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Abstract

Aim

Since cardiovascular magnetic resonance feature-tracking (CMR-FT) has been demon-

strated to be of incremental clinical merit we investigated the interchangeability of global left

and right ventricular strain parameters between different CMR-FT software solutions.

Material and methods

CMR-cine images of 10 patients without significant reduction in LVEF and RVEF and 10

patients with a significantly impaired systolic function were analyzed using two different types of

FT-software (TomTec, Germany; QStrain, Netherlands). Global longitudinal strains (LV GLS,

RV GLS), global left ventricular circumferential (GCS) and radial strains (GRS) were assessed.

Differences in intra- and inter-observer variability within and between software types based on

single and up to three repeated and subsequently averaged measurements were evaluated.

Results

Inter-vendor agreement was highest for GCS followed by LV GLS. GRS and RV GLS

showed lower inter-vendor agreement. Variability was consistently higher in healthy volun-

teers as compared to the patient group. Intra-vendor reproducibility was excellent for GCS,

LV GLS and RV GLS, but lower for GRS. The impact of repeated measurements was most

pronounced for GRS and RV GLS on an intra-vendor level.

Conclusion

Cardiac pathology has no influence on CMR-FT reproducibility. LV GLS and GCS qualify as

the most robust parameters within and between individual software types. Since both
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parameters can be interchangeably assessed with different software solutions they may

enter the clinical arena for optimized diagnostic and prognostic evaluation of cardiovascular

morbidity and mortality in various pathologies.

Introduction

Cardiovascular magnetic resonance feature tracking (CMR-FT) is a technique analogous to

speckle tracking echocardiography (STE), a non-Doppler based technique to assess cardiac

mechanics [1]. Quantitative wall motion parameters coming from STE demonstrate high

value for prognosis and mortality prediction [2] over and above classical parameters such as

ejection fraction (EF) [3]. Studies show good agreement between STE and CMR-FT [4–6] and

recently similar utility for prognosis assessment has been demonstrated for CMR-FT [7–9].

Furthermore, reasonable agreement between CMR-FT and CMR-tagging [10], which is con-

sidered the CMR reference standard for quantitative wall motion assessment [11] has been

demonstrated. Parameters derived from CMR-FT in contrast to CMR-tagging do not require

the acquisition of additional sequences and time consuming post processing, but allow quanti-

tative deformation parameters to be derived from routinely acquired steady-state-free-preces-

sion (SSFP) sequences [12]. CMR-FT has proven reliability [13, 14] and is receiving increasing

interest due to mounting evidence regarding the clinical applicability in a variety of cardiovas-

cular diseases [7, 8, 12, 15–20].

Notwithstanding these considerations significant numerical differences in strain assess-

ments have been demonstrated between different CMR-FT software types (2D CPA MR, Tom-

Tec GmbH, Unterschleissheim, Germany and Tissue Tracking, cvi42, Circle Cardiovascular

Imaging Inc., Calgary, Canada) [21]. Recently Medis Medical Imaging Systems (Leiden, Neth-

erlands) have released an alternative tool called QStrain. Although both solutions share a simi-

lar basic algorithm [11], they offer different workflows with Medis requiring a higher degree of

manual user interaction than TomTec. Consequently, the aim of the present study was to

assess the reproducibility and inter-vendor agreement between the established TomTec meth-

odology and the new solution provided by Medis in regard to global left and right ventricular

strain values.

Materials and methods

Study population

The study cohort consisted of 10 patients with normal left ventricular ejection fraction (LVEF)

and 10 patients with significantly impaired systolic function. The research was conducted in

accordance with general ethical approval for additional research analyses on clinically acquired

data granted by the Ethics committee of the University Medical Centre Goettingen. All

patients gave written informed consent and all clinical investigations have been conducted

according to the principles expressed in the Declaration of Helsinki.

CMR imaging

CMR imaging was carried out on a SIEMENS Symphony 1.5 Tesla system in the supine posi-

tion using a five-channel cardiac surface coil. Electrocardiogram (ECG)-gated SSFP cine

sequences in long-axis 2- and 4-chamber views and 12 to 14 equidistant short-axis planes

completely covering the left ventricle were acquired during brief periods of breath-holding (25
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frames/cardiac cycle). Typical CMR parameters were as follows: pixel spacing: 1.6mm x

1.6mm; 7 mm slice thickness; 8 mm inter-slice distance; TE: 1.4ms; TR: 46ms.

Volumetric analysis

CMR based volumetric analysis was performed using the dedicated software solution provided

by Medis Medical Imaging Systems (QMass, Version 7.6).

CMR-Feature Tracking (CMR-FT)

CMR-FT was performed using the software provided by TomTec Imaging Systems (2D CPA

MR, Cardiac Performance Analysis, Version 4.6.3.9) and Medis Medical Imaging Systems

(QStrain, Version 2.1.12.2). The software tools will be referred to as “TomTec” and “QStrain”

in the following sections of the paper. Strain was assessed with both software types at the fol-

lowing locations: long axis 2- and 4-chamber views; short axis sections at basal, mid-ventricu-

lar and apical levels. The slices of the different short axis levels were identified as follows; basal

level: last slice showing the complete left ventricular myocardium throughout the entire car-

diac circle without in plane appearance of the left ventricular outflow tract (LVOT) at end-sys-

tole; mid-ventricular: slice located at the level of both papillary muscles; apical: slice showing

consisting blood-pool cavity throughout the entire cardiac cycle (no obliteration of the lumen

at end-systole). RV tracking was performed including the septum.

With TomTec left ventricular (LV) endocardial and epicardial borders were manually

delineated at short and long-axis views with the initial contour set at end-diastole. Due to the

thin myocardial wall right ventricular (RV) tracking was performed only delineating an endo-

cardial contour. Workflow using QStrain was different since the software introduces the work

step to delineate cardiac contours both at end-diastole and end-systole. In case of insufficient

tracking, as defined by apparent deviations of the contours from the endocardial and/or

epicardial borders, contours were manually corrected and the algorithm reapplied. All mea-

surements were repeated three times in all sections.

All patients were analyzed by one single observer (RJG) using both types of software. The

same observer repeated the analysis on the same data-sets four weeks later to assess intra-

observer variability. Inter-observer reproducibility was derived from the tracking results of a

second skilled observer (TL). To study the impact of repeated measurements on reproducibil-

ity results based on a single measurement (R1) were compared with the results for these

parameters derived from two (R2) and three (R3) repeated and subsequently averaged

measurements.

Statistical analysis

Microsoft Excel and IBM SPSS Statistics version 23 for Mac were used to conduct statistical

analysis. All continuous data are reported as mean ± standard deviation. Statistical parameters

to assess inter-vendor agreement and intra- and inter-observer variability were calculated as

follows: Bland-Altman analysis [22] (mean difference between measurements with 95% limits

of agreement (±1.96 standard deviations)), intra-class correlation coefficients (ICC) using a

model of absolute agreement (agreement was considered excellent when ICC> 0.74, good

when ICC = 0.60–0.74, fair when ICC = 0.40–0.59, and poor when ICC< 0.4 [23]) and the

coefficient of variation (CoV) (defined as the standard deviation of the differences divided by

the mean [24]). The Kolmogorov-Smirnov test was applied to test for normal distribution of

the data [25]. To compare mass and volumetric parameters between healthy volunteers and

the patient group parametric parameters were tested according to the t-test, while the Man-

Whitney U test was applied for non-parametric data. Pairwise non-parametric strain
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parameters assessed with each vendor were compared using the Wilcoxon test. The Mann-

Whitney U test was used to analyze whether there was a significant difference between non-

parametric strain parameters for healthy volunteers and patients with impaired cardiac func-

tion, respectively. Significance was defined as p < 0.05.

Results

Participant details

Demographics are displayed in Table 1. Quantitative analyses were performed in all subjects,

no subject was excluded. Fig 1 shows representative assessments of LV circumferential strains

at basal level with both software types including contours and corresponding strain curves.

Inter-vendor agreement

Table 2 summarizes values for mean difference ± standard deviation, ICC and CoV for all

strain-parameters based on three averaged measurements (R3). Corresponding Bland-Altman

plots are displayed in Fig 2.

Inter-vendor agreement was excellent for GCS and LV GLS for both intra- and inter-

observer levels. RV GLS and GRS both showed lower inter-vendor agreement.

There was no significant difference between vendors regarding the averaged results (R3) for

LV GLS (p = 0.079), GCS (p = 0.502) and RV GLS (p = 0.093). GRS measured with QStrain

Table 1. Patient demographics.

Demographics Normal subjects Patients with reduced cardiac function� P value

Study population, n 10 10

Gender (F/M) 6/4 6/4 1.00

Age (years) 37 (20–62) 47 (21–80) 0.14

LVEF (%) 69.0 (3.3) 37.0 (9.8) <0.01

LV mass index (g/m2) 49.09 (14.78) 68.20 (28.32) 0.01

LV EDVI (ml/m2) 74.79 (13.03) 122.15 (28.95) <0.01

LV ESVI (ml/m2) 23.21 (5.63) 78.29 (29.20) <0.01

RVEF (%) 59.4 (7.1) 40.0 (1.3) <0.01

RV mass index (g/m2) 12.01 (5.21) 14.42 (5.37) 0.10

RV EDVI (ml/m2) 71.35 (16.00) 96.29 (38.20) 0.23

RV ESVI (ml/m2) 29.09 (10.84) 59.78 (31.05) 0.02

Means LV GLS % TomTec -22.57 (5.13) -11.54 (3.18) <0.01

QStrain -23.98 (2.90) -12.14 (3.55) <0.01

Mean GCS % TomTec -31.44 (4.05) -15.30 (4.48) <0.01

QStrain -33.01 (3.14) -15.04 (5.27) <0.01

Mean GRS % TomTec 24.67 (5.21) 13.78 (4.90) <0.01

QStrain 41.33 (8.54) 21.43 (11.28) <0.01

Mean RV GLS % TomTec -23.74 (6.05) -11.75 (4.25) <0.01

QStrain -26.16 (6.18) -14.88 (4.99) <0.01

Continuous variables are expressed as mean (standard deviation). Age is expressed as median (range). Volumetric results have been measured by MRI volumetry.

Results for mean strain parameters are given based on three averaged measurements (R3). LVEF, left ventricular ejection fraction; LV EDVI, left ventricular enddiastolic

volume; LV ESVI, left ventricular endsystolic volume; RVEF, right ventricular ejection fraction; RV EDVI, right ventricular enddiastolic volume; RV ESVI, right

ventricular endsystolic volume; LV GLS, global left ventricular longitudinal strain; GCS, global left ventricular circumferential strain; GRS, global left ventricular radial

strain; RV GLS, global right ventricular longitudinal strain

�as defined by reduced ejection fraction

https://doi.org/10.1371/journal.pone.0193746.t001
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was significantly higher (p< 0.001) than measured with TomTec. These findings were similar

for the analysis based on a single repetition (R1) and two averaged repetitions (R2) for LV

GLS, GCS and GRS. RV GLS based on a single measurement (R1) only, however, was signifi-

cantly lower measured with TomTec (p = 0.033).

Fig 1. Example of LV circumferential strain assessments at the basal level and corresponding strain curves. Example of LV circumferential strain

assessments at the basal level with TomTec (Panel a) and QStrain (Panel b). Manually contoured epicardial and endocardial borders and respective

strain curves (Panel c) are being displayed for both types of software.

https://doi.org/10.1371/journal.pone.0193746.g001

Table 2. Inter-vendor agreement and intra-vendor reproducibility at intra- and inter-observer levels for global longitudinal, global circumferential and global

radial strain based on three averaged measurements (R3).

TomTec versus QStrain TomTec QStrain

Mean Difference

(SD of the Diff.)

ICC (95% CI) CoV (%) Mean Difference

(SD of the Diff.)

ICC (95% CI) CoV (%) Mean Difference

(SD of the Diff.)

ICC (95% CI) CoV (%)

Intra-

observer

LV GLS

%

1.00 (2.23) 0.97 (0.92–

0.99)

12.70 -0.15 (0.64) 1.00 (1.00–

1.00)

3.79 0.24 (0.87) 1.00 (0.99–

1.00)

4.78

GCS % 0.66 (2.73) 0.98 (0.95–

1.00)

11.50 -0.49 (0.56) 1.00 (0.99–

1.00)

2.41 0.03 (0.74) 1.00 (1.00–

1.00)

3.08

GRS % -12.16 (8.67) 0.62 (0.00–

0.88)

34.28 -0.85 (3.00) 0.96 (0.90–

0.99)

15.29 -2.45 (4.59) 0.97 (0.90–

0.99)

14.07

RV GLS

%

2.78 (6.21) 0.80 (0.49–

0.92)

32.47 -0.62 (1.14) 0.99 (0.98–

1.00)

6.55 0.59 (1.38) 0.99 (0.98–

1.00)

6.61

Inter-

observer

LV GLS

%

-0.72 (2.88) 0.96 (0.89–

0.98)

16.03 0.52 (0.94) 1.00 (0.98–

1.00)

5.41 0.18 (0.72) 1.00 (0.99–

1.00)

3.96

GCS % -0.51 (2.40) 0.99 (0.96–

0.99)

10.08 0.17 (1.09) 1.00 (0.99–

1.00)

4.64 0.23 (0.91) 1.00 (1.00–

1.00)

3.76

GRS % -14.78 (8.72) 0.53 (0.00–

0.85)

32.98 0.17 (3.00) 0.96 (0.89–

0.98)

15.67 4.51 (6.87) 0.89 (0.64–

0.96)

23.59

RV GLS

%

0.63 (5.12) 0.86 (0.65–

0.95)

28.75 0.40 (1.13) 0.99 (0.99–

1.00)

6.30 0.19 (0.80) 1.00 (0.99–

1.00)

3.89

SD, standard deviation; Diff., differences; ICC, intra-class correlation coefficient; CoV, coefficient of variation; CI, confidence interval; LV GLS, global left ventricular

longitudinal strain; GCS, global left ventricular cirucumferential strain; GRS, global left ventricular radial strain; RV GLS, global right ventricular longitudinal strain

https://doi.org/10.1371/journal.pone.0193746.t002
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Reproducibility

All values for mean difference ± standard deviation, ICC and CoV as derived from three aver-

aged measurements (R3) are given in Table 2. In both vendors, intra-vendor reproducibility

was best for GCS followed by LV GLS. RV GLS showed excellent intra-vendor reproducibility

with both types of software. GRS showed the highest intra-vendor variability amongst all

parameters. Whilst TomTec showed higher intra- than inter-observer reproducibility, inter-

observer reproducibility with QStrain was slightly better than intra-observer reproducibility.

Impact of repeated measurements on reproducibility

Table 3 displays the results for inter-vendor agreement and intra-observer variability based on

one measurement (R1) as compared to two averaged measurements (R2, Table 4) and three

averaged measurements (R3, Table 2). Fig 3 shows the impact of repeated measurements on

inter-vendor agreement based on CoV and ICC. Repeated measurements had moderate

impact on LV GLS and GCS regarding inter-vendor agreement and intra-vendor variability

(Tables 2, 3 and 4). The effect was more pronounced for RV GLS and GRS regarding intra-

vendor reproducibility but not inter-vendor agreement (Tables 2, 3 and 4).

Inter-vendor agreement in health and disease

Table 5 reports inter-vendor agreement based on mean differences with limits of agreement

for the whole study cohort, healthy volunteers and patients with impaired cardiac function.

Fig 2. Reproducibility for CMR-FT derived global strain parameters at intra- and inter-observer levels. Inter-vendor agreement for global strain parameters

for healthy volunteers and patients with impaired cardiac output based on three averaged measurements (R3). Panel a–d: Bland-Altman plots with limits of

agreement (95% confidence intervals) demonstrating the CMR-FT derived reproducibility at an intra-observer level are being displayed. Panel e–h: Bland-Altman

plots with limits of agreement (95% confidence intervals) demonstrating the CMR-FT derived reproducibility at an inter-observer level are being displayed.

https://doi.org/10.1371/journal.pone.0193746.g002

Table 3. Inter-vendor agreement and intra-vendor reproducibility at intra- and inter-observer levels for global longitudinal, global circumferential and global

radial strain based on one measurement (R1).

TomTec versus QStrain TomTec QStrain

Mean

Difference

(SD of the

Diff.)

ICC (95%

CI)

CoV

(%)

Mean Difference (SD of the

Diff.)

ICC (95%

CI)

CoV

(%)

Mean

Difference

(SD of the

Diff.)

ICC (95%

CI)

CoV

(%)

Intra-

observer

LV GLS

%

1.06 (2.92) 0.95 (0.88–

0.98)

16.49 -0.09 (1.02) 1.00 (0.99–

1.00)

5.97 0.16 (1.10) 1.00 (0.99–

1.00)

6.00

GCS % 0.82 (2.91) 0.98 (0.94–

0.99)

12.29 -0.55 (0.82) 1.00 (0.99–

1.00)

3.57 0.09 (1.00) 1.00 (0.99–

1.00)

4.13

GRS % -12.57 (10.07) 0.63 (0.00–

0.88)

39.16 -0.36 (4.42) 0.93 (0.83–

0.97)

22.52 -2.68 (8.22) 0.92 (0.80–

0.97)

24.64

RV GLS

%

3.17 (5.98) 0.80 (0.47–

0.92)

31.15 -0.35 (1.64) 0.99 (0.97–

1.00)

9.39 0.59 (1.53) 0.99 (0.98–

1.00)

7.25

Inter-

observer

LV GLS

%

0.59 (2.68) 0.96 (0.91–

0.99)

14.80 0.64 (1.35) 0.99 (0.97–

1.00)

7.75 -0.08 (1.14) 0.99 (0.98–

1.00)

6.25

GCS % 0.92 (2.56) 0.98 (0.95–

0.99)

10.80 0.00 (1.11) 1.00 (0.99–

1.00)

4.75 -0.07 (1.01) 1.00 (0.99–

1.00)

4.21

GRS % -15.55 (10.66) 0.48 (0.00–

0.81)

39.62 0.29 (3.37) 0.95 (0.87–

0.98)

17.49 4.85 (8.58) 0.87 (0.62–

0.95)

29.00

RV GLS

%

2.92 (7.68) 0.71 (0.29–

0.88)

38.57 0.84 (2.46) 0.97 (0.93–

0.99)

13.61 0.39 (1.56) 0.99 (0.98–

1.00)

7.42

SD, standard deviation; Diff., differences; ICC, intra-class correlation coefficient; CoV, coefficient of variation; CI, confidence interval; LV GLS, global left ventricular

longitudinal strain; GCS, global left ventricular circumferential strain; GRS, global left ventricular radial strain; RV GLS, global right ventricular longitudinal strain

https://doi.org/10.1371/journal.pone.0193746.t003
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Corresponding Bland-Altman Plots are displayed in Fig 2 and in the Supporting information

in S1 Fig and S2 Fig. Inter-vendor agreement was sufficient in patients and healthy volunteers

(Supporting information S1 Fig and S2 Fig). Inter-vendor agreement was higher for all global

strain parameters in the patient group as compared to the volunteers (Table 5). This applied to

the results on an intra-observer and on an inter-observer level. Consistently, LV GLS and GCS

were found to show the best inter-vendor agreement in patients and healthy volunteers,

respectively. In all groups agreement between vendors was reasonable for RV GLS and lower

for GRS. This was paralleled by similar results on intra-vendor levels both for TomTec and for

QStrain (see Table 2, S1 and S2 Tables).

Discussion

To our knowledge this is the first study investigating the performance and potential differences

between the recently introduced CMR-FT tool QStrain and the more established TomTec soft-

ware, that has already been used and validated in a variety of studies [6, 21, 26].

First, our findings show reasonable inter-vendor agreement between both types of software.

GCS and LV GLS qualify as the best parameters with excellent reproducibility and inter-

changeability based on a single analysis. Second, RV GLS and GRS are less robust with signifi-

cant inter-vendor variability. However, intra-vendor reproducibility of these parameters can

be improved by repeated analysis runs resulting in sufficient reproducibility when using a sin-

gle software type. Consequently, it is important staying within one vendor when calculating

these parameters. Third, we could show that reproducibility of CMR-FT within and between

software types is not adversely affected by impaired ventricular function.

Our results consistently indicate the high clinical applicability of GCS and LV GLS as most

robust parameters in both types of software, which is in line with previously published

Table 4. Inter-vendor agreement and intra-vendor reproducibility at intra- and inter-observer levels for global longitudinal, global circumferential and global

radial strain based on two averaged measurements (R2).

TomTec versus QStrain TomTec QStrain

Mean

Difference

(SD of the

Diff.)

ICC (95%

CI)

CoV

(%)

Mean Difference (SD of

the Diff.)

(SD of the Diff.)

ICC (95%

CI)

CoV

(%)

Mean Difference (SD of

the Diff.)

(SD of the Diff.)

ICC (95%

CI)

CoV

(%)

Intra-

observer

LV GLS

%

0.96 (2.49) 0.96 (0.91–

0.99)

14.14 -0.04 (0.74) 1.00 (0.99–

1.00)

4.30 0.27 (0.87) 1.00 (0.99–

1.00)

4.77

GCS % 0.77 (2.84) 0.98 (0.95–

0.99)

11.96 -0.53 (0.65) 1.00 (0.99–

1.00)

2.82 -0.01 (0.77) 1.00 (1.00–

1.00)

3.20

GRS % -12.51 (8.93) 0.63 (0.00–

0.88)

34.91 -0.69 (2.98) 0.96 (0.90–

0.99)

15.15 -2.91 (5.36) 0.96 (0.87–

0.99)

16.10

RV GLS

%

2.71 (6.53) 0.78 (0.46–

0.91)

34.18 -0.58 (1.31) 0.99 (0.98–

1.00)

7.48 0.74 (1.36) 0.99 (0.97–

1.00)

6.52

Inter-

observer

LV GLS

%

0.76 (2.73) 0.96 (0.90–

0.98)

15.17 0.47 (0.91) 1.00 (0.99–

1.00)

5.72 0.01 (1.03) 1.00 (0.99–

1.00)

5.66

GCS % 0.91 (2.52) 0.98 (0.95–

0.99)

10.59 -0.06 (0.88) 1.00 (1.00–

1.00)

3.76 0.15 (0.96) 1.00 (1.00–

1.00)

3.95

GRS % -15.70 (9.98) 0.48 (0.00–

0.82)

37.13 0.28 (2.77) 0.96 (0.90–

0.98)

14.44 4.65 (7.81) 0.88 (0.63–

0.96)

26.47

RV GLS

%

3.11 (7.24) 0.73 (0.34–

0.89)

36.49 0.52 (1.24) 0.99 (0.98–

1.00)

6.88 0.26 (1.02) 1.00 (0.99–

1.00)

4.94

SD, standard deviation; Diff., differences; ICC, intra-class correlation coefficient; CoV, coefficient of variation; CI, confidence interval; LV GLS, global left ventricular

longitudinal strain; GCS, global left ventricular circumferential strain; GRS, global left ventricular radial strain; RV GLS, global right ventricular longitudinal strain

https://doi.org/10.1371/journal.pone.0193746.t004

Inter-vendor reproducibility of cardiovascular magnetic resonance myocardial feature-tracking

PLOS ONE | https://doi.org/10.1371/journal.pone.0193746 March 14, 2018 8 / 16

https://doi.org/10.1371/journal.pone.0193746.t004
https://doi.org/10.1371/journal.pone.0193746


Inter-vendor reproducibility of cardiovascular magnetic resonance myocardial feature-tracking

PLOS ONE | https://doi.org/10.1371/journal.pone.0193746 March 14, 2018 9 / 16

https://doi.org/10.1371/journal.pone.0193746


literature [12–14, 16]. Similar to the current study, GCS has been repeatedly shown to have the

least variability in previous CMR-FT studies [13], earlier studies comparing STE and CMR-FT

[4, 5] and tagging and CMR-FT [27]. Buss et al. found CMR-FT derived LV GLS and GCS to

serve as a predictors of cardiac events, independent of clinical and laboratory markers, LVEF

and late gadolinium enhancement in patients with dilated cardiomyopathy [7]. More recently,

Orwat et al. could show that in patients with repaired tetralogy of Fallot LV GLS and GCS are

significantly associated with outcome [8]. This growing evidence for LV GLS and GCS as prog-

nostic tools in a variety of diseases and their high interchangeability between different vendors

based on a single analysis underline their potential prospective incremental clinical merit.

RV GLS and GRS have already been reported in previous studies to show lower inter-ven-

dor reproducibility than GCS and LV GLS [21]. This was in line with our findings. GRS repre-

sents strain throughout the entire myocardial wall from subepicardium to subendocardium

and is consequently much more affected by through plane motion [21] and complex diastolic

and systolic twisting motion [28] than LV GLS and GCS that are predominantly assessed with

subendocardial tracking. The two software solutions, which were applied in the present study

rely on a similar algorithm, which explains the good agreement for LV GLS, GCS and RV GLS.

A higher degree of manual user interaction (e.g. manual defining of both, systolic and diastolic

contours) as required by QStrain did not impact reproducibility. As mentioned above the

lower reproducibility for GRS, however is inherent to FT algorithms based on optical flow

methods as previously shown [13, 14, 21, 27]. Interestingly a recently introduced CMR-FT

software (Segment CMR by Medviso, Lund, Sweden) using an algorithm which incorporates

non-rigid image registration [29, 30] seems to overcome this limitation as suggested by Morais

et. al. [31]. Instead of tracking endocardial borders only this new algorithm tracks the entire

image content (i.e. blood pool and the entire myocardium) and thus a higher number of myo-

cardial image samples. As mentioned before GRS represents strain throughout the entire

Fig 3. Impact of repeated measurements on reproducibility. Panel a–h. Inter-vendor agreement based on CoV [%]

and ICC for one, two and three averaged measurements. CoV [%], coefficient of variation; ICC, intra-class correlation

coefficient; LV GLS, global left ventricular longitudinal strain; GCS, global left ventricular circumferential strain; GRS,

global left ventricular radial strain; RV GLS, global right ventricular longitudinal strain.

https://doi.org/10.1371/journal.pone.0193746.g003

Table 5. Inter-vendor agreement on an intra- and inter-observer level for global longitudinal, global circumferential andglobal radial strain for the complete study

cohort, normal subjects and patients with impaired cardiac function� based on three averaged measurements (R3).

complete study cohort normal subjects patients with impaired

cardiac function�

Mean Difference

(LOA)

Mean Difference

(LOA)

Mean Difference

(LOA)

Intra-observer LV GLS % 1.00 (-3.37–5.37) 1.40 (-3.61–6.42) 0.60 (-3.12–4.31)

GCS % 0.66 (-4.69–6.00) 1.57 (-5.01–8.14) -0.26 (-3.41–2.90)

GRS % -12.16 (-29.16–4.84) -16.66 (-31.01 –-2.32) -7.65 (-22.85 –-7.65)

RV GLS % 2.78 (-9.40–14.95) 2.42 (-11.42–16.27) 3.13 (-7.83–14.09)

Inter-observer LV GLS % -0.72 (-6.36–4.91) -1.40 (-8.41–5.61) -0.05 (-3.78–3.69)

GCS % -0.51 (-5.21–4.19) -1.18 (-6.60–4.25) 0.15 (-3.52–3.82)

GRS % -14.78 (-31.88–2.31) -19.84 (-35.37 –-4.31) -9.73 (-22.28–2.82)

RV GLS % 0.63 (-9.42–10.67) 0.51 (-11.39–12.41) 0.74 (-7.70–9.18)

LOA, limits of agreement; LV GLS, global left ventricular longitudinal strain; GCS, global left ventricular circumferential strain; GRS, global left ventricular radial strain;

RV GLS, global right ventricular longitudinal strain

�as defined by reduced ejection fraction

https://doi.org/10.1371/journal.pone.0193746.t005
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myocardial wall and is therefore the strain parameter that is particularly affected by this differ-

ent approach. Morais et al. could show that this leads to a significantly better reproducibility

for GRS than reported in all previous studies that were carried out with CMR-FT software

which did not incorporate non-rigid image registration [7, 13, 14, 16, 21, 27].

Notwithstanding these considerations, intra-vendor agreement for RV GLS can be

improved through repeated runs and was excellent in both types of software based on three

averaged measurements. Thus, our study points out two important aspects: first, both software

solutions can serve as a reliable tool in the assessment of CMR-FT derived right ventricular

strain; second, three averaged runs make results for RV GLS significantly more reliable and

might justify a threefold increased analysis time in future studies when assessing right ventric-

ular strain. This is an important finding since the role of strain deterioration in right ventricu-

lar pathologies is of growing research interest with potential clinical utility. For instance

recently published studies indicate that CMR-FT derived RV GLS analyses play a promising

role in the detection of right ventricular pathologies such as arrhythmogenic right ventricular

cardiomyopathy (ARVC) [17] and even allow a prediction of subsequent clinical deterioration

in diseases affecting the right ventricle such as pulmonary hypertension [19]. In addition, RV

GLS was recently identified as a predictor of outcome in patients with repaired tetralogy of Fal-

lot [8].

Our data indicate no significant differences between TomTec and QStrain comparing val-

ues for LV GLS, GCS and RV GLS. Earlier vendor-comparisons using TomTec and Circle,

cvi42 (Circle) found interchangeability for GCS between these vendors to be limited, because

values for GCS measured with Circle were significantly lower than assessed with TomTec [21].

As a result, interchangeability between TomTec and QStrain is superior to the interchangeabil-

ity between TomTec and Circle. However, it is important to note that regardless of the number

of repetitions applied GRS results are not interchangeable as values for this parameter were sig-

nificantly higher measured with QStrain. This difference between vendors was, on the con-

trary, not found comparing TomTec and Circle [21]. Taking into account normal values for

GRS according to a review by Claus et. al [32]) and the range for GRS observed in this study

cohort (8% to 61%), a mean difference between vendors of 12.16% (Table 2) appears quite con-

siderable. Thus, serial GRS assessments with both software types e.g. during patient follow-up

at different hospitals do not seem to represent a valid clinical methodology. Since the intra-

vendor reproducibility is adequate one needs to decide which software to use consistently

when analyzing GRS in future studies to avoid poor interchangeably between vendors and to

allow GRS to be quantified with accurate performance.

In line with the findings from STE studies [33] reproducibility was even higher in patients

with heart failure than in healthy volunteers. These findings appear intuitive as strain in

healthy volunteers is usually higher than in patients with impaired cardiac function, which was

also the case in the current study (Table 1). Higher strain parameters indicate more cardiac

motion and are thus much stronger affected by through plane motion effects, which are

known to lower reproducibility at the regional level [13, 34, 35]. However, contradictory to

our results the study by Morais et al. has shown that intra-observer, inter-observer and inter-

study variability is similar in healthy volunteers and patients with known myocardial pathol-

ogy [31]. When interpreting these differences, it is important to note that first the technique

used by Morais et al. is based on a different CMR-FT algorithm and second LVEF in the

patient group analyzed by Morais et al. was significantly higher than in our patient group.

Moreover, to divide study groups based on LVEF might represent a confounding factor for the

comparison of reproducibility in health and disease as there is evidence from echocardio-

graphic studies [36, 37] and other CMR-FT studies [17] that strain parameters can be

impaired, when global function parameters may still be normal.
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When interpreting the results of the current study, it is important to bear in mind that the

main step for the assessment of myocardial strain with CMR-FT is the initial and manual

delineation of the endo- and epicardial contour by a skilled observer. Although the identifica-

tion of these contours can be performed easily and quickly some variation between two differ-

ent observers is inherent to the process and thus a potential source of variability. Moreover,

the process is complicated by the fact that rotational and strain metrics estimates neglect out-

of-plane movement of the myocardium throughout the heart cycle when using 2 dimensional

techniques. Ideally, further refinements should aim at the development of 3 dimensional tech-

niques with fully automatic analysis solutions to overcome these limitations.

Study limitations

Even though our study showed reasonable inter-vendor agreement for global strain parame-

ters the results have to be interpreted with caution. First and foremost, the study population

was quite small and patients and healthy volunteers were divided into each group only regard-

ing to their LVEF, while right ventricular performance or etiology for an impairment of the

LVEF was of no concern. Furthermore, both groups were not age matched, however, the age

differences between both groups according to the t-test were not significant (p = 0.14). Besides

distribution between sexes was balanced between the two groups but not within each group.

However, the study did not aim at any quantitative comparison of strain parameters between

health and disease, nor according to the etiology for the impairment of cardiac function, age

or sex. Additionally, no true blinding of the observers as to whether a subject belonged to the

healthy volunteer or the patient group could be achieved since a marked reduction in systolic

function can be easily appreciated from the original images. However, all observers were

blinded as well to any of their own results as to the results of the second observer. Off note, in

the present study GCS and GRS were derived from the exactly same slices by all observers. It is

important to note that especially for the mid-ventricular and the apical slices there might be a

second or even a third slice that would have met the specified slice selection criteria. Thus a

different slice selection among different observers is a possible source of variability in clinical

practice that is not reflected in the results of the current study. Notwithstanding this consider-

ation this study aimed to quantify the variability inherent to the tracking performance rather

than the variability that is introduced by slice selection.

As no echocardiographic or CMR-tagging was performed in any of the patients the study

did not include any independent reference standard. Notwithstanding, TomTec has been vali-

dated against myocardial tagging with excellent agreement [10] and speckle tracking echocar-

diography with reasonable to good agreements in earlier studies [4–6]. Besides, we did not aim

at another comparison between different techniques to assess cardiac dynamics but rather at

an inter-vendor comparison between the two types of commercially available CMR-FT soft-

ware to clarify how well they agree with each other and to what degree results can be used

interchangeably.

Conclusion

In conclusion, our study shows reasonable inter-vendor agreement between both types of soft-

ware without negative affection of reproducibility when studying either healthy subjects or

patients with cardiac pathology. LV GLS and GCS qualify as the most robust parameters and

can be used interchangeably based on single measurements only. When analyzing right ven-

tricular strain with either vendor three repeated runs are highly recommendable to improve

reproducibility. Independent of the number of repetitions interchangeability of RV GLS and
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GRS may be questioned based on our results. Consequently, one should stay within one ven-

dor when assessing these parameters.

If further studies will be able to confirm these findings CMR-FT derived quantitative defor-

mation parameters may be fully implemented within routine clinical MR examinations for

optimized diagnostic assessments and risk prediction in various cardiac pathologies.
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S1 Fig. Reproducibility for CMR-FT derived global strain parameters at intra- and inter-

observer levels for normal subjects. Inter-vendor agreement for global strain parameters for

normal subjects based on three averaged measurements (R3). Panel a–d: Bland-Altman plots

with limits of agreement (95% confidence intervals) demonstrating the CMR-FT derived

reproducibility at an intra-observer level are being displayed. Panel e–h: Bland-Altman plots

with limits of agreement (95% confidence intervals) demonstrating the CMR-FT derived

reproducibility at an inter-observer level are being displayed.

(TIF)

S2 Fig. Reproducibility for CMR-FT derived global strain parameters at intra- and inter-

observer levels for patients with impaired cardiac function. Inter-vendor agreement for

global strain parameters for patients with impaired cardiac function as defined by reduced

ejection fraction based on three averaged measurements (R3). Panel a–d: Bland-Altman plots

with limits of agreement (95% confidence intervals) demonstrating the CMR-FT derived

reproducibility at an intra-observer level are being displayed. Panel e–h: Bland-Altman plots

with limits of agreement (95% confidence intervals) demonstrating the CMR-FT derived

reproducibility at an inter-observer level are being displayed.

(TIF)

S1 Table. Inter-vendor agreement and intra-vendor reproducibility at intra- and inter-

observer levels for global longitudinal, global circumferential and global radial strain for

normal subjects based on three averaged measurements (R3). SD, standard deviation; Diff.,

differences; ICC, intra-class correlation coefficient; CoV, coefficient of variation; CI, confi-
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circumferential strain; GRS, global left ventricular radial strain; RV GLS, global right ventricu-
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observer levels for global longitudinal, global circumferential and global radial strain for
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