ∈ si do
6: si+1 ← ((si \ Del(a)) ∪ Add(a))
7: if si+1 ≡ si then continue
8: end if

9: v← AddVertex (si+1)
10: e← AddEdge (si, si+1, a)
11: V ∪ {v} ;E ∪ {e}
12: ExpandGraph (D, si+1, g)
13: end for

14: end if

15: end procedure

from the previous layer. Algorithm 1 describes the process of
building the Intervention Graph. The algorithm takes as input a
domain theoryD (forDuser orDother), sH and g = {u, u∪d} (lines
1-2). When H = ∅, the root of the tree is set to s0. Next, using
the domain theory, actions whose preconditions are satisfied at
current state are added to the graph (lines 5-6). Each action in
level i spawns possible states for level i + 1. Line 7 ensures that
the actions that immediately inverts the previous action are not
added to the graph. For each resulting state a search node is
created, with an edge representing the action responsible for the
state transition (lines 8-10). The method is executed recursively
for each open search node until d and u are added to the graph
generates X3 for the observer (line 11). To ensure that only
realistic plans are explored, we do not add no-op actions to the
action layers in the graph. When the user and the competitor
present new actions, the root of the graph is changed to reflect the
new state sH and subsequent layers are modified to that effect.

The Intervention Graph is a weighted, single-root, directed
acyclic connected graph IG = 〈V ,E〉, where V is the set of
vertices denoting possible states the user could be in leading
to g, and E is the set of edges representing actions from Duser

or Dother depending on single user intervention or competitive
intervention. Xunsafe is a path from the root of the IG to u ∪ d or
u. In contrast, a safe suffix Xsafe is a path from the root of the IG
to d and avoids u.

4.2. Intervention Graph Features
We extract a set of features from the Intervention Graph that help
determine whether to intervene. These features include: Risk,
Desirability, Distance to d, Distance to u and Percentage of active
undesirable landmarks. We use these features to train a classifier
that learns to identify actions in acrit and qcrit . Figure 3 illustrates
a fragment of the Intervention Graph from Figure 2B after the
user presents the action PICK-UP A, which we will use as a
running example to discuss feature computation.

4.2.1. Risk (R)
Risk quantifies the probability that the presented action will lead
to u. We model the uncertainty the observer has about the next
action as a uniform probability distribution across the set of
applicable actions whose preconditions are satisfied in current
state. We define risk R as the posterior probability of reaching
u while the user is trying to achieve d. We extract X3 from the
Intervention Graph by searching breadth-first from the root until
vertices containing d is found, including the paths in which the
user has been subverted to reach u. By construction, d will always
be a leaf. Let |X3| = n. The set of unsafe intervention suffixes,X�

is such that X� ⊆ X3 and |X�| = m and (m ≤ n). We compute
posterior probability of reaching u forX�, using the chain rule in
probability as, Prunsafe =

∏1
i=k P(αi|αi−1 . . . α1), and αj ∈ {Auser}

or αj ∈ {Auser ∪ Aother} and k is the length of the suffix until u is
reached. Then:

R =

{
∑m

i=1 Prunsafei
m m > 0
0 m = 0

In Figure 3, (n = 6) and (m = 1). Since we assumed full
observability for the observer, the root of the tree (current state)
is assigned the probability of 1.0. Actions that are immediately
possible after the current state are each assigned probabilities
following a uniform distribution across the branching factor
(0.33). Then for each applicable action in the current state, the
resulting state gets the probability of (1.0 × 0.33 = 0.33).
Similarly, we apply the chain rule of probability for each following
state and action level in the graph until u first appears in the suffix.
R = 0.08

1 = 0.08.

4.2.2. Desirability (D)
Desirability measures the effect of the observed action to help the
user pursue d safely. Let X� be the set of suffixes that reach d
while avoiding u. Then X� = X3 \ X�. We compute posterior
probability of reaching d avoiding u for X�, using the chain
rule in probability as, Prsafe =

∏1
i=k P(αi|αi−1 . . . α1), and αj ∈

{Auser} or αj ∈ {Auser ∪ Aother} and k is the length of path. Then:

D =







∑|X
�
|

i=1 Prsafei
|X�|

|X�| > 0

0 |X�| = 0

In Figure 3, there are five paths where user achieved d without
reaching u (two in subtree T1, three in the expanded branch).
Following the same approach to assign probabilities for states and

actions, D = (0.08+0.08+0.08+0.04+0.04)
5 = 0.07. R and D are based

on probabilities indicating the confidence the observer has about
the next observation.

4.2.3. Distance to u (δu)
This feature measures the distance to state u from the current
state in terms of the number of edges in the paths in X3

extracted from the Intervention Graph. We extract X3 from the
Intervention Graph from the root to any vertex containing d,
including the paths in which the user has been subverted to reach
u instead. Let |X3| = n. The set of suffixes that reach u, X� is
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FIGURE 3 | Fragment of the decision space after PICKUP A has been proposed for block-words example in Figure 2B. Numbers under each state and action

indicate the probability. Sub trees T1 and T2 are not expanded for simplicity.

such that X� ⊆ X3 and |X�| = m and (m ≤ n). We count s, the
number of the edges (actions) before u is reached for each path in
X� and δu is defined as the average of these distance values:

δu =

{

∑m
i=1 si
m m > 0
−1 m = 0

In this formula, −1 indicates that the undesirable state is not
reachable from the current state. For the example problem
illustrated in Figure 3, δu =

3
1 = 3.

4.2.4. Distance to d (δd)
This feature measures the distance to d from current state. The
path set X� contains action sequences that reach d without
reaching u. We count t, the number of the edges where d is
achieved safely for a path inX�. Then, δd is defined as the average
of these distances given by the formula:

δd =







∑|X
�
|

i=1 ti
|X�|

|X�| > 0

−1 |X�| = 0

In this formula,−1 indicates that d cannot be reached safely from
the current state. For the example problem illustrated in Figure 3,
δd =

⌈ 3+3+7+7+3
5

⌉

= 5.

4.2.5. Active Attack Landmark Percentage (Lac)
This feature captures the criticality of the current state toward
contributing to u. We used the algorithm proposed by Hoffmann
et al. (2004) to extract fact landmarks for the planning problem

P = 〈Dother, u〉 or P = 〈Duser, u〉. Landmarks have been
successfully used in deriving heuristics in Plan Recognition
(Vered et al., 2018) and generating alternative plans (Bryce,
2014). We define attack landmarks (Lu) to be those predicates
which must be true to reach u. We compute the percentage
of active attack landmarks in the current state (Lac), where
Lac =

l
|Lu|

. In Figure 3, l = 4 and Lac = 4/10 = 0.4.
For each presented action, the Intervention Graph is generated
and features are computed, producing the corresponding feature
vector. Landmarks are computed apriori.

4.3. Plan Space Sampling and Plan
Distance Metrics
Extracting Intervention Graph features can be intractable when
the graph is large. Therefore, for our second method for
implementing plan(oi, g) we define an additional set of features,
called Sampled Features by sampling the plan space for the
observer. If the Intervention Problem is defined for a single
user, we sample the observer’s plan space by using an automated
planner to find solutions for Pobserver = 〈Fuser,Auser, s0, g〉, where
g ∈ {d, u}. If the Intervention Problem is defined for a user
and a competitor, we sample the observer’s plan space by using
an automated planner to find solutions for Pobserver = 〈Fuser ∪
Fother,Auser ∪ Aother, s0, g〉, where g ∈ {d, u}. Note that in this
method we omit u ∪ d for generating plans. Sampled plans are
generated with the Top-K planner (Riabov et al., 2014). We
estimate the Risk and Desirability using plan distance metrics.
The intuition is that if the actor is executing an unsafe plan, then
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Algorithm 2: Build Sampled Feature Vector

Require: D, s, u, d
1: i = 0; si ← s0
2: prefix, suffix,5′′,V ← ∅

3: procedure SAMPLEDSUFFIXES(D1, s, u, d,O)
4: for o ∈ O do

5: prefix← prefix+ o
6: si+1 ← ((si \ Del(o)) ∪ Add(o))
7: for g ∈ {u, d} do
8: suffix← OptimalPlan(s, g)
9: π ′ ← prefix+ suffix
10: 5′′ ← Observation compatible Top-K plans for g
11: v1 ←MedianActionSetDist(π ′,5′′)
12: v2 ←MedianCausalLinkDist(π ′,5′′)
13: v3 ←MedianStateSequenceDist(π ′,5′′)
14: v4 ←MinimumRemainingDistToState (g,5′′)
15: v5 ←MinimumActionGED (π ′,5′′)
16: v6 ←MinimumStateGED (π ′,5′′)
17: V(o)← [v1, v2, v3, v4, v5, v6]
18: end for

19: v7 ← ComputeLandmarkCompletionHeuristic (u)
20: V(o)← V(o)+ {v7}
21: end for

22: end procedure

that plan should be more similar to a sample of unsafe plans,
compared to a sample of safe plans.

For each presented action, the observer computes plan
distances between a reference plan (π ′) and sampled plans (5′′)
for both u and d.We generate the observation compatible plan by
concatenating the observation history with the optimal plan that
reaches u (and d) to produce π ′ (see Vered and Kaminka, 2017).

We use the Top-K planner with K=50 to sample the plan
space. We use Action Set Distance (ASD), State Sequence
Distance (SSD), Causal Link Distance (CLD) (Nguyen et al.,
2012), Generalized Edit Distance (GED) for sequences of states
and actions (Sohrabi et al., 2016b) to measure the distances
between the reference plan and the sampled plans for d and u.
When an action is presented, π ′ is computed. Then, observation
compatible Top-K plans are produced for u and d separately.
The medians of ASD, CLD and SSD, minimum remaining
actions to u and d, minimum action GED and state GED are
computed for u and d for all 〈reference, sample〉 pairs. Finally,
we also compute the Landmark Completion Heuristic proposed
by Pereira et al. (2017). This produces the Sampled Feature vector
for the presented action.Algorithm 2 shows the pseudo-code for
computing the Sampled Feature vector.

4.4. Learning Intervention
We train a classifier to categorize the presented observation oi
into two classes: (Yes) indicating intervention is required and
(No) indicating otherwise. We chose Naive Bayes, K-nearest
neighbors, decision tree and logistic regression classifiers from

Weka1. Given observations labeled as Yes/No and corresponding
feature vectors as training examples, we train the classifiers with
10-fold cross validation. The trained model is used to predict
intervention for previously unseen Intervention Problems.
Attribute selected classifiers filter the feature vector to only
select critical features. This step reduces complexity of the
model, makes the outcome of the model easier to interpret, and
reduces over-fitting.

We generated training data from 20 Intervention Problems
using the benchmark domains. We used the Blocks World
domain to model competitive Intervention Problems and Ferry,
EasyIPC and Navigator domains to model Standard Intervention
Problems. We restricted the number of observation traces per
Intervention Problem to 100 for training the classifiers.

The decision tree classifier is tuned to pruning confidence =
0.25 and minimum number of instance per leaf = 2. The K-
nearest neighbor classifier is tuned to use k = 1 and distance
measure = Euclidean. The logistic regression classifier is tuned
for ridge parameter = 1.0E-8. The Naive Bayes classifier is tuned
with the supervised discretization= True.

5. EVALUATING INTERVENTION
RECOGNITION

We compare the learning based intervention accuracy to three
state-of-the-art Plan Recognition algorithms from the literature.
Our evaluation focuses on two questions: (1) Using domain-
independent features indicative of the likelihood to reach u from
current state, can the observer correctly recognize directly and
indirectly contributing suffixes to prevent the user from reaching
u? and (2) How does the learning approach perform against
state-of the-art Plan Recognition? To address the first question,
we evaluated the performance of the learned model on unseen
Intervention Problems.

The benchmarks consist of Blocks-words, IPCGrid, Navigator
and Ferry domains. For the Blocks-words domain, we chose
word building problems. The user and the competitor want
to build different words with some common letters. The
problems in Blocks-1 model intervention by identifying the
direct contributors (acrit), whereas the problems in Blocks-2

model intervention by identifying the indirect contributors (qcrit)
in the Blocks-words domain. In the IPC grid domain, the user
moves through a grid to get from point A to B. Certain locked
positions on the grid can be opened by picking up keys. In the
Navigator domain, the user moves from one point on a grid
to another. In IPC Grid and Navigator domains, we designated
certain locations on the grid as traps. The goal of the user
is to navigate to a specific point on the grid without passing
through the trap. In the Ferry domain, a single ferry moves cars
between different locations. The ferry’s objective is to transport
cars to specified locations without using a port, which has
been compromised.

To evaluate our trained classifiers, we generate 3 separate
test problem sets with 20 problems in each set (total of 60)

1http://www.cs.waikato.ac.nz/ml/weka/
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for the benchmark domains. The test problems differ from
the training data. The three test problems vary the number
of blocks in the Blocks Words domain, size of the grid
(Navigator, IPC-Grid), accessible and inaccessible paths on the
grid (Navigator, IPC-Grid), and properties of the artifacts in
the grid (IPC-Grid). Each test problem includes 10 observation
traces (total of 600 test cases). We designed the Blocks-1, IPC-
Grid, Ferry, and Navigator problems specifically considering
desirable/undesirable goal pairs that are difficult to disambiguate
using existing plan recognition algorithms. We designed the
problems in Blocks-2 domain to include problems that will be
easier to solve by existing plan recognition algorithms.

We define true-positive as the classifier correctly identifying
the presented action to be in acrit or qcrit . True-negative is an
instance where the classifier correctly identifying an action as
not belonging to acrit or qcrit . False-positives are instances where
classifier incorrectly identifies an action as belonging to acrit or
qcrit . False-negatives are instances where the classifier incorrectly
identifies the presented action as not belonging to acrit or qcrit .
Naturally, our test observation traces contain a large number
of negatives. To offset the bias introduced to the classifier by
the class imbalance, we report Matthews correlation coefficient
(MCC) because it gives an accurate measure of the quality of a
binary classification while taking into account the different class
sizes. We also report the F-score= tp

tp+1/2(fp+fn) for the classifiers,

where tp, fp, fn are the number of true positives, false positives
and false negatives, respectively.

We implemented three state-of-the art Plan Recognition
algorithms to compare the accuracy of intervening by Plan
Recognition to the proposed learning based intervention. We
selected Ramirez and Geffener’s probabilistic Plan Recognition
algorithm (Ramırez and Geffner, 2010) (both the satisficing, and
optimal implementations) and the Goal Recognition with Goal
Mirroring algorithm (Vered et al., 2018). To generate satisficing
plans we used the Fast Downward planner with the FF heuristic
and context-enhanced additive heuristic (Helmert, 2006). To
generate the optimal cost plans we used the HSP planner (Bonet
and Geffner, 2001). For each presented action, the observer solves
a Plan Recognition problem using each approach. We assumed
uniform priors for over u and d. If u is the top ranked goal for the
presented action, then it is flagged as requiring intervention. The
assumption is that these algorithms must also be able to correctly
identify u as the most likely goal for the actions in acrit and qcrit .
We used the same test data to evaluate accuracy.

Tables 3 and 4 shows that the classifiers trained with features
from the Intervention Graph achieve high accuracy for all
the domains when predicting intervention for both identifying
actions in acrit and qcrit . TheMCC value shows that the imbalance
in class sizes does not bias the classifier. Low false positives and
false negatives suggest that the user will not be unnecessarily
interrupted. As expected performance degrades when we use
a sampled plan space to derive features. However, the features
derived from sampling the plan space produce equally good
classifiers compared to the intervention graph method, when
modeling intervention by identifying actions in acrit and qcrit
for the Blocks-word problems. For the Intervention Problems
modeled using the benchmark domains, we were able to find that

at least one of the selected classifiers responded with very high F-
score when trained using plan similarity features. The exception
to this pattern was the Intervention Problems modeled using the
Ferry domain.

Features derived from the Intervention Graph accurately
recognize actions in acrit and qcrit where the user has limited
options available to reach the desirable goal while avoiding the
undesirable state. Thus the classifiers perform well in recognizing
critical actions in new problems. The sampled features rely
on the learning algorithm to produce accurate results when
predicting intervention.

Comparing the results in Table 5, learning methods
outperform existing Plan Recognition algorithms when
predicting intervention. The algorithms we selected clearly
struggled to predict intervention in the Navigator domain
producing many false positives and false negatives. These results
suggest that although we can adopt existing Plan Recognition
algorithms to identify when the user needs intervention, it
also produces a lot of false negatives and false positives in
correctly identifying which state (desirable/undesirable) is most
likely given the observations, especially when the desirable
and undesirable plans have a lot of overlap. Comparing
recognition accuracy of Blocks-1 and Blocks-2 problems using
plan recognition algorithms to intervene, we see that when
the undesirable state develops over a long period of time,
the plan recognition algorithms recognize the undesirable
plan with high accuracy. In other words, if the d and u
are sufficiently distinct and are far apart in the state space,
intervention by using plan recognition algorithms are as
effective as our proposed learning based intervention methods
in most cases. When the desirable and undesirable states are
closer, existing plan recognition algorithms produce many false
positives/negatives.

This is unhelpful specially considering human users because,
when the intervening agent produces many false alarms and/or
miss critical events that must be intervened, the human users
may get frustrated and turn off intervention. Therefore, the
learning approach is better suited for intervention because
the observer can target specific critical actions and at the
same time the user is given some freedom to pursue a
desirable goal.

5.1. Processing Times
Because the Intervention problem is defined for online
environments, we now report the processing time comparison
among the two proposed learning based Intervention algorithms
and intervention using existing plan recognition algorithms. The
experiments were run in an Intel Core i7 CPU at 1.30GHz
x 8 machine running on Ubuntu 20.04LTS. We compute two
evaluation metrics for the processing time comparison. The
total processing time (Q) is the CPU time in milliseconds
taken to process all the 20 Intervention problems in a test
set. The mean processing time (Q) is the CPU time in
milliseconds taken to return the intervention decision for one
incremental observation reveal. It is given by the equation:
Q = Q

number of observations in the test set . Tables 6 and 7 show the

Q and Q values for returning the intervention decisions using
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TABLE 3 | F-score and MCC for predicting intervention using Intervention Graph and the Plan Space Sampling methods for Naive Bayes and Decision Tree classifiers.

Domain

Naive bayes Decision tree

Test set 1 Test set 2 Test set 3 Test set 1 Test set 2 Test set 3

F-score MCC F-score MCC F-score MCC F-score MCC F-score MCC F-score MCC

Intervention graph method

Blocks-1 1 1 1 1 1 1 1 1 1 1 1 1

Blocks-2 1 1 1 1 1 1 1 1 1 1 1 1

EasyIPC 1 1 1 1 1 1 1 1 1 1 1 1

Ferry 1 1 1 1 1 1 1 1 1 1 1 1

Navigator 1 1 1 1 0.99 0.99 0.87 0.87 0.72 0.74 0.90 0.90

Plan space sampling method

Blocks-1 0.25 0.33 0.25 0.33 0.25 0.33 0.25 0.33 0.25 0.33 0.25 0.33

Blocks-2 1 1 1 1 1 1 1 1 0.99 0.99 1 1

EasyIPC 1 1 1 1 1 1 1 1 1 1 1 1

Ferry 0.34 0.33 0.32 0.31 0.02 –0.004 0.25 0.28 0.24 0.23 0.86 0.86

Navigator 1 1 1 1 1 1 0.62 0.65 1 1 1 1

TABLE 4 | F-score and MCC for predicting intervention using Intervention Graph and Plan Space Sampling methods for logistic regression and k-nearest neighbor

classifiers.

Domain

Logistic regression K-nearest

Test set 1 Test set 2 Test set 3 Test set 1 Test set 2 Test set 3

F-score MCC F-score MCC F-score MCC F-score MCC F-score MCC F-score MCC

Intervention graph method

Blocks-1 1 1 1 1 1 1 1 1 1 1 1 1

Blocks-2 1 1 1 1 1 1 1 1 1 1 1 1

EasyIPC 0.88 0.87 0.88 0.87 0.86 0.86 1 1 1 1 1 1

Ferry 1 1 1 1 1 1 1 1 1 1 1 1

Navigator 1 1 1 1 0.99 0.99 1 1 0.96 0.96 0.99 0.99

Plan space sampling method

Blocks-1 0.25 0.33 0.25 0.33 0.25 0.33 1 1 1 1 1 1

Blocks-2 1 1 1 1 1 1 1 1 1 1 1 1

EasyIPC 0.64 0.63 0.46 0.44 0.67 0.66 0.05 –0.04 0.04 –0.03 0.05 –0.02

Ferry 0.31 0.32 0.23 0.22 1 1 0.33 0.40 0.13 0.15 0.81 0.82

Navigator 0.60 0.59 0.98 0.94 0.97 0.97 0.61 0.65 1 1 1 1

the classifiers trained with the Intervention Graph features
and the plan distance features. When the classifiers are
trained with the Intervention Graph features the smallest Q
(< 70 ms) are reported for the Blocks-words domain. The
largest Q values are reported for the EasyIPC and the Ferry
domain (< 5.5 s). When the classifiers are trained with the
plan distance features, Q is larger compared to the previous
case. However, the values for Q are still lower (< 620 ms)
compared to the other domains. The largest Q are reported
for the EasyIPC and the Ferry domains (< 1.8 s). There
is a large range of the total processing times (maximum

Q - minimum Q) among the Intervention problems from
different domains.

In contrast, Table 8 shows that when using plan recognition
algorithms for intervention, Q is smaller compared to the Q in
learning based intervention. For the Test Set 1, the smallest Q
is reported for the EasyIPC problems when using probabilistic
plan recognition using the optimal plans (< 42 ms). The largest
Q is reported for the Ferry domain when using probabilistic
plan recognition using the optimal plans (1.5 s), also in Test
Set 1. Most of Q values are less than 232 ms. The range of
the total processing times (maximum Q - minimum Q) among
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TABLE 5 | F-score and Matthews Correlation Coefficient (MCC) for recognizing intervention using probabilistic goal recognition (RG) algorithm (Ramırez and Geffner,

2010).

Domain

Test set 1 Test set 2 Test set 3

RG (LAMA) RG (HSP) GM RG (LAMA) RG (HSP) GM RG (LAMA) RG (HSP) GM

F-score MCC F-score MCC F-score MCC F-score MCC F-score MCC F-score MCC F-score MCC F-score MCC F-score MCC

Blocks-1 0.38 0.45 0.38 0.45 0.36 0.43 0.43 0.49 0.43 0.49 0.39 0.45 0.40 0.47 0.40 0.47 0.38 0.45

Blocks-2 1 1 0.90 0.90 1 1 1 1 0.90 0.90 1 1 1 1 0.90 0.90 1 1

EasyIPC 0.13 0.05 0.13 0.05 0.10 0.01 0.21 0.17 0.18 0.13 0.12 0.06 0.23 0.19 0.22 0.19 0.14 0.09

Ferry 0.17 0.18 0.22 0.20 0.10 0.08 0.22 0.23 0.11 0.06 0.15 0.09 0.15 0.17 0.47 0.52 0.21 0.34

RG (LAMA) is when a satisficing planner (LAMA) is used to generate the plans for probabilistic goal recognition. RG (HSP) is when an optimal (HSP) planner is used to generate the

plans for probabilistic goal recognition. Goal mirroring (GM) implements the recognition algorithm proposed by Vered et al. (2018) and uses the JavaFF planner to generate the plans.

For the Intervention problems in the Navigator domain, the true-negative, false negative rates were 100% each. Therefore, F-score and MCC are not reported.

TABLE 6 | Total processing time in seconds (Q) for all Intervention problems in set 1, 2, and 3 and the mean processing time in milliseconds for each incrementally

revealed observation (Q) for predicting intervention with Naive Bayes and Decision Tree classifiers using features from the Intervention Graph and the Plan Space

Sampling methods.

Domain

Naive bayes Decision tree

Test set 1 Test set 2 Test set 3 Test set 1 Test set 2 Test set 3

Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms)

Intervention graph method

Blocks-1 42.4 64 39.9 60 42.5 64 40.6 61 39.3 59 42.0 63

Blocks-2 40 60 38.1 57 38.4 58 40.4 61 38.0 57 40.2 60

EasyIPC 7519.9 3,484 14858.0 5,371 805.3 403 7615.4 3,528 15842.8 5,727 802.6 402

Ferry 7992.5 3748 72.1 119 10656.9 4,492 7921.4 3,715 62.0 103 107945.0 4,550

Navigator 1530.0 1,969 880.4 896 77.4 102 1694.4 2,180 882.2 898 84.6 111

Plan space sampling method

Blocks-1 409.5 620 405.6 614 402.6 610 338.3 512 365.1 553 365.9 554

Blocks-2 357.6 541 353.5 534 350.5 531 392.7 595 401.4 606 3743.4 567

EasyIPC 2274.8 1,054 4607.1 1,665 2100.2 1,053 2324.1 1,076 5023.9 1,816 2064.8 1035

Ferry 1479.8 694 195.0 323 1451.0 611 1564.9 733 219.1 364 1697.8 715

Navigator 1131.7 1,456 1231.4 1,254 373.4 493 1050.6 1,352 1183.2 1,204 369.7 489

the Intervention problems from different domains is smaller
compared to the range of the total processing times using the
learning based intervention. While plan recognition algorithms
sometimes return an intervention decision more quickly than the
learning based intervention, their accuracy, precision, and recall
is substantially lower than learning based intervention.

6. HUMAN-AWARE INTERVENTION

The Human-aware Intervention Problem is a variant of the
single-user intervention, so the history H consists of only
accepted user actions. However, as mentioned in Section 3.2, the
set of projections will be empty, that is X3 = ∅ because planning
is less accurate for projecting what the human user may do. This
means the observer must emphasize analysis of H. Instead of
relying on projections in X3, the observer learns the function

intervenei. That is, at the presented action oi it considers only H,
d, and u and uses a trained machine learning algorithm to decide
whether to intervene.

We introduce the Rush Hour puzzle as a benchmark in order
to study how human users solve the puzzle as a planning task
that requires intervention. We begin with the formal definitions
of the Rush Hour puzzle. Next, we translate the Rush Hour
problem into a STRIPS planning task and through a human
subject study, we allow human users solve the planning problem
and collect observation traces. We formally define the Human-
aware Intervention problem and propose a solution that uses
machine learning to learn properties of H to determine whether
or not intervention is required. The observer for Human-aware
Intervention should offer different levels of freedom to the user.
At the lowest level of freedom, the observer will intervene just
before the undesirable state. At increased levels of freedom,
the observer offers the user enough time to recover from the

Frontiers in Artificial Intelligence | www.frontiersin.org 13 February 2022 | Volume 4 | Article 723936

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Weerawardhana et al. Models of Intervention

TABLE 7 | Total processing time in seconds (Q) for all Intervention problems in set 1, 2, and 3 and the mean processing time in milliseconds for each incrementally

revealed observation (Q) for predicting intervention with logistic regression and k-nearest neighbor classifiers using features from the Intervention Graph and the Plan

Space Sampling methods.

Domain

Logistic regression K-nearest

Test set 1 Test set 2 Test set 3 Test set 1 Test set 2 Test set 3

Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms)

Intervention graph method

Blocks-1 40.3 61 38.8 58 42.4 64 40.8 61 39.8 60 41.4 62

Blocks-2 40.7 61 38.9 58 39.4 59 41.3 62 39.5 59 41.6 63

EasyIPC 6955.0 3,222 15309.2 5,534 920.8 461 7159.8 3,317 14821.0 5,358 837.0 419

Ferry 7586.2 3,558 54.3 90 9598.3 4,046 8116.9 3,807 57.7 95 10029.4 4,228

Navigator 1615.4 2,079 868.6 884 91.7 121 1441.7 1,855 881.9 898 93.2 123

Plan space sampling method

Blocks-1 390.3 591 405.8 614 398.4 603 376.3 570 372.2 563 372.4 564

Blocks-2 345.4 523 342.1 516 338.1 512 388.8 589 372.2 562 355.2 538

EasyIPC 2286.7 1,059 4596.6 1,661 1898.5 952 2528.8 1,171 4702.0 1,699 1928.9 967

Ferry 1531.9 718 210.0 348 1562.0 658 1549.2 726 212.2 352 1574.0 663

Navigator 1095.7 1,410 1209.9 1232 380.4 503 1076.1 1,384 1208.6 1,230 377.0 498

TABLE 8 | Total processing time in seconds (Q) for all Intervention problems in set 1, 2, and 3 and the mean processing time in milliseconds for each incrementally

revealed observation (Q) for recognizing undesirable states with the algorithms: probabilistic goal recognition using satisficing (RG-LAMA) and optimal (RG-HSP) plans and

goal mirroring (GM) using the JavaFF planner.

Domain

Test set 1 Test set 2 Test set 3

RG (LAMA) RG (HSP) GM RG (LAMA) RG (HSP) GM RG (LAMA) RG (HSP) GM

Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms) Q (s) Q (ms)

Blocks-1 147.9 224 65.8 99 151.6 229 147.1 222 60.1 91 148.9 225 148.1 224 63.3 95 152.0 230

Blocks-2 145.6 220 108.9 164 153.6 232 144.5 218 113.2 171 155.0 234 145.6 220 107.5 162 144.9 219

EasyIPC 474.0 219 91.5 42 450.6 208 599.5 216 418.3 151 549.0 198 427.2 214 70.6 35 407.9 204

Ferry 440.1 206 3266.6 1532 366.3 171 117.2 194 75.4 125 97.5 162 480.5 202 344.1 145 407.0 171

undesirable situation. Varying the level of freedom allows the
observer to gradually guide the user toward d without directly
giving away the complete solution. We evalute the accuracy of
our learning approach using the observation traces collected
from the human subject study.

6.1. The Rush Hour Puzzle
The Rush Hour puzzle is a game for ages 8 and above (Flake and
Baum, 2002). Figure 4A shows an initial puzzle configuration
on a 6 × 6 grid, where cars (length 2) and trucks (length 3)
are arranged. Vertically aligned vehicles can only move up and
down and horizontal vehicles can move left and right. Vehicles
can be moved one at a time and into adjacent empty spaces. The
solution to the RushHour puzzle is a sequence of legal moves that
transforms the initial board state shown in Figure 4A to the goal
state in Figure 4B. For the puzzle shown in Figure 4, the shortest
solution has 21 moves, if the number of moves is considered as
the optimizing criteria. If optimized for the number of vehicles
moved, the puzzle can be solved optimally by moving only 8

vehicles. It is important to note that one can obtain different
“optimal solutions" depending on whether the number of moves
is minimized, or if the number of vehicles moved is minimized.
Humans tend not to clearly make this distinction when playing
the game.

We adopt the formal definition of a Rush Hour instance from
Flake and Baum (2002).

Definition 6. A Rush Hour instance is a tuple 〈w, h, x, y, n,V〉
such that:

• (w, h) ∈ N
2 are the grid dimensions. In the standard version,

w = h = 6
• (x, y), x ∈ {1,w} and y ∈ {1, h} are the coordinates of the exit,

which must be on the grid perimeter.
• n ∈ N the number of non-target vehicles
• V = {v0, . . . , vn} is the set of n+1 vehicles comprised of cars (C)

and trucks (T ). Note that |V| = |C| + |T |
vi ∈ C is identified as {C0, . . . ,Cl}, where l = |C|−1 and vi ∈ T

is identified as {T0, . . . ,Tm}, where m = |T | − 1.
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A vehicle is a tuple vi = 〈xi, yi, oi, si〉, where (xi, yi) ∈ N
2 are the

vehicle coordinates, oi ∈ {N,E, S,W} is the vehicle orientation
for North, East, South, West, si ∈ {2, 3} is the vehicle size and
C0 is the target vehicle.

Flake and Baum (2002) also defines the solution to a Rush Hour
instance as a sequence of m moves, where each move consists of
a vehicle identifier i, a direction that is consistent with the initial
orientation of vi, and a distance. Each move, in sequence must
be consistent with itself and with the configuration prior to the
move. Further, in order to move a distance d the configuration
must be consistent for all d′ such that, 0 6 d′ 6 d (i.e., a vehicle
cannot jump over other vehicles on its path).

6.2. The Rush Hour Puzzle as a STRIPS
Planning Task for Intervention
We study how human users approach solving a cognitively
engaging problem as a planning task and evaluate whether
we can use domain-specific features to predict intervention.
To collect realistic data, it is critical that the human users
were willing to participate in the task. The Rush Hour puzzle
addresses this requirement well, as evidenced by the feedback
about the task we received from the demographic survey. See
Section 11.2 in theAppendix for details. Although the RushHour
puzzle is a game, the environment is rich enough to simulate
undesirable consequences and also offer the users a task that is
challenging enough.

We translate the Rush Hour puzzle in Definition 6 into a
grounded STRIPS planning task P = 〈F,A, s0,G〉 as follows:

• F = { {∀Ci ∈ C, (car ?Ci)}, {∀Ti ∈ T , (truck ?Ti)} - for the
vehicles,
{∀vi ∈ C ∪ T and li ∈ {(x, y)|x ∈ [1..w] , y ∈

[

1..h
]

}, (at ?vi
?li)} - for the vehicle positions,
{∀vi ∈ C∪T and di ∈ {NS, SN,EW,WE}, (face?vi ?di)} - for
direction of vehicles (North to South (down), South to North
(up), East to West (left), West to East (right), respectively),
{∀li ∈ {(x, y)|x ∈ [1..w] , y ∈

[

1..h
]

}, (free ?li)} - for open
positions,
{∀li, lj ∈ {(x, y)|x ∈ [1..w] , y ∈

[

1..h
]

} and di ∈
{NS, SN,EW,WE}, (next ?di ?li ?lj)} - for direction of the
adjacent locations) }
• A = {move-car = 〈pre(move-car), add(move-car),

del(move-car)〉 ⊆ F,
move-truck = 〈pre(move-truck), add(move-truck),
del(move-truck)〉 ⊆ F}
• s0 ⊆ F
• G = {(atC0 li)(atC0 lj)}, where li = (w, 3) and lj = (w−1, 3)

In order to configure the Rush Hour STRIPS planning task for
intervention, we introduce an undesirable state, u by designating
one vehicle as forbidden. The post-conditions of any action that
moves the forbidden vehicle satisfies u. The puzzle can be solved
without moving the forbidden vehicle. Therefore, moving the
forbidden vehicle is also an unnecessary action, indicating that
the user is exploring an unhelpful region in the state space. Here,
intervention is required to guide the user toward exploring more
helpful regions in the state space. In Figure 4A, the forbidden

vehicle is C2. If the user moves C2 to the left, then the board
state satisfies u. The user’s goal d = G. The vehicle movement
constraint introduced by the presence of the forbidden vehicle
adds an extra level of difficulty to the user’s planning task.

The Rush Hour problem is also unique in that the observer is
more focused on states than actions. Recall that a history H =
(o1[s1], o2[s2], . . . , oi−1[sH]) is a sequence of previously observed
actions, which started from s0 with the implied resulting states
in brackets. For Rush Hour, the observer relies on those implied
states instead of just the actions. For simplicity in notation, we
present intervention in terms of states, although it is easy to
map between actions and states because of the deterministic state
transition system of the planning model.

6.3. Domain-Specific Feature Set
For the observer to learn intervenei, we develop a set of domain-
specific features for the Rush Hour problem.We want the feature
set to capture whether the user is advancing toward d by making
helpful moves, or whether the user currently exploring a risky
part in the state space and getting closer to u. We hypothesize
that the behavior patterns extracted from H as features have a
correlation to the event of the user moving the forbidden vehicle.

6.3.1. Features Based on State
The features based on state analyze the properties of the sequence
of state transitions in H from s0 to sH ([s0], [s1], [s2], . . . , [sH]).
Specifically, we look at the mobility of the objects: target vehicle
(C0), the forbidden vehicle and the vehicles adjacent to the target
and the forbidden vehicles. We use the state features associated
with the target vehicle to measure how close the user is to d. The
state features associated with the forbidden car evaluate how close
the user is to triggering u.

We manually examined the solutions produced in the
human subject experiment (described later) to identify common
movement patterns. Our analysis revealed that if the user was
moving vehicles adjacent to the forbidden vehicle in such a way
that the forbidden vehicle was freed, most users ended upmoving
the forbidden vehicle. Therefore, by monitoring the state changes
occurring around the forbidden vehicle, we can estimate whether
the user will end up moving the forbidden vehicle or not (i.e.,
trigger u). Similarly, state changes occurring on the target car’s
path to the exit, for example, the moves that result in reducing
the number of vehicles blocking the target car is considered to be
helpful to move the state closer to d.

We refer to the vehicles adjacent to the target and the
forbidden vehicles as blockers and introduce two additional object
types to monitor mobility: target car blockers and forbidden car
blockers. Figure 5 illustrates an example state. The target car’s
path is blocked by two vehicles C1 and T1. Therefore, target
car blockers = {C1,T1}. We only consider the vehicles that are
between the target car and the exit cell as target car blockers
because, only those vehicles are preventing the target car from
reaching d. The forbidden vehicle’s movement is blocked by two
vehicles C1 and C2. Therefore, forbidden car blockers= {C1,C2}.
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We now describe the features based on state that are used to
predict intervention in Human-aware Intervention Problems.

• blocks: number of times a move increased the number of
cars blocking the target car’s path
• frees: number of times a move freed up empty spaces

around the forbidden vehicle
• freebci: number of times the number of empty spaces

around the forbidden vehicle blockers increased
• freebcd: number of times the number of empty spaces

around the forbidden vehicle blockers decreased
• freegci: number of times the number of empty spaces

around the target car blockers increased
• freegcd: number of times the number of empty spaces

around the target car blockers decreased
• mgc: mean number of empty spaces around the target car

blockers
• mbc: mean number of empty spaces around the forbidden car

blockers
• reset: number of times the current move changed the state

back to the initial puzzle configuration

6.3.2. Features Based on User Actions
The features based on user state analyze the properties of the
sequence of actions from o1 to oi−1 in H (o1, o2, . . . , oi−1)
We follow the same manual analysis of solutions produced in
the human subject experiment to identify common movement
patterns. We found that the users who produce unsafe solutions
often made unhelpful moves such as moving the same vehicle
back and forth many times in quick succession, causing their
solution to be longer compared to a safe solution. We statistically
verified whether the relationship between the solution length
and the number of forbidden vehicle moves is significant for
the human subject data using Spearman’s Rank Correlation
Coefficient. The test showed that the relationship is significant
(p < 0.05). See Section 11.3 in the Appendix for a summary of
raw data.

Similarly, we observed that comparing the number of moves
of the user’s solution to an optimal solution produced by an
automated planner is helpful in identifying whether the user
is moving away from d or making progress. In order to verify
this observation, we use the HSP planner (Bonet and Geffner,
2001) to find cost optimal solutions for the Rush Hour planning
tasks (see Section 6.2) used in the human subject experiment.
We statistically verified that the relationship between the length
difference between the user’s solution and the optimal solution
found by an automated planner, and the number of forbidden
vehicle moves is significant using Spearman’s Rank Correlation
Coefficient (p < 0.05).

Thus, we conclude that features derived from the length and
number of backtracking moves in H can be used to predict when
the user is getting close to u. We introduce an unhelpful move
called the h-step backtrack, which is a move that takes the state
back to a previously seen state by h number of steps (i.e., an undo
operation). When deriving the feature to capture backtracking
moves, we only consider h = 1, which asks the question did the
observation oi−1 undo the effect of the observation oi−2?

We now describe the features based on actions that are used to
predict intervention in Human-aware Intervention Problems.

• len: number of moves in H
• len-opt: difference of the number of moves in H and the

number of moves in the safe optimal solution produced by an
automated planner for the same planning task.
• backtracks: number of 1-step backtrack actions in H
• first: number of moves until the forbidden vehicle was

moved for the first time in H
• prop: number of moves until the forbidden vehicle was

moved for the first time in H divided by the number of
moves in the safe, optimal solution produced by an automated
planner for the same planning task.
• moved: number of vehicles moved in H.

7. EVALUATING HUMAN-AWARE
INTERVENTION

To evaluate the efficacy of the features based on state and features
based on actions in predicting intervention for Human-aware
Intervention Problems, we use actual observation traces collected
from a human subject study, where human users solve Rush
Hour planning tasks on a Web simulator. We generate learned
models that predict intervention while offering different levels
of freedom to the user. We consider three levels of freedom
(k = {1, 2, 3}) for the evaluation. A model for the lowest
level of freedom (k = 1), predicts intervention one move
before the undesirable state. This configuration offers no time
for the user to recover from the undesirable state. A model
for the next level of freedom (k = 2), intervenes the user
two moves before the undesirable state is satisfied and offers
the user some time to take corrective action. A model for
the highest level of freedom (k = 3), intervenes the user
three moves before the undesirable state. We begin with the
experiment protocol and briefly describe the findings. Next,
we discuss the learning methods used to predict intervention.
Finally, we discuss the accuracy of prediction compared to the
Plan Recognition as Planning algorithm proposed by Ramırez
and Geffner (2010).

7.1. Rush Hour Experiment Protocol
We recruited subjects from a university student population.
The sample comprised of college students in Computer Science,
Psychology, Agriculture and Business majors. One hundred and
thirty six participants completed the study. The participants
were not compensated for their time. After obtaining informed
consent, the participants were directed to the Web URL (https://
aiplanning.cs.colostate.edu:9080/), which hosted the Rush Hour
simulator software. Each participant was assigned to solve one
randomly selected Rush Hour puzzle. We did not place any time
restriction for the puzzle solving task. Participants also had the
option to use an online tutorial (available on the Web simulator
application) on how to play the Rush Hour puzzle. Each puzzle
contained one forbidden vehicle. Once the puzzle solving task
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FIGURE 4 | A rush hour instance. (A) Initial game stage. (B) End game stage.

FIGURE 5 | Blocker vehicles.

was completed, the participants were asked to complete a short
demographic survey on their general puzzle solving habits. One
hundred and seventeen of the 136 participants also completed the
demographics survey.

When choosing Rush Hour puzzle instances for the human
subject study, we want to carefully balance the puzzle’s
difficulty for a human user. Especially, considering the PSPACE-
completeness of the (generalized) puzzle, we need the puzzles

to be solvable by human users in a reasonable time. We used a
pilot study to determine the puzzle difficulty. See Section 11.1
in the Appendix. We ensured that the experiment protocol
fully adhered to the Rush Hour planning task definitions
(Section 6.2). The goal of the Rush Hour planning task (d) is
clearly communicated to the user. To instill the importance of
avoiding the forbidden vehicle in the user’s mind, we provided
an information message (yellow information bar in Figure 6)
to inform about the presence of a forbidden vehicle without
specifying the vehicle identifier. The users were also informed
that the puzzle can be solved without moving the forbidden
vehicle. If the user moved the forbidden vehicle, no visual
cues (error messages, blocks) were given. Therefore, the specific
undesirable state (u) remained hidden to the user, but they were
made aware of its presence. We informed the human users that
there is a forbidden vehicle and they must try to solve the puzzle
without moving it to prime them toward thinking more deeply
about the puzzle and raise the awareness of raise the aware
of the undesirable state. This technique allowed us to increase
the cognitive load on the human user because it conditioned
the human users to study the puzzle to guess/recognize the
forbidden vehicle. Further it primed the users to make thoughtful
moves instead of making randommoves and accidentally finding
the solution.

To simulate discrete actions, the vehicles on the board could
only be moved one cell at a time. The user could click on the
object to select it and move it by clicking on an empty adjacent
cell. Invalid moves (vehicle dragging and jumps) were blocked
and the user was notified via an alert message. We recorded
the user’s solution to the STRIPS planning task as a sequence of
actions in a text file.

We used ten Rush Hour planning tasks for the experiment.
For analysis purposes (see Appendix), we separated the ten
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FIGURE 6 | (A) Rush Hour planning task Web interface. The forbidden vehicle for this configuration is C9. (B) Rush Hour puzzle configuration types with forbidden

vehicles highlighted.

puzzles into three groups by the position of the forbidden vehicle.
As shown in Figure 6B, type C has the forbidden vehicle in the
corner of the board. Type E has the forbidden vehicle on an edge.
TypeM has the forbidden vehicle in themiddle. The experiment
used four puzzles of type C, five puzzles of type E and one puzzle
of type M.

7.2. Length Distributions of Human Users’
Solutions
We now compare the cost of the solutions produced by human
users by dividing the solutions into two types: safe and unsafe.
In this analysis, we assumed each move is unit cost, therefore
the cost of the solution is equal to the number of moves.
We refer to solutions that did not move the forbidden vehicle

as safe and solutions that moved the forbidden vehicle as
unsafe. Sixty six users from the total 136 solutions that involved
moving the forbidden vehicle (49%). From those who moved the
forbidden vehicle, 54 users moved the vehicle more than once
(82%). Table 9 describes the summary statistics for the safe and
unsafe solutions.

We see that the planning task P1 did not produce any unsafe
solutions. The reason for this observation is that when examining
the structure of P1 it can be seen that moving the forbidden
vehicle makes the planning task unsolvable. Second, the planning
task P8 did not produce any unsafe solutions. Furthermore, P8
and P6 planning tasks in type C did not produce any unsafe
solutions. Human users found it difficult to avoid the forbidden
car for type E planning tasks, where the forbidden car was
positioned along the edge of the board. For type E planning
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TABLE 9 | Frequency, minimum, maximum, mean, and standard deviation (SD) of

the number of moves in human user solutions for the Rush Hour planning tasks

P1 through P10.

PID
Safe Unsafe

Freq Min Max Mean SD Freq Min Max Mean SD

P1 (E) 18 24 106 43.9 20.5 - - - - -

P2 (C) 3 44 158 99.3 57.1 8 78 378 190.3 120

P3 (E) - - - - - 12 25 50 35.5 8.3

P4 (C) 9 23 46 30 7.1 7 25 124 67.4 33.9

P5 (E) 4 23 32 26.5 3.9 7 14 82 32.0 23.3

P6 (C) 14 22 55 29 10.3 - - - - -

P7 (M) 2 29 37 33 5.7 9 43 132 80.9 38.2

P8 (C) 18 9 12 9.3 0.8 - - - - -

P9 (E) 2 21 27 24 4.2 14 29 169.0 66.3 39

P10 (E) - - - - - 9 44 158 81.2 39.2

The letter within parenthesis next to each puzzle id indicate the puzzle type.

tasks (P3, P5, P9, P10), there are more unsafe solutions than safe
solutions and also the mean solution length for unsafe solutions
is larger compared to the safe solutions mean. We only had 1
planning task for type M (P7), where the forbidden vehicle was
placed in the middle of the board. The users who attempted P7
found it difficult to solve the planning task without moving the
forbidden vehicle.

Figure 7 illustrates how the number of moves in users’
solutions compare to a set of threshold values derived from the
optimal solution for each Rush Hour planning task. We define
the threshold set θ as: given the optimal number of moves α for a
puzzle, θ = {α, 1.2α, 1.4α, 1.6α, 1.8α}. The letter in parenthesis
indicates the puzzle group (see Figure 6B for the three puzzle
types) of each puzzle.

It can be seen that human solvers’ solutions to P8 were very
close to the optimal solution in the number of moves. Human
solvers’ found it very difficult to find a solution closer to the
optimal number of moves for P2. Users who attempted P3 and P5
found solutions shorter than the safe, optimal. Shorter solutions
for these two puzzles all required the user to move the forbidden
vehicles. This observation allows us to draw a conclusion that
the recovery process of the Human-aware Intervention needs to
aim at reducing the remaining number of moves the user has to
execute to help them avoid the forbidden vehicle.

7.3. The Learning Methods
Our solution to the Human-aware Intervention Problem uses
machine learning to predict whether u will be reached in kmoves,
given H, where k = {1, 2, 3}. To produce the learned models, we
first partition the 136 human user solution from the experiment
into training (70%) and test (30%) sets. To produce the H
for a user, the user’s solution is pre-processed to only include
the moves until one step, two steps and three steps before the
forbidden vehicle was moved for the first time. For example, in a
solutionO = {o1, . . . , oi}, if a usermoved the forbidden vehicle in
step i, we generate three observation traces O1 = {o1, . . . , oi−1},

O2 = {o1, . . . , oi−2} and O3 = {o1, . . . , oi−3} corresponding to
that user. Observation traces of type O1 were used to train the
model for k = 1, observation traces of type O2 were used to
train the model for k = 2 and so on. Given the sequence of
actions in the user’s solution, the corresponding state after each
move required forH is derived using the STRIPS planning model
for the corresponding Rush Hour puzzle. We use the features
based on state and features based on actions together to train
five classifiers with 10-fold cross validation for each value of k.
We explore a number of classifiers: the decision tree, K-nearest
neighbor, Logistic Regression and Naive Bayes. The classifiers
are used in the supervised learning mode. We summarize the
parameters used in each learning method below:

• Decision Tree:We use the J48 classifier available on theWEKA
platform (Hall et al., 2009). This classifier implements the C4.5
algorithm (Quinlan, 1993). The decision tree classifier is tuned
to user pruning confidence=0.25 and the minimum number
of instances per leaf=2.
• k Nearest Neighbor (KNN): We use this classifier with a

Euclidean distance metric, considering the value k = 1
• Logistic Regression: This classifier is tuned for ridge parameter
= 1.0E− 8.
• Naive Bayes: This classifier is tuned with the supervised

discretization=True.

7.3.1. Human-Aware Intervention Accuracy
We used the learned models on the test data set to predict
whether the observer should intervene given H. In order to
evaluate the classifier accuracy, we first define true-positives,
true-negatives, false-positives, false-negatives for the Human-
aware Intervention Problem. A true-positive is when the classifier
correctly predicts that u will be reached in k moves given H. A
true-negative is when the classifier correctly predicts that the u
will not be reached in k moves. A false-positive is when where
the classifier incorrectly identifies that the u will be reached in k
moves. A false-negative is when the classifier identifies that the u
will not be reached in kmoves, but in fact it does.

Table 10 summarizes the precision, recall and F-score for
predicting intervention for k = {1, 2, 3}. It can be seen that
the Logistic Regression classifier performs the best with high
precision/recall compared to other classifiers when predicting
intervention for {k = 1, 2}When k = 3, the Logistic Regression
classifier predicts intervention with high recall but slightly lower
precision. The precision of the decision tree classifier improves
for higher values of k. However, the recall and F-score drop when
k = 3. The Naive Bayes classifier reported the lowest precision
compared to all other classifiers for any value of k.

7.3.2. Human-Aware Intervention as a Plan

Recognition Problem
Recall that in Section 2, we showed that it is possible to frame
the Intervention Problem as a Plan Recognition task, where the
observer models the u and d as the set of likely goals of the
user. Then, we can implement the observer in the Rush Hour
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FIGURE 7 | Number of moves in the users’ solution compared to the optimal number of moves α, 1.2α, 1.4α, 1.6α, 1.8α for puzzles P1 through P10.

TABLE 10 | Precision, Recall, and F-scores for the prediction accuracy of the Human-aware Intervention learned models.

Classifier
k = 1 k = 2 k = 3

Precision Recall F-score Precision Recall F-score Precision Recall F-score

Decision tree 0.70 0.90 0.89 0.80 0.95 0.87 0.89 0.81 0.85

KNN 0.89 0.76 0.82 0.86 0.86 0.86 0.95 0.90 0.93

Logistic regression 0.91 0.95 0.93 0.87 1 0.93 0.91 0.95 0.93

Naive bayes 0.73 0.90 0.81 0.74 0.86 0.83 0.68 0.90 0.78

Classifiers that reported the highest precision, recall and F-score are in bold. When k = 3, both the KNN and logistic regression classifiers have the same F-score. However, KNN has

the best precision. The best recall value is reported for the logistic regression classifier. Therefore, both are highlighted.

puzzle solving task as a probabilistic Plan Recognition agent that
solves the Plan Recognition Problem T = 〈Duser,G,H, Prob〉,
where Duser is the planning domain, the set of likely goals G =
{u, d}, H is the observation sequence and Prob is a probability
distribution over G. By compiling the observations away into the
domain theory, Ramirez and Geffner showed that it is possible
to use an automated planner to find plans that are compatible
with the observations and use these observation compatible plans
to determine what the most likely goal and plan (Ramırez and
Geffner, 2010) is for the user. They evaluated the approach on
benchmark planning domains.

If the observer can recognize u as the most likely goal given
the observations, then the observer must intervene at that point.
We adapt the Plan Recognition as Planning (PRP) algorithm
proposed by Ramırez and Geffner (2010), to evaluate how the
observer executing PRP recognizes the most likely goal given the
observation traces O1 = {o1, . . . , oi−1}, O2 = {o1, . . . , oi−2}, and
O3 = {o1, . . . , oi−3}, corresponding to k = {1, 2, 3}. We use
the same test set from the classifier evaluation to evaluate the
PRP algorithm in predicting intervention. This experiment also
allows us to evaluate the PRP algorithm on plans generated by
human users.
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In order to evaluate the PRP accuracy, we first define true-
positives, true-negatives, false-positives, false-negatives for the
observer implementing the PRP algorithm. A true-positive is
when the observer correctly selects u as the most likely goal
given the observation traces O1, O2 and O3 for {k = 1, 2, 3},
respectively. A true-negative is when the observer correctly does
not select u as the most likely goal given the observation traces. A
false-positive is when the observer incorrectly identifies u as the
most likely goal given the observations. A false-negative is when
the observer incorrectly does not select u as the most likely goal
but in fact it is.

Table 11 summarizes the precision, recall and F-score for
deciding to intervene correctly for k = {1, 2, 3} using PRP.
PRP requires goal priors as an input to the algorithm. We used
the LAMA planner (Richter and Westphal, 2010) to generate
satisficing plans that are compatible with the observations for
PRP. Our assumption of the users’ plans being satisficing is
justified by the findings reported in Section 7.2. It shows that
the majority of the users did not find optimal length solutions.
In order to analyze the algorithm performance on different goal
priors, we set three levels: (1) uniform goal priors, where u and
d are equally likely (i.e., P(u) = P(d)), (2) u is more likely
and (3) d is more likely. We decided on these prior probability
distributions based on the forbidden vehicle’s position on initial
game configurations used in the experiment. We set a higher
value for u to indicate the situation where the forbidden vehicle
is not blocked by other vehicles. As a result, the user will likely
move it. We set d as high if the forbidden vehicle is blocked in the
initial configuration, to indicate that the user will be less likely to
move it. The uniform probability is the default.

It can be seen that PRP accuracy in predicting when the u
will be reached is lower compared to the learned models for
all levels of k. The accuracy does not change with values of k.
This observation is consistent with the accuracy of the logistic
regressionmodel (i.e., the best performing learnedmodel).When
the goal priors are biased in favor of the undesirable state, the
prediction accuracy slightly improves. However, giving a higher
prior to u contradicts with our intervention models’ assumptions
that the user wants to avoid the undesirable state, which implies
that P(u) must be low.

8. RELATED WORK

We discuss prior research related to the The Intervention
Problem beginning with plan/goal recognition. This is because
in order to intervene, the observer must first recognize what
the actor is trying to accomplish in the domain. In the two
intervention models we have proposed: Unsafe Suffix Analysis
Intervention and Human-aware Intervention, the observer has
limited interaction with the actor. For example, upon sensing
an action and determining that it requires intervention the
observer simply executes the accept-observation action
to admit the observed action into H. In real-life situations,
helpful intervention requires more observer engagement, i.e.,
an active observer to help the actor recover from intervention.
Therefore, we discuss existing work on designing active observers

having both the recognition and interaction capabilities. Next,
we discuss related work on dealing with misconceptions held by
the actor about the planning domain and AI safety in general.
Because we specially focus on developing interventionmodels for
human users, we discuss related work on using machine learning
algorithm to classify human user behavior and how intervention
is leveraged to provide intelligent help to human users.

8.1. Plan Recognition
The Plan Recognition Problem is to “take as input a sequence
of actions performed by an actor and to infer the goal pursued
by the actor and also to organize the action sequence in terms of
a plan structure” (Schmidt et al., 1978). Early solutions to the
Plan Recognition problem require that the part of a plan given as
input to the recognizer be matched to a plan library. Generalized
Plan Recognition (Kautz and Allen, 1986), identifies a minimal
set of top-level actions sufficient to explain the set of observed
actions. The plans are modeled in a graph, where the nodes are
actions and there are two types of edges: action specialization
and decomposition. The Plan Recognition task then becomes the
minimum vertex cover problem of the graph. Geib and Goldman
(2009) represent the plan library for a cyber security domain as
partially ordered AND/OR trees. In order to recognize the actor’s
plan, the recognizer needs to derive a probability distribution
over a set of likely explanation plans π given observations O,
P(π |O). To extract the likely explanation plans, the authors define
a grammar to parse the AND/OR trees and generatively build the
explanations by starting off with a “guess” and refining it as more
observations arrive. The actor is hostile to the recognition task
and will hide some actions, causing the recognizer to deal with
partial observability when computing P(π |O).

One concern with using plan libraries for recognition is
the noise in the input observations. The case-based Plan
Recognition approach (Vattam and Aha, 2015) relaxes the
error-free requirement of the observations and introduces a
recognition algorithm that can handle missing and misclassified
observations. The solution assumes that there exists a plan library
consisting of a set of cases stored using a labeled, directed
graph called action sequence graphs, which is an encoding of
an action-state sequence that preserves the order of the actions
and states.

Ramırez and Geffner (2010) proposed a recognition solution
that does not rely on defining a plan library. By compiling the
observations away into a planning language called PDDL, their
approach exploits automated planners to find plans that are
compatible with the observations. Ramirez andGeffners’ solution
recognizes the actor’s goals (and plans) by accounting for the
cost differences of two types of plans for each candidate goal: (1)
plans that reach the goal while going through the observations
and, (2) plans that reach the goal without going through the
observations. Ramirez and Geffner characterize the likelihood
P(O|g) as a Boltzmann distribution P(O|g) = e−β1g

1+e−β1g
where

β is a positive constant. Sohrabi et al. (2016a) propose two
extensions to the Ramirez and Geffener’s Plan Recognition work.
First, the recognition system can now handle noisy or missing
observations. Their new approach to “Compiling Observations
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TABLE 11 | Precision, Recall, and F-scores for solving the Human-aware Intervention problem as a Plan Recognition problem with the Plan Recognition as Planning

algorithm (Ramırez and Geffner, 2010).

Goal priors
k = 1 k = 2 k = 3

Precision Recall F-score Precision Recall F-score Precision Recall F-score

Uniform 0.67 0.56 0.61 0.67 0.56 0.61 0.56 0.67 0.61

P(u) = 2×P(d) 0.69 0.61 0.65 0.69 0.61 0.65 0.69 0.61 0.65

P(d) = 2×P(u) 0.67 0.56 0.61 0.67 0.56 0.61 0.67 0.56 0.67

Away” modifies the planning domain to include action costs;
specifically penalties for noisy/missing observations. Second,
recognition is defined for observations over state variables.

In plan recognition, the recognizer reasons about the likely
goals from a set of goal hypotheses given the actor’s behavior. The
recognizer’s task may fail if he cannot accurately disambiguate
between possible goal hypotheses. Mirsky et al. (2018) propose
sequential plan recognition, where the user is sequentially
queried in real-time to verify whether the observed partial plan
is correct. The actor’s answers are used to prune the possible
hypotheses, while accounting for the incomplete plans that could
match with the observations after several other observations
happen in the future. In order to optimize the querying process,
the recognizer considers only the queries that maximize the
information-gain and the likelihood of the resulting hypotheses.
This solution assumes that a plan library is available. Their
implementation of the plan library uses trees to represent the
possible plans for goal hypotheses. Sequential plan recognition is
not really suited for the intervention scenarios we discuss in this
work, because we assume that the undesirable state that must be
avoided is hidden to the user.

Online goal recognition (Vered and Kaminka, 2017) extends
the recognition problem to continuous domains where the
recognition problem must be solved for every new observation
when they are revealed. Formally, we seek to determine the
probability of a goal g given observations O, P(g|O) for each
goal g ∈ G. The recognized goal is the one that has the
highest posterior probability. Instead of taking the cost difference
(Ramirez and Geffners’ approach) they define a ratio score(g) =
cost(ig )
cost(mg )

, where ig is the optimal plan to achieve g and mg is the

optimal plan that achieves g and includes all the observations.
When the optimal plan that has all the observations is the same
cost as the optimal the score approaches 1. Then P(g|O) =
ηscore(g), where η is the normalizing constant. Optimal plan
ig can be computed using a planner. To compute mg , they
exploit the fact that each observation is a trajectory or point in
the continuous space and each likely plan is also a trajectory
in the same space. Therefore, mg = prefix + suffix, where
prefix is built by concatenating all observations in O into a
single trajectory, and the suffix is generated by calling a planner
from the last observed point to goal g. Follow up work further
reduces the computational cost of online goal recognition by
introducing landmarks to prune the likely goals (Vered et al.,
2018). Landmarks are facts that must be true at some point
in all valid plans that achieve a goal from an initial state

(Hoffmann et al., 2004). Goal recognition is performed by using
landmarks to compute the completion ratio of the likely goals as
a proxy for estimating P(g|O).

8.2. Goal/Plan Recognition With an Active
Observer
While the goal/plan recognition works discussed in the previous
section assume a passive observer, a growing body of work has
also looked into recognition problemswith active observers. Only
recognizing when intervention is needed (as a passive observer)
solves only a part of the problem. In cases where intervention is
used for an artificial agent, active observers can force the agent
to alter its current plan. When intervention happens during a
cognitively engaging task, as in the Rush Hour puzzle, a human
user would naturally like to know what to do next. An active
observer who can take action or give instructions to the human
user, not only will be able to assist the user complete the task
safely but also will improve the human user’s interaction with the
AI system.

Bisson et al. (2011) propose a plan library based plan
recognition technique to provoke the observed agent so that
it becomes easier to disambiguate between pending goal
hypotheses. The observer modifies the fluents associated with a
provokable action, which forces the observed agent to react on
the modification. The provokable event is selected heuristically
such that it reduces the uncertainty among the observed agent’s
likely goals. In another approach that aims to expedite the
goal recognition, Shvo and McIlraith (2020) use landmarks
to eliminate hypothesized goals. They define the Active Goal
Recognition problem for an observer agent who can execute
sensing and world-altering actions. The observer executes a
contingent plan containing the sensing and world-altering actions
to confirm/refute the landmarks of the planning problems for
each goal hypothesis. Goals hypotheses whose landmarks (for the
corresponding planning problem) are refuted by the execution
of the contingent plan are removed from the set of likely
goals. Although the initial problem definition assumes that the
observer’s contingent plan is non-intervening and is primarily
used to reduce the goal hypotheses, Shvo and McIlraith (2020)
also propose an extension where the observer can actively
impede or aid the actor. For example, the authors suggest
adopting the Counter-planning Algorithm proposed by Pozanco
et al. (2018) to generate a plan for the observer to impede
the actor, after the actor’s goals are identified through Active
Goal Recognition. Pozanco’s Counter-planning Algorithm is
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designed for a domain where two adversarial agents (seeking and
preventing) pursue different goals. In the context of the Active
Goal Recognition problem, the seeking agent is the actor while
the preventing agent is the observer. Counter-planning requires
that the observer quickly identify the seeking agent’s goal. They
use the Ramirez and Geffener’s probabilistic goal recognition
algorithm to perform goal recognition. Then the preventing
agent actively intervenes the seeking agent by identifying the
earliest landmark for the seeking agent’s planning problem (for
the recognized goal) that needs to be blocked (i.e., counter-
planning landmark). The recognizer uses automated planning
to generate a plan to achieve the counter-planning landmark
(e.g., negating the landmark), thus blocking the seeking agent’s
goal achievement. The aforementioned works in Active Goal
Recognition assume full observability over the actor. Amato
and Baisero (2019) relax this constraint and propose Active
Goal Recognition with partial observability over the actor and
model the planning problem as a partially observable Markov
decision process (POMDP) (Kaelbling et al., 1998). Similar to
the previously discussed Active Goal Recognition problems,
the observer agent is trying to reach it’s own goal as well as
correctly predict the chosen goal of the actor. Therefore, they
define the Active Goal Recognition problem for the observer by
augmenting the observer’s action space with the actor’s actions,
the observer’s own actions and the decision actions on the actor’s
goals. The state space is defined as the Cartesian product of the
observer’s states, actor’s states and actor’s goals. The goals for
the recognition problem are augmented with the observer’s own
goals. and the prediction of the actor’s goals. A solution to this
planning problem starts at the the initial states of the observer
and the actor and chooses actions to the augmented goal while
minimizing the cost (or maximizing a reward). A POMDP is
defined to solve the augmented planning problem (i.e., Active
Goal Recognition problem).

The goal recognition algorithms discussed above mainly
focus on pruning the pending goal hypotheses to allow the
observer quickly disambiguate between goals. To accomplish
this objective, Shvo et al. use sensing and world-altering actions
to confirm/refute the landmarks. Counter-planning also uses
landmarks. Bisson et al. use heuristics. Other solutions for
goal recognition take a decision theoretic approach where the
observer attempts to find plans to achieve own goals while
predicting the user’s goal optimizing over some reward function.
Our intervention models differ from these solutions in the
intervention recognition task because we do not prune the goal
hypotheses. Instead, we emphasize on accurately recognizing
whether an actor’s revealed plan is unhelpful (and must be
interrupted) where the plans leading to the goal hypotheses
share common prefixes, making the disambiguation difficult.
We use machine learning to learn the differences between the
helpful and unhelpful plan suffixes and use that information
to decide when to intervene. We rely on the same plan
properties as existing recognition algorithms to learn the
differences between plan suffixes: plan cost and landmarks. In
addition, we have shown that the plan distance metrics can
also be used to differentiate between helpful and unhelpful
plan suffixes.

The next step in our work is to extend the Human-aware
Intervention model so that the observer can actively help the
human user modify his plan following the recognition phase.
The works we discussed in this section have already addressed
this requirement in agent environments, where the observer also
executes actions to support the goal recognition process. Pozanco
et al. take a step further to show that following recognition,
the observer can impede the actor using planning. Freedman
and Zilberstein (2017) discuss a method that allows the observer
to interact with the actor while the actor’s plan is in progress
with fewer observations available. Our experiments validate their
argument that plan/goal recognition by itself is more useful as a
post-processing step when the final actions are observed, which
will be too late for the Intervention problems we discuss in
this work. Our solution addresses this limitation, allowing the
observer to recognize “before it’s too late” that the undesirable
state is developing. We use machine learning to perform the
recognition task. In contrast, Freedman and Zilberstein (2017)
propose a domain modification technique (similar to Ramirez
and Geffner’s) to formulate a planning problem that determines a
relevant interactive response from the current state. Plans that
agree (and do not agree) with the observations can now be
found using an off-the-shelf planner on the modified domain.
The actor’s goal is recognized by comparing the costs of these
plan sets. Following the recognition phase, they also define
assistive and adversarial responsive actions the observer can
execute during the interaction phase. Assistive responsive action
generation is more related to our Intervention problem because
our observer’s goal is to help the actor avoid the undesirable state.
The authors define an assistive interaction planning problem
to generate a plan from the current state for the observer.
This assistive plan uses the combined fluents of the actor and
the observer, the Cartesian product of the actor’s and the
observer’s actions (including no-op actions) and a modified
goal condition for the observer. The assistive action generation
through planning proposed by Freedman and Zilberstein (2017)
is a complementary approach for the interactive Human-aware
Intervention model we hope to implement in the next phase of
this work. However, we will specially focus on using automated
planning to inform the decision making process of the human
actors following intervention. In addition, our work in Unsafe
Suffix Recognition can be further extended by relaxing the
assumptions we have made in the current implementation
about the agents and the environment, specifically deterministic
actions and full observability for the observer. This may require
adopting planning techniques like the one proposed by Amato
et al., but with different reward functions. For example, for
intervention problems the reward function may take into
account the freedom of the actor to reach his goal while
ensuring safety.

8.3. Dealing With Misconceptions Held by
the Actor
In our intervention model the undesirable state is hidden to the
user. This is similar to the user having a misconception or a false
belief about the domain as the user “believes” the undesirable

Frontiers in Artificial Intelligence | www.frontiersin.org 23 February 2022 | Volume 4 | Article 723936

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Weerawardhana et al. Models of Intervention

state is actually safe. Although for our Intervention problem,
we assume that the user’s belief model is explicitly available to
the observer, in other situations this assumption may not hold
(e.g., the observer may have limited sensing capabilities). In this
case, another agent in the environment (like the observer in our
Intervention problem), needs to be able to acquire the beliefs the
user has. Talamadupula et al. (2014) discuss a belief acquisition
process for a search and rescue domain. The belief acquirer maps
the beliefs into a planning problem, allowing him to predict
the plan of the agent who is missing the beliefs. The predicted
plan and the belief acquirer’s own plans are then used to achieve
coordination among human-robot teams.

Shvo et al. (2020), in Epistemic Multi-agent Planning, use a
multi-agent modal logic to model an observer (and other actors)
having different beliefs about the world and other actors. This is
in contrast to Talamadupula et al. (2014), who use First-order
logic. Given an Epistemic Plan Recognition problem (for an
Epistemic Planning observer and an actor), the authors define an
ill-formed plan with respect to some goal if and only if the plan
achieves the goal with respect to the actor but does not achieve
the goal from the observer’s perspective. The authors highlight
a limitation of Epistemic Plan Recognition (also applicable in
normal Plan Recognition). The observer’s recognition efficacy is
dependent on the completeness and the veracity of the observer’s
beliefs about the environment and the actor. In addition it is
also limited by how distinguishable the goals and the plans are
that need to be recognized. Our intervention solution attempts
to address the problem of improving recognition accuracy when
plans are indistinguishable. Shvo et al. (2020) introduce adequacy
for the recognition process when the actor’s actual beliefs are
different from the observer’s beliefs about the actor. If the
observer’s beliefs about the actor’s beliefs are adequate, then the
observer can generate precisely all plans that the actor can also
generates for some goal that also satisfies the observations.

8.4. AI Safety
Using our Intervention models an observer can recognize, with
few false alarms/misses, that an undesirable state is developing.
The recognition enables the observer to take some action to help
the user avoid the undesirable state and complete the task safely.
Therefore, our work is also a precursor to incorporating safety
into AI systems.

Zhang et al. (2018) use factored Markov Decision Process
to model a domain where an agent, while executing plans to
achieve the goals that are desirable to a human user, also wants
to avoid the negative side effects that the human user would
find undesirable/surprising. The agent has complete knowledge
about the MDP, but does not know about the domain features
that the user has given permission to change. In order to find
the safety optimal policies, the agent partitions the domain
features as free, locked and unknown (treated as locked). Then the
MDP is solved using linear programming with constraints that
prevent the policy from visiting states with changed values for
the locked, unknown features. The feature partitioning is similar
to our analysis of safe and unsafe plan suffixes using features
of plans, where we explore the plan space to recognize what

plans enable/satisfy the undesirable state and what do not. In
contrast to their model, we model the agents’ environment as a
deterministic domain using STRIPS. Zhang et al. (2018) policy
generation process interacts with the user (through querying)
to find the safe-optimal policies that the user really cares about.
Saisubramanian et al. (2020) propose a multi-objective approach
to mitigating the negative side-effects. Given an task modeled
as a MDP, the agent must optimize over the reward for the
assigned task (akin to the desirable goal in our Intervention
problem), minimize the negative side effects (the undesirable
state) within a maximum expected loss of the reward for the
assigned task (slack) in order to minimize the negative side
effect. Being able to handle the negative side effects, caused by
imperfect information in the environment is also pertinent to
Human-aware Intervention that we propose. Although in this
work we are more focused on intervention recognition than
intervention response, it’s also important to consider how the
user’s feedback/preferences can be factored into intervention
recovery for more robust human-agent interaction.

Hadfield-Menell et al. (2016) introduce cooperative inverse
reinforcement learning (CIRL) to ensure that the autonomous
system poses no risks to the human user and align it’s values
to that of the human in the environment. The key idea is that
the observer (a robot) is interactively attempting to maximize
the human’s reward while observing the actions executed by
the human. The cooperative game environment is modeled as
a Partially Observable Markov Decision Process and the reward
function incentivizes the human to teach and the robot to learn,
leading to a cooperative learning behavior. The problem of
finding the optimal policy pair for the robot and the human is
found by reducing the problem to solving a partially observable
Markov decision process. Intervention is a continuous process
where the user and the agent will interact with each other
repeatedly until the task is complete Especially in helpful
intervention (like the idea we propose in this work, repeated
interaction allows the human user and the agent to learn more
about the task and hopefully complete it safe-optimally. CIRL
formalizes a solution to address this problem.

8.5. User Behavior Classification
The design of observers for human users require that the
recognizer be able to identify human behavior and how well
the behavior aligns with the goals of the system they interact
with. Human users are not always rational and may have hidden
goals. It may be an unfair comparison to model humans as
rational agents in real life scenarios. Behavior classification
aims to achieve some insight about the actor from the passive
observer’s perspective. The work proposed by Borrajo and Veloso
(2020) discusses the design of an observer, which tries to learn
characteristics other agents (humans and other) by observing
their behavior when taking actions in a given environment.

Using the financial transactions domain as a case study,
Borrajo and Veloso (2020) models two agents: the actor (e.g., a
bank customer) and an observer (e.g., the banking institution).
Only the actor can execute plans in the environment. The
observer does not know the actor’s goal and has partial
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observability of the actor’s behavior (actions the actor executes).
Then, the observer’s task is to classify the observed behavior
into different types of known behavior classes. In order for the
application to be domain-independent, the authors use plan
distance measures (e.g., Jaccard similarity) between observed
actions and distance between observed states as features to train
the classifier. We use similar features to recognize the actor’s plan
prefixes that lead to undesirable states.

8.6. Providing Intelligent Help to Human
Users Through Intervention
Virvou and Kabassi (2002a,b) discuss the design of a system
that provides intelligent help for novice human users while
using a file manipulating software application. The Intelligent
File Manipulator (IFM) is an online help system where it
automatically recognizes that an action may not have the desired
goal for the user and offers help by generating alternative
actions that would achieve the user’s goals. IFM uses a user
modeling component to reason over the observed actions. The
user modeling component combines a limited goal recognition
mechanism and a simulator for users’ reasoning based onHuman
Plausible Reasoning theory to generate hypotheses about possible
errors the user might make.

There are some similarities between IFM and our proposed
intervention framework. Bothmodels use observations of actions
as input for deciding intervention. Both models assume that
the user’s goals are known. We now discuss some differences
between the IFM intervention model and our proposed model:
Intervention by Suffix Analysis. The IFM domain is modeled
as a task hierarchy, while our domain models (benchmark and
Rush Hour) are sequential. To map the user’s observed sequence
of actions to the plans leading to the desirable and undesirable
states, our intervention model uses automated planning to
explore the plan space. Then, we analyze the remaining plan
suffixes using machine learning to decide intervention. IFM
does not use automated planning. Instead it uses a limited
goal recognition mechanism called “instability” to identify when
users need help. They identify a set of states of the file system
as undesirable such as empty directories, multiple copies of a
certain file etc. If the file system state contains any of the preset
undesirable states, then the system contains instabilities. The
user’s action will either add an instability or remove an existing
one from the system’s state. The system tracks the progress of the
user’s plan(s) by monitoring how the instabilities are added and
removed from the system. IFM categorizes the user’s observed
actions into four categories “expected,” “neutral,” “suspect,” and
“erroneous” depending on how compatible the observed actions
are with the user’s hypothesized intentions. Intervention in IFM
takes place when the user executes “suspect” or “erroneous”
actions because they signal that there are still unfinished plans. To
help the user recover from intervention, the IFM flags “suspect”
or “erroneous” actions, and suggests alternative actions that are
compatible with the user’s intentions. Finding the alternative
actions similar to the ones the user has already executed is done
based on the user models derived from the Human Plausible

Reasoning theory. We hope to address the issue of intervention
recovery for our proposed Human-aware Intervention Problem
in future developments of our application.

Yadav et al. (2016) present HEALER, a software agent
that sequentially select persons for intervention camps from a
dynamic, uncertain network of participants such that the spread
of HIV/AIDS awareness is maximized. Real-life information
about the nodes of the network (human users) are captured
and modeled as a POMDP. The Intervention problem discussed
in this work is slightly different from our model. Solving the
POMDP gives the solution for how to select the most influential
individuals from the network to maximize awareness among
the population. In contrast, our intervention model is defined
for a discrete and sequential environment. A similarity between
the models is that they codify properties of actual human users
into the POMDP so that the model can be adopted in real-
life application. Our Human-aware Intervention model too is
designed from actual human user data.

A body of literature on managing task interruption focuses
on using cognitive modeling to predict human behavior, which
can be used to identify intervention points. Hiatt et al. (2011)
apply theory of mind to accommodate variability in human
behavior during task completion. They show that a theory
of mind approach can help explain possible reasons behind
a human’s unexpected action, that then allows the robot to
respond appropriately. Ratwani et al. (2008) demonstrate that a
cognitive model can accurately predict situations where a human
missed a step in a sequence of tasks. More recently, Altmann
and Trafton (2020) show how to extend a cognitive model to
explain a cognitively plausible mechanism for tracking multiple,
interacting goals.

8.7. Intervention in Cyber-Security for
Home Users
Cyber-security domain offers a lot of promise to study behavior
both as normal users and as adversaries in automated planning.
Behavioral Adversary Modeling System (BAMS) (Boddy et al.,
2005) uses automated planning to help computer network
administrators in analyzing vulnerabilities in their system against
various kinds of attacks. BAMS takes into account the properties
of an adversary and produces plans that lead to system exploits
that also coincides with the adversary model. While this work
does not directly apply to plan recognition at its core, it illustrates
a use case where classical planning can be used to design assistive
systems targeted toward human end users.

In this work, we take a step toward designing assistive systems
to help human end users, who are non-experts (e.g., home users).
Home users are specially vulnerable to undesirable consequences
because they lack the know-how to recognize risky situations
in advance. A previous study (Byrne et al., 2016) showed that
home users pay more attention to the benefits of the activities
than the risk; they have goals that they want/need to achieve
and are willing to take the risk to achieve them. Many triggering
actions may be normal activities (e.g., reading email, clicking
on links) with the user more focused on the goal than on the

Frontiers in Artificial Intelligence | www.frontiersin.org 25 February 2022 | Volume 4 | Article 723936

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Weerawardhana et al. Models of Intervention

risk. Thus, the undesirable consequence recognition problem
needs to take into account the user’s intention as well as the
undesirable consequence.

Howe et al. (2012) observed that most studies that look
into computer security practices of users relying on self
reported surveys suffered from issues such as respondent bias,
socially desirable responding and peer perception. The authors
posited that experiments based on simulation, which place the
participant in the actual situation that is monitored can help
reduce such issues and also be leveraged to assess the emotional
reactions of users to interventions and warnings.

The Intervention Problem can be directly applied in the cyber-
security domain. An attacker attempting to trick the user into
compromising his security/privacy during day-to-day computing
tasks (e.g., reading email, installing software) fits the intervention
model with the user, competitor and the observer we discussed
in this work. Given a cyber-security planning domain model
with sufficient complexity (e.g., BAMS domain model), where
the undesirable state (i.e., security breach) may develop over
time, the Unsafe Suffix Analysis Intervention model can be
applied to recognize the threat in advance. A key requirement
in helping users in cyber-security domain is to minimize the
false positives and negatives during intervention recognition.
As evidenced by the experiment results on benchmark domains
and the Rush Hour domain confirm, our proposed learning
based algorithm addresses this requirement well. While our
approach uses Automated Planning, a complementary approach
proposed by Roschke et al. (2011) use Attack Graphs to
model vulnerabilities in an intrusion detection system to detect
attack scenarios while decreasing false positives. However, the
intervention recognition must also be paired with intervention
recovery in cyber-security domains to ensure the safety of the
agent or the human user, particularly when the user has partial
visibility or limited capability for understanding the severity of
threats. Intervention recovery is also important in help the agent
or the human user safely complete the task.

9. DISCUSSION

In this paper, we formalized a family of Intervention Problems
and showed that how these problems can be solved using a
combination of Plan Recognition methods and classification
techniques to decide when to intervene. The Unsafe Suffix
Intervention Problem uses automated planners to project the

remaining suffixes and extract features that can differentiate
unsafe remaining suffixes from the safe remaining suffixes. In
contrast, the Human-aware Intervention Problem uses only

the observed history H to extract features that can separate
the solutions leading to undesirable state from the solutions
that will avoid it. We compared the Unsafe Suffix Intervention
and Human-aware Intervention using the state-of-art Plan
Recognition approaches in the literature as the baseline and
found that our learning based intervention solutions dominate
the existing Plan Recognition algorithms for both benchmark
Intervention Problems and a new intervention benchmark,
Rush Hour.

In Unsafe Suffix Intervention, when intervention models are
trained using features extracted from the Intervention Graph,
all the learned models chose distance to u and Risk as the
dominant features. We were not able to identify clear dominant
features in learned models built with Plan Space Sampling.
In Human-aware Intervention, the best performing learned
model for k = {1, 2, 3}, the logistic regression classifier,
selected backtracks, blocks, frees, reset, freebci,
freebcd, freegci, freegcd, mgc, mbc and moved as the
features for determining intervention.

We show that both the Unsafe Suffix Intervention Problem
and the Human-aware Intervention Problem can be re-
framed as Plan Recognition problems and use the recognition
process to decide intervention. The results prove the feasibility
of this approach. Plan recognition approaches are faster at
returning a decision in some cases. However, compared to the
proposed machine learning based solutions, Plan Recognition
based intervention accuracy, precision, and recall are low for
both benchmark Intervention Problems and the Rush Hour
Intervention Problem. The requirement of setting goal priors
for Plan Recognition is an issue that must be overcome
for intervention. This is because during execution, the user’s
plan may be subverted to achieve the undesirable state by
environmental factors (such as attackers and hidden knowledge)
regardless the priors. In Unsafe Suffix Intervention, we find
that even when we assume reasonable goal priors, if the plans
for u share long common action sequences with plans for
d, Plan Recognition as Planning (PRP) approaches fail to
correctly disambiguate between u and d. This affects the overall
intervention accuracy by producing many false alarms and
misses. In the intervention scenario we simulated with the Rush
Hour domain, setting goal priors is even more problematic.
This is because the user is informed about the presence of a
forbidden vehicle and that the puzzle can be solved without
moving it prior to executing the planning task. The result of that
information being given to the user is that the goal prior for
u is low compared to d. In our experiments, we show that the
recognition accuracy for PRP approach drops when goal priors
are set this way. We remove the dependency on goal priors by
using features of projected remaining suffixes (in Unsafe Suffix
Recognition) and the observed partial solution H (in Human-
aware Intervention) to learn the differences between safe and
unsafe plans from example training data and using the learned
models to predict intervention.

We observed that different features (or their combinations)
affect the intervention decision in the benchmark domains. Next,
we describe which features were selected by the intervention
recognition classifiers for the Intervention Graph and the Plan
Space Sampling methods.

• Blocks-1: When Intervention Graph features are used, the
decision tree, k-nearest neighbor and naive Bayes classifiers
select distance to u to make the intervention decision. The
logistic regression classifier selects distance to u and Risk to
make the intervention decision. When using the Plan Space
Sampling method, the decision tree, logistic regression, naive
Bayes classifiers select the Landmark Completion Heuristic.
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The k-nearest neighbor classifier selects the median Causal
Link Distance between the reference plan and the plans to u.
• Blocks-2: When Intervention Graph features are used, the

decision tree classifier selects Risk to decide intervention. The
decision tree, logistics regression and naive Bayes classifier
use Risk, Desirability, distance to u and d, and the active
attack landmark percentage collectively to decide intervention.
When deciding intervention using the Plan Space Sampling
method, the decision tree uses the median action set distance
to u,minimum generalized edit distance for state sequences for
u and median causal link distance to d features. The k-nearest
neighbor, logistic regression and naive Bayes classifiers use all
features in the Sampled Feature Vector.
• EasyIPC: When Intervention Graph features are used, the

decision tree, k-nearest neighbor and naive Bayes classifiers
select distance to u to make the intervention decision.
The logistic regression classifier selects Risk to make the
intervention decision. When deciding intervention using the
Plan Space Sampling method, the decision tree and the naive
Bayes classifiers use the Landmark Completion Heuristic. The
k-nearest neighbor classifier selects the median Causal Link
Distance between the reference plan and the plans to u.
The logistic regression classifier uses several features: action
set distance, causal link distance, state sequence distance,
minimum remaining distance, minimum edit distance to u,
and state sequence distance, minimum remaining distance to
and minimum edit distance of action and state sequences for
plans leading to d.
• Ferry: When using Intervention Graph features, all four

classifiers select Risk to make the intervention decision. When
deciding intervention with the Plan Space Sampling method,
the decision tree classifier selects median causal link distance
to u, median state sequence distance to u, minimum remaining
distance to d and minimum edit distance to d as features. The
k-nearest neighbor classifier selects the median state sequence
distance and the minimum remaining distances to u to make
the intervention decision. The logistic regression classifier uses
the action set distance, causal link distance and state sequence
distance, minimum edit distance in action and state sequences
to u. In addition the classifier also uses the state sequence
distance and minimum edit distance to d. The naive Bayes
classifier uses action set distance and causal link distance to d,
in addition to causal link distance to u, state sequence distance
to u, edit distances for action and state sequences for u, and the
Landmark Completion Heuristic.
• Navigator: When Intervention Graph features are used all

four classifiers select Risk to make the intervention decision.
When deciding intervention with the Plan Space Sampling
method, the decision tree, k-nearest neighbor and naive
Bayes classifiers use the Landmark Completion Heuristic. The
logistic regression classifier use the action set distance, causal
link distance, state sequence distance, minimum remaining
distance to critical, minimum edit distance for state sequences
and the Landmark Completion Heuristic.

We model intervention by recognizing the directly contributing
actions using the Blocks-1, EasyIPC, Ferry and Navigator

domains. For the Blocks-1 problems, when using the
Intervention Graph feature vector, the observer can recognize
when intervention is required by monitoring one or two
features (e.g., Risk and remaining distance to u). A similar
observation can be made when using the Plan Space Sampling
feature vector (the Landmark Completion Heuristic, Causal
Link Distance). The EasyIPC intervention problems also use
a few features (e.g., the remaining distance to u and Risk)
for deciding whether to intervene. The logistic regression
classifier uses more features from the Plan Space Sampling
feature vector compared to the other three classifiers to decide
intervention for the EasyIPC domain. The intervention decision
for the Ferry domain and the Navigator domain rely only on
the Risk feature when using the Intervention Graph feature
vector. For the Ferry domain, intervention using the Plan Space
Sampling feature vector require monitoring for many features.
In contrast, for the Navigator domain three classifiers rely on
the Landmark Completion Heuristic to decide intervention. The
logistic regression classifier use many plan distance metrics in
addition to the Landmark Completion Heuristic to make the
intervention decision.

We use the Blocks-2 domain to model intervention by
recognizing indirectly contributing sequences. For this case,
more features from the Intervention Graph feature vector is
required to make the intervention decision. The same can be
observed when using the Plan Space Sampling feature vector.

Our findings comparing PRP and the learned model for
Human-aware Intervention show that deciding to intervene
based on plan cost differences (PRP) is not sufficient, especially
when intervening human users. As seen from the solution
length distributions in Section 11.3, the longer the human
user spends exploring the state space, the higher the likelihood
that his partial plan will get closer to u. Therefore, we argue
that intervention for human users require representations that
capture characteristics of the actor’s behavior in addition to the
planning representations. The features based on actions and the
features based on state extracted from H we propose for learning
Human-aware Intervention capture the behavior patterns of the
human user and as a result produce accurate learned models.
However, a limitation of our proposed approach is that some
features in the feature vector are domain-specific. Therefore,
adopting the proposed approach in different planning domains
may require feature engineering.

There are other methods one could use for generating
X3, which we will explore in future work. In Unsafe Suffix
Intervention, we generated X3 from the sH using an automated
planner without considering the observations in H. We then
compared the suffixes in X3 to an observation compatible
reference plan. Ramırez and Geffner (2009), Ramırez and Geffner
(2010), and Sohrabi et al. (2016a) proposemethods to compile the
observations into the domain theory, which allows the planner to
find observation compatible plans. We can use this technique to
also find observation compatible suffixes in X3. By making both
the X3 and the reference plan compatible with the observations,
we believe the plan distance features will be more accurate for the
Plan Space Sampling method.
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10. CLOSING REMARKS

Intervention is a necessity for online assistive agents and safety
critical decision making, where an observer determines how
to guide a user toward a desirable outcome while avoiding
undesirable outcomes. We propose Intervention as a solution
to this problem and introduced two algorithms that combine
automated planning and machine learning to decide whether
or not the user’s likely plan will avoid the undesirable state.
Representing the user’s task as a planning problem allows us
to extract features of the user’s plan space that can be used
to produce learned models to recognize when intervention is
required. Our first solution Unsafe Suffix Intervention, uses
automated planning to project the remaining suffixes and extract
features to differentiate between safe suffixes that avoid the
undesirable outcome and unsafe suffixes that do not avoid
the undesirable outcome. The second solution, Human-aware
Intervention uses only the observed plan to extract features that
can differentiate between safe and unsafe solutions. We showed
that the two learning based intervention solutions dominate the
state-of-the-art Plan Recognition algorithms in identifying when
intervention is required.

In this work, our objective was to identify, given a sequence
of observations, whether the user requires intervention while
minimizing false positives and negatives. For our current
implementation we assumed that the intervention comes in the
form of a block or an alert message. The natural next step
following intervention is helping the user decide what to do
next. This extension is particularly important for observers where
the user is a human user who would like to be guided toward
the goal instead of being given the solution outright (e.g., an
automated tutoring agent). We identify two sub-problems in
helping the user decide what to do next. First, we can explore how
automated planning can be used to gradually probe the search
space of the remaining planning task following intervention. In
certain cases, the user may want a quick, well-focused help. For
example, in the Rush Hour puzzle, the observer can suggest
the first move in the shortest remaining plan that avoids the
forbidden vehicle as a hint after intervening. In other cases, the
user would prefer more abstract suggestion. For example, in the
Rush Hour puzzle, the observer can suggest the vehicles that
must be moved to solve the puzzle (i.e., the landmarks of the
planning task). In various stages of the puzzle solving task, the
user may opt to use these suggestions differently. The second
sub problem is explaining intervention and the follow-up to
intervention. We can explore how effective different explanation
models (e.g., contrastive, selective) are in explaining intervention
and intervention Recovery to human users.

There are several other extensions to our current intervention
framework, that we would like to explore as future work. In
the planning domains we used to model intervention tasks,
we assumed that the user’s actions are deterministic and there
is only one undesirable state that needs to be avoided. It is
possible to relax these two assumptions and explore intervention
in non-deterministic environments where the user needs to avoid

multiple undesirable goals. However, in order for intervention
to be meaningful, the intervention planning domains need to be
descriptive enough to model complex tasks. We can explore the
feasibility of adopting scenario building game environments like
Minecraft for this purpose.

An interesting issue from our Rush Hour intervention study
is how well the classifiers trained from user data would generalize
to larger and more difficult Rush Hour puzzles. For example, the
puzzle can be made difficult by adding more forbidden vehicles,
more vehicles, and also introducing random exit points in the
board. Addressing this question is left for future work.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
sachinisw/intervention_datasets/.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Board (IRB), Colorado State
University. The participants provided their informed consent
online to participate in this study.

AUTHOR CONTRIBUTIONS

SW is a Ph.D. student in the Computer Science Department
at the Colorado State University conducting research on
automated planning. SW’s contributions to this work are, concept
development, coding, experimental design, data analysis, and
writing. DW is a Professor of Computer Science at Colorado
State University. His research focuses on search, evolutionary
computation and machine learning. He is a Fellow of the ACM.
DW’s contributions to this work are concept development and
writing. MR is a Research Scientist at NRL’s Navy Center for
Applied Research in AI (NCARAI, Code 5514). His research
experience spans a cross section of applied planning, scheduling,
and machine learning for decision support. MR’s contribution to
this work is writing. All authors contributed to the article and
approved the submitted version.

FUNDING

The research was funded by AFOSR, NRL, and ONR. SW was
also funded by a graduate assistantship from Colorado State
University.

ACKNOWLEDGMENTS

The authors thank AFOSR and NRL for funding
this research. MR thanks ONR for partially funding
his work.

Frontiers in Artificial Intelligence | www.frontiersin.org 28 February 2022 | Volume 4 | Article 723936

https://github.com/sachinisw/intervention_datasets/
https://github.com/sachinisw/intervention_datasets/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Weerawardhana et al. Models of Intervention

REFERENCES

Altmann, E. M., and Trafton, J. G. (2020). “Memory for goals: an architectural
perspective,” in Proceedings of the Twenty First Annual Conference of the

Cognitive Science Society (Hove: Psychology Press), 19–24.
Amato, C., and Baisero, A. (2019). Active goal recognition. ArXiv, abs/1909.11173.
Bisson, F., Kabanza, F., Benaskeur, A., and Irandoust, H. (2011). “Provoking

opponents to facilitate the recognition of their intentions,” in Proceedings

of the 25th AAAI Conference on Artificial Intelligence (San Francisco, CA),
1762–1763.

Boddy, M. S., Gohde, J., Haigh, T., and Harp, S. A. (2005). “Course of action
generation for cyber security using classical planning,” in Proceedings of the

International Conference on Automated Planning and Scheduling (Monterey,
CA), 12–21.

Bonet, B., and Geffner, H. (2001). Planning as heuristic
search. Artif. Intell. 129, 5-33. doi: 10.1016/S0004-3702(01)00
108-4

Borrajo, D., and Veloso, M. (2020). “Domain-independent generation and
classification of behavior traces,” in Working Notes of the ICAPS Workshop on

Planning for Financial Services (Nancy).
Bryce, D. (2014). “Landmark-based plan distance measures for diverse planning,”

in Proceedings of the 24th International Conference on Automated Planning and

Scheduling (Portsmouth, NH), 56–64.
Byrne, Z. S., Dvorak, K. J., Peters, J. M., Ray, I., Howe, A., and Sanchez, D.

(2016). From the user’s perspective: Perceptions of risk relative to benefit
associated with using the internet. Comput. Human Behav. 59, 456–468.
doi: 10.1016/j.chb.2016.02.024

Fikes, R. E., and Nilsson, N. J. (1971). STRIPS: A new approach to the
application of theorem proving to problem solving. Artif. Intell. 2, 189–208.
doi: 10.1016/0004-3702(71)90010-5

Flake, G. W., and Baum, E. B. (2002). Rush hour is psapce-complete, or “Why
you should generously tip parking lot attendants”. Theor. Comput. Sci. 270,
895–911. doi: 10.1016/S0304-3975(01)00173-6

Freedman, R. G., and Zilberstein, S. (2017). “Integration of planning with
recognition for responsive interaction using classical planners,” in Proceedings

of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17

(San Francisco, CA: AAAI Press), 4581–4588.
Geib, C., and Goldman, R. (2009). A probabilistic plan recognition

algorithm based on plan tree grammars. Artif. Intell. 173, 1101–1132.
doi: 10.1016/j.artint.2009.01.003

Hadfield-Menell, D., Russell, S. J., Abbeel, P., and Dragan, A. (2016).
Cooperative inverse reinforcement learning. Adv. Neural Inf. Process Syst. 29,
3909–3917. Available online at: https://arxiv.org/abs/1606.03137

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I.
H. (2009). The WEKA data mining software: an update. SIGKDD Explorat.

Newslett. 11, 10-18. doi: 10.1145/1656274.1656278
Helmert, M. (2006). The fast downward planning system. J. Artif. Intell. Res. 26,

191–246. doi: 10.1613/jair.1705
Hiatt, L. M., Harrison, A. M., and Trafton, J. G. (2011). “Accommodating human

variability in human-robot teams through theory of mind,” in Proceedings of

the Twenty-Second international joint conference on Artificial Intelligence, Vol.

3 (Barcelona: AAAI Press), 2066–2071.
Hoffmann, J., Porteous, J., and Sebastia, L. (2004). Ordered landmarks in planning.

J. Artif. Intell. Res. 22, 215–278. doi: 10.1613/jair.1492
Howe, A. E., Ray, I., Roberts, M., Urbanska, M., and Byrne, Z. (2012).

“The psychology of security for the home computer user,” in Proceedings

of the IEEE Symposium on Security and Privacy (San Francisco, CA),
209–223.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and
acting in partially observable stochastic domains. Artif. Intell. 101, 99–134.
doi: 10.1016/S0004-3702(98)00023-X

Kautz, H. A., and Allen, J. F. (1986). “Generalized plan recognition,” in Proceedings

of 5th National Conference on Artificial Intelligence (Philadelphia, PA), 32–37.
Mirsky, R., Stern, R., Gal, K., and Kalech, M. (2018). Sequential plan recognition:

An iterative approach to disambiguating between hypotheses. Artif. Intell. 260,
51–73. doi: 10.1016/j.artint.2018.03.006

Nguyen, T. A., Do, M., Gerevini, A. E., Serina, I., Srivastava, B., and Kambhampati,
S. (2012). Generating diverse plans to handle unknown and partially

known user preferences. Artif. Intell. 190, 1–31. doi: 10.1016/j.artint.2012.
05.005

Pereira, R. F., Oren, N., and Meneguzzi, F. (2017). “Landmark-based heuristics
for goal recognition,” in Proceedings of the Thirty-First Association

for the Advancement of Artificial Intelligence (San Francisco, CA),
3622–3628.

Pozanco, A., Yolanda, E., Fernández, S., and Borrajo, D. (2018). “Counterplanning
using goal recognition and landmarks,” in Proceedings of the 27th International

Joint Conference on Artificial Intelligence (Stockholm), 4808–4814
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Francisco, CA:

Morgan Kaufmann Publishers Inc.,.
Ramırez, M., and Geffner, H. (2009). “Plan recognition as planning,” in Proceedings

of the 21st International Joint Conference on Artifical Intelligence (Pasadena,
CA), 1778–1783.

Ramırez, M., and Geffner, H. (2010). “Probabilistic plan recognition using off-the-
shelf classical planners,” in Proceedings of the Conference of the Association for

the Advancement of Artificial Intelligence (Atlanta, GA), 1121–1126.
Ratwani, R. M., McCurry, J. M., and Trafton, J. G. (2008). “Predicting

postcompletion errors using eye movements,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (Association for
Computing Machinery), 539–542.

Riabov, A., Sohrabi, S., and Udrea, O. (2014). “New algorithms for the Top-
K planning problem,” in Proceedings of the theScheduling and Planning

Applications woRKshop (SPARK) at the 24th International Conference on

Automated Planning and Schedulin (Portsmouth, NH), 10–16.
Richter, S., and Westphal, M. (2010). The LAMA planner: guiding cost-

based anytime planning with landmarks. J. Artif. Intell. Res. 39, 127–177.
doi: 10.1613/jair.2972

Roschke, S., Cheng, F., and Meinel, C. (2011). “A new alert correlation algorithm
based on attack graph,” inComputational Intelligence in Security for Information

Systems, eds Á. Herrero and E. Corchado (Berlin; Heidelberg: Springer Berlin
Heidelberg), 58–67.

Saisubramanian, S., Kamar, E., and Zilberstein, S. (2020). “A multi-objective
approach to mitigate negative side effects,” in Proceedings of the Twenty-

Ninth International Joint Conference on Artificial Intelligence, ed C.
Bessiere (Yokohama: International Joint Conferences on Artificial Intelligence
Organization), 354–361.

Schmidt, C. F., Sridharan, N., and Goodson, J. L. (1978). The plan recognition
problem: An intersection of Psychology and Artificial Intelligence. Artif. Intell.
11, 45–83. doi: 10.1016/0004-3702(78)90012-7

Shvo, M., Klassen, T. Q., Sohrabi, S., and McIlraith, S. A. (2020). “Epistemic
plan recognition,” in Proceedings of the 19th International Conference on

Autonomous Agents and MultiAgent Systems (Aukland), 1251–1259.
Shvo, M., and McIlraith, S. A. (2020). “Active goal recognition,” in Proceedings

of the AAAI Conference on Artificial Intelligence, Vol. 34 (New York, NY),
9957–9966.

Sohrabi, S., Riabov, A., and Udrea, O. (2016a). “Plan recognition as
planning revisited,” in Proceedings of the 25th International Joint

Conference on Artificial Intelligence (New York, NY: AAAI Press),
3258–3264.

Sohrabi, S., Riabov, A. V., Udrea, O., and Hassanzadeh, O. (2016b). “Finding
diverse high-quality plans for hypothesis generation,” in Proceedings of

the 22nd European Conference on Artificial Intelligence (The Hague),
1581–1582.

Talamadupula, K., Briggs, G., Chakraborti, T., Scheutz, M., and Kambhampati, S.
(2014). “Coordination in human-robot teams using mental modeling and plan
recognition,” in 2014 IEEE/RSJ International Conference on Intelligent Robots

and Systems (Chicago, IL), 2957–2962.
Vattam, S. S., and Aha, D. W. (2015). “Case-based plan recognition under

imperfect observability,” in Proceedings of the 23rd International Conference on

Case Based Reasoning (Cham: Springer), 381–395.
Vered, M., and Kaminka, G. A. (2017). “Heuristic online goal recognition in

continuous domains,” in Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence (Melbourne, VIC), 4447–4454,
Vered, M., Pereira, R. F., Magnaguagno, M., Meneguzzi, F., and Kaminka, G. A.

(2018). “Online goal recognition as reasoning over landmarks,” in Working

Notes of the The AAAI 2018Workshop on Plan, Activity, and Intent Recognition

(New Orleans, LA).

Frontiers in Artificial Intelligence | www.frontiersin.org 29 February 2022 | Volume 4 | Article 723936

https://doi.org/10.1016/S0004-3702(01)00108-4
https://doi.org/10.1016/j.chb.2016.02.024
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/S0304-3975(01)00173-6
https://doi.org/10.1016/j.artint.2009.01.003
https://arxiv.org/abs/1606.03137
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1613/jair.1705
https://doi.org/10.1613/jair.1492
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/j.artint.2018.03.006
https://doi.org/10.1016/j.artint.2012.05.005
https://doi.org/10.1613/jair.2972
https://doi.org/10.1016/0004-3702(78)90012-7
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Weerawardhana et al. Models of Intervention

Virvou, M., and Kabassi, K. (2002a). “IFM: an intelligent graphical user
interface offering advice,” in Proceedings of the 2nd Hellenic Conference of AI

(Thessaloniki), 155–164.
Virvou, M., and Kabassi, K. (2002b). Reasoning about

users’ actions in a graphical user interface. Human

Comput. Interact. 17, 369–398. doi: 10.1207/S15327051HCI
1704_2

Yadav, A., Chan, H., Xin Jiang, A., Xu, H., Rice, E., and Tambe, M. (2016). “Using
social networks to aid homeless shelters: dynamic influence maximization
under uncertainty,” in Proceedings of the 2016 International Conference

on Autonomous Agents and Multiagent Systems, AAMAS ’16 (Singapore:
International Foundation for Autonomous Agents and Multiagent Systems),
740–748.

Zhang, S., Durfee, E. H., and Singh, S. (2018). “Minimax-regret
querying on side effects for safe optimality in factored markov
decision processes,” in Proceedings of the 27th International

Joint Conference on Artificial Intelligence, IJCAI’18 (AAAI Press),
4867–4873.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Weerawardhana, Whitley and Roberts. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 30 February 2022 | Volume 4 | Article 723936

https://doi.org/10.1207/S15327051HCI1704_2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Weerawardhana et al. Models of Intervention

11. APPENDIX

We discuss details about the Rush Hour human subject study
and the findings. The following sections present the evidence
on which we based the design choices for the Rush Hour
planning task. The sections are cross-referenced throughout the
main content.

11.1. Rush Hour Human Subject Study:
Pilot Experiment
Before the study was actually administered to our recruited
subjects, a pilot study was conducted with nine graduate
students to assess whether they would be able to solve the
puzzles within a reasonable amount of time. The pilot study
participants solved their assigned puzzles within 5–10 min. The
pilot study participants were also interviewed informally to
get their perception of the puzzle difficulty. The participants
commented that the puzzles were “challenging” and “forced me
to think”. The same puzzles used in the pilot were used in the
actual study.

11.2. Demography Survey Findings
39 participants were below the age of 20, while 38 subjects were
between the age 20-25. Maximum age was 41 years. 70 of the 117
participants were male. When asked if they liked puzzle solving
tasks, 78% of the participants either agreed or strongly agreed
with the statement. Specifically to the Rush Hour game 79% of
the participants liked or strongly liked Rush Hour. The most
common reason as to why the participants liked puzzle solving
tasks was that puzzle solving stimulates critical thinking skills.
30% of the participants usually did a puzzle solving task once
a month, while 21% of the participants solved a puzzle once a
week. When asked about strategies the participants used to solve
difficult puzzles, 79% of the group said that they kept trying until
the puzzle was eventually solved, while 12% of the participants
said that they would ask for help.

Given a new puzzle that they have not seen before, if they
get stuck while solving the puzzle, 26% said that they would
not like any outside help. 47% of the participants said that
they would like a suggestion/tip that would get them past the
current situation. 15% said that they would like a warning,

which indicated that their current approach would lead to a
dead-end. 8% of the participants said that they would like a
warning and an explanation to help them prevent getting stuck
in the future. The most common medium for solving puzzles
was using their mobile devices (42%). 31% of the participants
used the personal computers/laptops to solve puzzles. 19% of
the participants solved puzzles using physical means (e.g., puzzle
books, newspapers and physical puzzles such as Rubik’s cubes).

11.3. User Solutions Grouped by Length
For each puzzle, we sorted the solutions by the number
of moves (in the complete solution) in the ascending order
and split them into three groups (fast, medium, slow). We
ensured that the three groups for each puzzle contained
approximately equal number of users. Table A1 summarizes
the findings. There were 46 users in the fast group, 42 in
the medium and 48 in the slow group. Mean refers to the
mean number of moves in a solution produced by users who
solved a specific puzzle. Forbidden moves refers to the number
of times, the users who solved a specific puzzle moved the
forbidden vehicle.

TABLE A1 | Plans produced by human users grouped by the mean number of

moves and the number of forbidden moves.

PID
Fast (46) Medium (42) Slow (48)

Mean
Forbidden

moves
Mean

Forbidden

moves
Mean

Forbidden

moves

P1 25.5 0 41.7 0 64.7 0

P2 74.7 4 137.7 16 277 28

P3 26.5 8 36.2 9 43.7 6

P4 25.2 1 32 4 76 28

P5 18.3 3 26 2 44.75 13

P6 22 0 24.5 0 39.6 0

P7 38.5 5 53.3 16 120 37

P8 9 0 9 0 10 0

P9 27.8 8 48.6 12 99 28

P10 50.3 11 66 14 127.3 46
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