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Abstract

Microbes respond to changing environments by adjusting gene expression levels to the demand for the corresponding
proteins. Adjusting protein levels is slow, consequently cells may reach the optimal protein level only by a time when the
demand changed again. It is therefore not a priori clear whether expression ‘‘on demand’’ is always the optimal strategy.
Indeed, many genes are constitutively expressed at intermediate levels, which represents a permanent cost but provides an
immediate benefit when the protein is needed. Which are the conditions that select for a responsive or a constitutive
expression strategy, what determines the optimal constitutive expression level in a changing environment, and how is the
fitness of the two strategies affected by gene expression noise? Based on an established model of the lac- and gal-operon
expression dynamics, we study the fitness of a constitutive and a responsive expression strategy in time-varying
environments. We find that the optimal constitutive expression level differs from the average demand for the gene product
and from the average optimal expression level; depending on the shape of the growth rate function, the optimal expression
level either provides intermediate fitness in all environments, or maximizes fitness in only one of them. We find that
constitutive expression can provide higher fitness than responsive expression even when regulatory machinery comes at no
cost, and we determine the minimal response rate necessary for ‘‘expression on demand’’ to confer a benefit. Environmental
and inter-cellular noise favor the responsive strategy while reducing fitness of the constitutive one. Our results show the
interplay between the demand-frequency for a gene product, the genetic response rate, and the fitness, and address
important questions on the evolution of gene regulation. Some of our predictions agree with recent yeast high throughput
data, for others we propose the experiments that are needed to verify them.
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Introduction

In natural environments cells are frequently facing variable

conditions, to which they must adapt in order to maximize growth

and survival. Common environmental parameters subject to

fluctuations are the kinds of nutrient that are available, the

temperature, the salt content of the surroundings, and the

concentration of toxins and antibiotics.

Understanding microbial behaviors in changing environments

provides insights into the evolution in natural habitats where the

physiologic demands are constantly changing [1–3]. Manipulation

of these strategies can be relevant in industrial processing, e.g.

fermentation [4], antibiotic therapies [5] and biotechnological

process optimization.

Prokaryotes and eukaryotes cope with environmental changes

by switching between different gene-expression states (phenotypes)

[2,3,6–9], typically accompanied by metabolic and morphologic

changes [7,10,11]. A particular phenotype provides a growth or

survival advantage in one environmental condition, but is

maladapted in other environments. The most prominent examples

are the vegetative and persistent states of bacterial populations

[2,3,12–14]. In the vegetative state cells can rapidly proliferate but

are highly vulnerable to antibiotic stress. In the persistent state, on

the other hand, they can survive antibiotic exposure but cannot

divide. Similar situations arise for pili-expression and at the level of

metabolic systems: production of lacZ is energetically costly and

reduces E. coli’s growth rate in the absence of lactose [15–18].

When lactose is the only energy source, in turn, production of lacZ

enhances growth [16,19,20].

How microbial populations maximize their time-averaged

growth rate in a changing environment has been investigated

experimentally and theoretically along two major lines [2,6,21–

26]. In the responsive switching strategy all cells switch into the

adapted state upon an environmental change. With stochastic

switching a population follows a bet-hedging strategy because

cells also transit randomly into maladapted states. Thereby the

population maintains a small maladapted subpopulation which

may be well-adapted and ready for growth after a future

environmental change. Previous studies were based on the

assumption that cellular phenotype transitions occur stochasti-

cally at a given rate (also in the responsive case). Therefore

switching is modeled as an instantaneous event which, however,

occurs after a random delay [2,3,6,21,23–25]. Accordingly, cells

exist only in two states (fit, unfit) but never in the transient states

of adaptation, between the unfit and the fit phenotype. An

implicit assumption is that the time intervals between switching

events are very large, i.e., transitions occur only once in many

generations [23].
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Most phenotypic transitions, however, are responsive and take

several hours, in particular if large scale metabolic and

morphologic changes are involved [5,10,11]. They proceed

through a sequence of intermediate states where the fit state is

upregulated while the unfit phenotype is downregulated

[5,17,27–29]. When the time scale of phenotypic switching

(adaptation) is comparable to the environmental durations the

states of intermediate adaptation become relevant for the total

fitness and should therefore be taken into account - unlike a two

phenotype (fit, unfit) scenario. Under these considerations it

appears that a third strategy to cope with environmental

fluctuations is a passive ‘‘intermediate’’ one, where cells

constitutively express an intermediate phenotype in all environ-

ments. Indeed, this strategy appears to be widely used since many

procaryotic and eucaryotic genes are constitutively expressed

although the demand for expression varies in time. Given that

regulated gene expression is adaptive by definition, it is not a

priori clear why constitutive expression can provide an advan-

tage. What then determines whether a gene should be under

regulated or constitutive expression?

The focus of this article is to understand how environmental

factors determine the optimal constitutive expression levels that

maximizes net growth in a changing environment, and to

understand why and under which conditions constitutive expres-

sion confers a growth advantage compared to regulated,

responsive expression.

To answer these questions we propose a model that builds on

previously established descriptions of the lac- and gal- operon

expression dynamics [17,22,30], and compare the time-averaged

growth rates of both strategies in a two-state environment, taking

account of environmental and inter-cellular noise.

We find that the optimal constitutive expression level depends

on how the costs and benefits increase with the expression level:

in one case growth is maximized be constitutively expressing the

gene at an intermediate level and in the other case the gene is

either fully expressed or fully repressed. Surprisingly, the

optimum constitutive expression level in a changing environment

is always different from the time-averaged demand for the gene

product. We find that a responsive strategy can have lower fitness

than a constitutive strategy even when the cost for sensing and

regulatory machinery is neglected, and we determine the minimal

adaptation rate necessary for a response to confer a benefit over

constitutive expression. Environmental and inter-cellular noise

favor the responsive strategy, whereas they decrease the fitness of

the constitutive strategy. Our analysis illustrates the interplay

between demand-frequency for a gene product, maladaptation

cost, and the time scale of a genetic response, and it raises

important questions on the evolution of gene expression

strategies.

Methods

We propose a model based on the expression dynamics of

metabolic operons as described in [16,17,22,31]. We denote the

expression state of a cell by 0ƒxƒ1, where the fully induced state

x~1 is optimal (maximizing the growth rate) in the environment

A whereas the repressed state x~0 denotes a phenotype that is

optimal in environment B see Figure 1A [16,22]. Upon an

environmental change a population adapts by responsively

switching either into the ‘on’ or the ‘off’ state (curved arrows).

For many systems these transitions follow an exponential

relaxation [17,22,30–33]. With the adapted states being 0 and 1
and a relaxation rate r this is modeled by

x(t)~1{(1{xA
0 ):exp({rt) in A ð1Þ

Figure 1. Model for cellular growth and adaptation of the expression state x(t) in a two-state environment. (A) In environment B
(bottom) the expression state x~0 (‘off’) allows for proliferation at the highest rate g~G. Upon an environmental change B?A (top) the state x~0
is maladapted and the population grows at a reduced rate g~G{C, where C§0 is the cost of maladaptation. In the adaptation phase (0vxv1,
curved arrows) cells suppress the unfit phenotype and continuously upregulate the fit one. This increases their growth rate g8G until they are fully
adapted to the new environment (forA:x~1,g~G). We also consider a constitutive-passive strategy where cells maintain a constant state 0ƒxƒ1
throughout all times in both environments. (B) Growth rate as a function of the expression state x in environment B (red) and in environment A
(blue). Dots show the experimentally measured [16] benefit of E. coli expressing the lac-operon at a fraction x of the optimal level (x~1) at 0:6mM
lactose. We generalize this cost function to account for convex (nv1, full lines) or concave (nw1 dashed lines) dependence. (C) Adaptation dynamics
x(t) (top) and growth rates g(t) (bottom) in an environmental cycle (A?B). The full black line corresponds to a population which responds ten times
faster than the environmental frequency (T~1) and which therefore tracks the environmental change A?B occurring at w~0:7T , eventually
reaching the adapted states. The gray dashed line corresponds to a slowly-adapting population (r~2) which never reaches the adapted states and
instead oscillates around an intermediate expression level. The constitutive-passive population (dashed-green line, x~0:9) has a high growth rate in
environment A during wT , but a small one in B during (1{w)T .
doi:10.1371/journal.pone.0027033.g001
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x(t)~xB
0
:exp({rt) in B: ð2Þ

Here t refers to the time since the last environmental change and

0ƒxA
0 ,xB

0 ƒ1 is the expression state with which the population

enters into a new environment. This model accurately reproduces

the amplitude and phase shift response of the gal-operon to

external glucose driving (over a galactose background) with

different frequencies, as measured in [34] (see Figure 2).

Cells in the optimal state grow at a maximal rate g~G, whereas

suboptimal states confer inferior growth rates g(x=xopt)vG [2, 3

16, 17, 19, 22]. The dots in Figure 1B show the growth benefit of

E. coli under the assumption that the lac operon is induced at a

fraction x of the optimal induction level in a constant 0:6mM

lactose environment (G~1:17) (data points as measured in [16]).

As a generalization we assume that the reduction of the growth

rate when not in the optimal state is proportional to cost-constants

CA or CB (depending on the environment) and that it depends

monotonously on the expression state x with exponents nA nB (as

recently suggested in [35]):

g(x)~G{CA(1{x)nA in A ð3Þ

g(x)~G{CBxnB in B ð4Þ

Here 1{x, or x respectively, is the deviation from the optimal

phenotype in a given environment. The parameters nA nB allow

for convex or concave dependence of the growth rate on the

expression level [16], e.g., for the benefit (cost) of producing a

metabolic enzyme in the presence (absence) of its substrate.

Figure 1B illustrates these relationships for environment A (in blue)

and environment B (in red) with nA~nB~n~1:5 (dashed lines)

and nA~nB~n~0:5 (full lines). In contrast to previous studies

[6,33] we make the important but plausible assumption that the

cost for sensing and signaling machinery is negligible. We thus

focus only on the dynamical aspects of the response.

A passive population constitutively expresses the same pheno-

type x throughout all environments. Equations 3 and 4 then apply

with x(t)~x.

Figure 1C (top) shows the adaptation dynamics of the

phenotype x(t) (top panel) and of the growth rate g(t) (bottom

panel) according to Eq. 1 to Eq. 4. The environment changes from

A to B at t~wT where T is the total duration of the

environmental cycle and nA,B~1.

E. coli and other procaryotes are believed to be optimized for

fast growth. We therefore take the time-averaged growth rate C as

a measure of fitness in the changing environment [6,22–25].

Without loss of generality we assume that an environmental cycle

starts with condition A lasting for a time TA, and ends with

environment B of duration TB (T~TAzTB). The time-averaged

growth rates Cc and Cr of the constitutive and responsive

populations are obtained by integrating Eq. 3 and Eq. 4 over

the duration T of a full cycle:

Cr(r) ~
G

T
TA{

CA(1{xA
0 )nA

rnA

1{e{rnATA
� �� �

z
G

T
TB{

CB(xB
0 )nB

rnB

1{e{rnBTB
� �� �

ð5Þ

Cc(x)~
G

T
(TA

:(1{CA(1{x)nA ):

Figure 2. Amplitude-response and phase shift of the model compared to the Yeast YPH499 gal-operon. We define the phase shift in our
model as twice the time required to reach the half-maximum expression level of x (r~0:35=h). The model according to Eq. 1 and Eq. 2 mimics the
galactose utilization network response over a broad frequency range (data points as measured in [34]). The deviation of the experimental phase shift
from the predicted phase shift at high frequencies indicates that the response does not exactly follow an exponential relaxation. Indeed, the feedback
architecture of the gal-network may give rise to short delays which become noticeable at high cycle frequencies (phase shifts v{p), which we do
not take into account in our model.
doi:10.1371/journal.pone.0027033.g002
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zTB(1{CBxnB )) ð6Þ

The second terms in the parentheses of Eq. 5 are the integrated

costs during the adaptation phase towards the fit state, and

decrease with the response rate r.

It is instructive to first consider periodic environmental cycles

and we chose the cycle duration as the reference time scale T~1,

with TA~w and TB~(1{w). In the periodic case the up-and-

downregulation dynamics of xwill eventually become periodic

with the phenotypic states xA
0 at the end of B (beginning of A), and

xB
0 at the end of A given by

xA
0 (w,r)~(erw{1)=(er{1) ð7Þ

xB
0 (w,r)~1{

er(1{w){1

er{1
: ð8Þ

These correspond to the fixed points when propagating the

expression state according to Eq. 1 and Eq. 2 over one cycle. From

now on we will assume that maladaptation and growth rate

function are symmetric in both environments (nA~nB~n and

CA~CB~C) and set the maximal growth rate G~1.

Results

Optimal constitutive expression levels in a time-varying
environment

As a measure of fitness we determine the time-averaged growth

rate of the constitutive strategy (see Eq. 6) which is shown in

Figure 3 (color coded) in a periodic environment. The constitutive

phenotype x is shown on the x-axis and the fraction w of

environment A (the demand for expression) is shown on the y-axis.

Panel A shows the fitness for n~0:5 and panel B for n~1:5. The

maladaptation cost is C~3, thus in significantly maladapted states

the population has a negative growth rate. The white lines

delineate the regimes in which the net-growth rate is positive. The

dashed curves show the optimal constitutive phenotypes xopt(w)
that maximize the time-averaged growth rate.

Interestingly, when the growth rate g(x) is a linear or convex

function (nƒ1), the optimal constitutive strategy is an all-or-nothing

strategy. In this case net-growth in a changing environment is

maximized by maximizing growth in the prevailing environment

while growth is minimal in the other, cf. Figure 3A. In contrast,

the optimal strategy is an intermediate one, with intermediate fitness

in both environments (cf. Figure 3B), only when the growth rate is

a concave function (nw1, as for the benefit of lac-expression). In

general, and contrary to what one might have expected, the

optimal constitutive phenotype in a time-varying environment

does not correspond to the time-averaged demand for this

phenotype nor to the average optimum, i.e., a phenotype x~w
has significantly inferior net fitness compared to xopt(w).

When none of the environments prevails (w?0:5), the

constitutive strategy cannot provide growth. A passive strategy is

therefore not an option at high maladaptation costs C and when

both environments are equally frequent, making responsive

expression regulation an imperative in this regime. We mention

in addition that for CA=CB the curve xopt(w) of optimal

expression is stretched towards higher (lower) expression, whereas

it becomes highly nonlinear and step-like for nA=nB.

Constitutive expression can provide higher fitness than
regulated expression

Similarly as net proliferation requires that the passive

population is sufficiently well adapted, the responsive population

can only achieve a positive net grow rate at high maladaptation

costs if the response rate r lies above a threshold, cf. the white line

in Figure 4A (C~3). When the environment spends equal

amounts of time in A as in B (w~0:5) the population spends

significant amounts of time transiting between phenotypes rather

than in the adapted phenotypes, which reduces the time-averaged

growth rate. In particular, when the response rate is too small the

population never reaches the adapted state, but instead low-pass

filters the environmental change and slowly oscillates around a

Figure 3. Time-averaged growth rates Cc of constitutive populations in periodic environments. The fitness is shown as a function of the
constitutive expression level x and of the fraction w of environment A (the environment which requires expression). Regimes of positive net-growth
are delineated by the white line (maladaptation cost C~3). Left and right panels show the time-averaged growth rate for a convex (n~0:5) and a
concave (n~1:5) growth rate function. The optimal constitutive expression level is indicated by the dashed line. For a convex or linear dependence
(nƒ1) an all-or-nothing strategy with maximal growth in one environment and no growth in the other is optimal. In striking contrast, however, for a
concave dependence nw1 an intermediate strategy with suboptimal growth in both environments is best. In both cases the optimal constitutive
level is different from the average optimum, and from the average demand for expression (i.e., the diagonal x~w). Note that the constitutive strategy
can only provide growth when it is close to its optimum and when the environment is sufficiently constant (w?1 or w?0). In symmetric
environments (w&0:5) no positive net-growth is possible, hence regulation becomes imperative in this regime.
doi:10.1371/journal.pone.0027033.g003
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phenotype x(t)~w, which corresponds to the time-averaged

demand, see also Figure 1C (dashed gray line) and [34]. When

the environmental durations are asymmetric (w?1 or w?0) the

population remains partially adapted to the predominant envi-

ronment in the environment of short duration. The population

thereby has a lower growth rate in the sporadic environment, but

achieves a higher average growth rate.

Gene expression levels can be adjusted to their optimum by a

few point mutations and within a few hundred generations [16].

We therefore make the plausible assumption that the constitutive

population is optimally adapted to an environmental cycle, i.e.

x~xopt(w). Since the responsive strategy follows environmental

changes and approaches the optimum state in a given environ-

ment, a response should always confer superior growth than

constitutive expression. Figure 4B compares the time-averaged

growth rate of the constitutive strategy with a responsive strategy

of adaptation rate r (n = 1). There exist three regimes indicating

whether a constitutive or a responsive strategy confers faster

growth. The white area in Figure 4B encloses the regime in which

the responsive population has a higher time-averaged growth rate.

When the response rate highly exceeds the environmental rate of

change the population follows the environment quasi-instanta-

neously and is quasi-always adapted.

Remarkably, however, as r?0, the time-averaged growth rate

of the responsive population becomes smaller than the one of the

constitutively expressing population (indicated by the gray shaded

areas). In particular in asymmetric environments (w=0:5) the

constitutive population can achieve superior growth even when the

response rate is ten times larger than the environmental frequency.

Consequently, responding to environmental changes provides a

benefit only if the response rate lies above a threshold.

Interestingly this suggests that a fast response cannot evolve from

constitutive expression via a slow response because fitness along

this path would have lower than constitutive fitness.

The slower growth of the responsive population is a conse-

quence of the low-pass filtering which occurs when the adaptation

time 1=r is longer than the duration of the short environment. As

explained above, the phenotypic state slowly oscillates around

x~w (the average demand) which is suboptimal compared to the

constitutive level xopt(w). In an asymmetric environment the

sporadic condition drives the responsive population away from the

state which is adapted in the prevailing condition. The responsive

population therefore cannot reach the adapted state in any of the

two environments. The constitutive population, on the other hand,

benefits from having intermediate growth without a delay in both

environments(at nw1), or maximal growth in the prevailing

environment (at nƒ).

Importantly, the phase boundaries are independent of the

maladaptation cost C. Without going into details, we point out,

that when C is large there exist two regimes in which the passive

population has a positive net-growth rate, whereas the responsive

one has a negative net growth rate. When the maladaptation costs

are different in the two environments, the phase boundaries

become asymmetric and are shifted along w and the maximal

growth benefit at a given response rate r decreases compared to

the symmetric case CA~CB, rendering constitutive expression

even more favorable. For a convex dependence on the phenotype

(nv1) the phase boundary is shifted to larger response rates

(because the growth rate g relaxes slower than the expression state

x), whereas it moves to smaller response rates for a concave

dependence (nw1, because g relaxes faster than the expression

state).

In summary, a constitutive strategy can confer significantly

better growth than responsive expression when the environments

are asymmetric in their maladaptation costs or durations. We

point out that this is a mere consequence of the finite adaptation

times and not of a ‘‘cost-of-regulation’’.

Faster growth in random environments
Although periodic environments are common in nature, more

generally the environmental durations are random. The passive

Figure 4. Fitness of a responsive population (A) and strategy
phase diagram (B). (A) The responsive population has negative
growth C r when its response rate r is too small; the growth-threshold is
indicated by the white line. The net maladaptation cost is largest at
w~0:5 (when both environments have equal durations) because in this
regime the population spends most of the time transiting between
adapted states rather than being adapted. (B) shows the regimes of
optimal strategy (constitutive or responsive) as a function of the
demand for expression w (environment A) and response rate r.The
regime in which a responsive strategy with rate r confers higher fitness
than a constitutive strategy is indicated in white, and for a stochastic
environment in light gray and white. When environments are
asymmetric (w=0:5) a slow responsive population lags behind the
environment and cannot reach an adapted state in any of the two
conditions. Therefore it has lower fitness than the constitutive strategy
which provides immediate although intermediate growth in both
environments. The phase boundaries are independent of the malad-
aptation cost C.
doi:10.1371/journal.pone.0027033.g004
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strategy, having a constant expression level, only experiences the

average durations and therefore is not affected by the randomness

(environmental durations enter linearly into the time averaged

growth rate). For the responsive population, however, it is not

clear whether and how randomness will affect its long-term

growth.

Here we assume that the individual durations (TA,TB) of

environments A and B are random and uncorrelated, drawn from

exponential distributions with parameters 1=lA~w and

1=lB~(1{w).

Figure 5A shows the phenotype dynamics (top panel) and the

growth rate (bottom panel) for the responsive population as a

function of time, according to Eq. 1 to 4 (vTAw~vTBw

~0:5,r~6,C~1,n~1). In longer than average conditions the

population has time to fully adapt and grow in the optimal

phenotype at a maximal rate. During the short environmental

conditions, in turn, the phenotype has not enough time to

significantly adapt and remains ‘‘close’’ to the previously adapted

phenotype. Upon the next environmental change the population

can quickly return to the fit state. On average the population

thereby spends less time in maladapted states than if every

environmental change had a fixed average duration. This suggests

that the net growth rate should be larger in a random compared to

a periodic environment, a condition which had previously been

observed in a model of stochastic switching [23].

Since individual environmental durations are random, the

population does not periodically cycle along the same phenotype

trajectories. To calculate the long-term growth-rate we therefore

evaluate it from a large number of cycles of random-durations Ti.

To ensure that the distribution of environmental durations is

sampled with sufficient accuracy we choose the number of cycles

N~104. The time averaged growth rate is then obtained by

integrating the growth rate over each cycle i (providing Cr,i

according to Eq. 5) and weighting it in the sum with the fractional

duration of the total time.

Cr~

XN

i~1
Cr,iTiXN

i~1
Ti

ð9Þ

For a large number of cycles N the time-averaged growth rate

Cr settles at an asymptotic value.

Figure 5B shows the ratio of the long-term growth rate in a

random environment (according to Eq. 9) to the long-term growth

rate in a periodic environment (obtained according to Eq. 5),

where the mean durations in the stochastic and periodic case are

identical. For w?1 and w?0 the environment is almost constant,

hence there is hardly any fitness difference in this regime.

Similarly, if the response rate r is much larger than the

environmental frequency, the difference is small because the

population rapidly adapts to even short environmental fluctua-

tions. For w?0:5 and with response rates comparable to the

environmental duration, however, growth in a random environ-

ment is significantly faster than in the periodic case, reminiscent of

a (stochastically) resonant phenomenon. The net growth rate

difference between periodic and random environments depends

on the cost of maladaptation C: the (on-average) shorter times in

maladapted states result in a faster net-growth in the stochastic

environment compared to the periodic one. Hence, the greater the

cost of maladaptation, the greater is the growth-rate advantage in

a random environment (here C~3). This result illustrates the

importance of studying microbial behaviors in a natural setting.

The light gray area together with the white area in Figure 4B

indicate the regime in which a response is favored over an optimal

constitutive strategy in a random environment. Environmental

noise significantly increases the responsive regime. In a random

environment the constitutive strategy therefore appears as a good

strategy only when environmental changes are sporadic and when

responsive regulation is very slow.

Extrinsic noise benefits the responsive strategy but
reduces fitness of the constitutive strategy

Expression of most genes in unicellular organisms is stochastic.

As a result, genetically identical cells can show different protein

expression levels [36–40], adopt different states in the same

environment [5,7,13,22,41], and respond to stimuli with different

response times [42,43]. Different genes show different noise levels,

and rather than suppressing noise [44] some cis-regulatory

elements seem to promote expression noise [45–47]. It therefore

is an intriguing question whether and under which conditions

inter-cellular variability can provide a benefit or whether noise, as

Figure 5. Growth dynamics in random environments. (A) Adaptation dynamics x(t) in a random environment (top) and the corresponding
momentary growth rate g(t) (bottom). During short sporadic environmental changes the phenotype x(t) remains close to the previously fit state, and
thereby remains adapted for the succeeding environment. As a consequence of the finite adaptation time the population low-pass filters
environmental changes and on average spends less time in maladapted states compared to a periodic environment. The time-averaged growth rate
in a fluctuating environment significantly exceeds the time-averaged growth rate in a periodic environment. Their ratio defines the benefit in (B). This
effect becomes most relevant when the environment on average spends equal amounts of time in both states, and when the response rate r is
comparable to the rate of environmental change.
doi:10.1371/journal.pone.0027033.g005
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an inevitable side effect of low copy number signaling, always

reduces fitness.

We assume that at the beginning of an environmental cycle the

population is heterogeneous around the state of its corresponding

homogeneous population. Two kinds of population heterogeneity

can be distinguished: in the first case individual subpopulations of

a responsive population can have different response times L~1=r
(for mathematical convenience we refer to response times rather

than response rates) [42,43]. In the second scenario different

subpopulations are in different states x. With z denoting either x
or L, the time-averaged growth rate is

Chet(T)~
1

T
log

ð
dzp(z)N(z,T)

� �
ð10Þ

where the integral is the total population size Nhet by the time T
(T~1 for a full cycle). Here p(z) is the distribution of z, and

N(z,T)~exp(C(z,T)T) is the change in the size of a subpopu-

lation, cf. Eq. 5 and 6.

To ensure that all response times L are positive we assume a

gamma-distribution for p(L). Figure 6A shows the relative

frequencies of states in the population as a function of time. The

dashed line is for a homogeneous population (xA
0 ~0, n~1,

SLT~0:05, and sL~0:025). Initially and by the end of the first

environment (i.e.,A) all of the population is in the same state x~0,

x~1 respectively. Due to the heterogeneous response, however,

fast responding subpopulations can quickly reach the adapted state

and proliferate at a high rate, whereas slowly responding

subpopulations are lagging behind the homogeneous one. A

heterogeneous response therefore results in transient heterogeneity

of the states during the adaptation period. The expected benefit of

a heterogeneous response is twofold: first, fast responding

subpopulations rapidly adapt and drive population growth at the

beginning of the new environment. Second, slowly responding

subpopulations remain close to the previously fit state (x~0 in B)

and can quickly resume growth if the environment changes again

(A?B) during the adaptation period, i.e. for small w.

As a measure of benefit, Figure 6B shows the ratio of the time-

averaged growth rates for a heterogeneous and a homogeneous

population in environments of different demand w, starting with

environment A. Here r corresponds to the inverse of the average

response-time (r~1=SLT). For consistence we keep the coefficient

of variation constant for all r (cv~sL=SLT~0:8). Figure 6B

shows that response time variability consistently increases the

population fitness, in particular when the average response time is

comparable to the cycle duration: clearly, when rww1 then most

cells respond much faster than the environment changes, hence

most cells are quasi-instantaneously adapted to a new environment

thereby rendering the effect of variability small. On the other

hand, if cells respond much slower than the rate of change of the

environment, then their state is quasi-constant during a cycle, also

decreasing the effect of variability. The slight asymmetry of the

benefit at small vs. large w, is due to the aforementioned effect of

slowly responding subpopulations when the environment rapidly

returns to its previous state (A?B at small w). Hence, at short

environmental durations slower-than-average responding subpop-

ulations provide a benefit, whereas at long-lasting environmental

conditions, the benefit of fast responding subpopulations out-

weighs the cost of the slowly responding ones.

For a single environmental condition, e.g., A and small

variability sL, this benefit can be understood straightforwardly.

Assuming that the duration of one environmental condition is long

enough for all subpopulations to reach the adapted state

(Lvvw,xA
0 ~0) we may write for the population size at time t~w

N(L,w)&exp(G(w{LC)) ð11Þ

as follows from Eq. 5. Using Eq. 11 for the integral in Eq. 10 and a

normal distribution of response times p(L) with integration limits

from {? to ? (applicable for small sL), we obtain for the

heterogeneous population size at time t~w

Nhet(w)~exp G w{CSLTz
GC2s2L

2

� �� �
ð12Þ

~N(SLT,w):exp C2s2
^G=2

� �
ð13Þ

where we also used the well known gaussian integral. Equation 13

shows that response time variability always provides a benefit after

an environmental change compared to a homogeneous population

which has the same average response time. This property can be

Figure 6. Population dynamics with heterogeneous response rates (A) and benefit compared to a homogeneous population (B). (A)
shows the state density as a function of time. During the adaptation phase a population with heterogeneous response rates shows transient
heterogeneity in the states x. This results in a twofold benefit; i) fast responding subpopulations rapidly adapt and drive the growth of the whole
population, whereas ii) for environments A of short duration (small w) slowly adapting subpopulations remain close to the state that will be fit when
B occurs next time. This causes a slight asymmetry of the benefit diagram (B) at large response rates and small w vs. large w. The benefit of
heterogeneity, defined as the ratio of heterogeneous and homogeneous population growth rates, is highest when the response rate is comparable to
the environmental rate of change.
doi:10.1371/journal.pone.0027033.g006
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attributed to the convex dependence of the population size N(L,w)
on the response time L as follows from Jensen’s Inequality. In

particular we see that the benefit increases with the maladaptation

cost C,with the steady state growth rate G,and with the variability

sL. This is a plausible result when considering that the benefit of

rapidly adapting cells increases the faster these cells can divide

once they have adapted, and that the number of rapidly adapting

cells increases with sL.

In the second kind of heterogeneity, cells have identical response

rates, but noise drives them into different states. When the

response is sufficiently fast (and in the absence of multistability) it is

reasonable to assume that most cells settle in the optimum state

(i.e., x~0 in B) whereas a few cells leak into the nearby states

(x *> 0). We therefore assume an exponential distribution p(x) of

states at the beginning of a cycle t~0 (when the environment

switches from B to A). By carrying out the integration in Eq. 10 we

obtain the time-averaged growth rate of a heterogeneous

population (as our state space is limited to the interval ½0,1�, we

only consider distributions with a probability P(xw1)v0:05). In

Figure 7A we compare it to the net growth rate of a homogeneous

population where all cells start in xA
0 ~0, as a function of the

maladaptation cost and the variability sx (w~0:3). The benefit of

state heterogeneity increases with the variability and with the

maladaptation cost, clearly because cells that are slightly pre-

adapted to the new environment provide a higher benefit when

the maladaptation cost is large. On the other hand we found that

for w~0:1 state-variability represents a disadvantage because the

benefit of cells that are pre-adapted to condition A is outweighed

by a cost which these cells represent if the environment rapidly

changes back to condition B (not shown). Hence expression noise

appears to provide a benefit only if different environmental

conditions have similar durations, but not when one environment

strongly prevails. For a single environmental condition A and with

1=rvvf the integral in Eq. 10 can again be carried out

analytically, yielding

Cr,het(w)~
1

w
log

exp(G(w{C=r))

1{GCsx=r

� �
: ð14Þ

As we are considering an exponential distribution of states, we

have sx~SxA
0 T. Hence, for a homogeneous population (sx~0)

this expression directly explains the increasing benefit at increasing

maladaptation costs and variability, after an environmental

change. Note that the benefit decreases with increasing response

rates, because the population will benefit more from cells that are

slightly pre-adapted when the response is slow than when the

response is fast. A slowly responding population might therefore

increase its fitness by increasing gene expression noise. We

mention that the results remain qualitatively similar when we

assume a symmetric distribution around an initial state xA0=0.

Figure 7B shows the ratio of the time-averaged growth rates of a

constitutive-heterogeneous to a constitutive-homogeneous popula-

tion as obtained from Eq. 10. We assumed that the constitutive

population is optimized for growth in environmental cycles where

B prevails (x~0), and has an exponential distribution p(x) over

neighboring states x. For the case that the homogeneous

population is reasonably well adapted (i.e. for wv0:5), heteroge-

neity represents a significant cost because a smaller fraction of the

population resides in the optimum state (this is similar to a

responsive population in an environment where one condition

strongly prevails). Only if the population is sufficiently maladapted

(ww0:5), diversification can increase fitness due to the presence of

a small well-adapted subpopulation.

Gene expression levels can evolve to an optimum within a few

hundred generations [16]. The above results therefore indicate

that the expression of a constitutive gene will be selected against

noise [39,48–50]. On the other hand, we find that a responsive

strategy can benefit both, from heterogeneous states and from

heterogeneous response times, in particular when maladaptation

costs are high and when both environmental durations are

comparable to the population-averaged response time.

Discussion

It is a general belief that responding to an environmental

change is better than not responding. It is not a priori clear,

however, whether responding is indeed the best strategy in a

rapidly changing environment. In fact, many genes are not

responsively regulated but expressed constitutively despite a

varying demand for the gene product. In this article we explained

which conditions select for a constitutive or a responsive gene

expression strategy in a time-varying environment, taking account

of environmental and inter-cellular noise.

With a responsive strategy a population can switch between two

adapted phenotypes, where each one confers maximal growth in

one environment while minimizing growth in the other, cf.

Figure 1. After an environmental change the responsive

population is maladapted and requires time for the transition into

the adapted state, eventually reaching it by a time when the

Figure 7. Benefit and cost of state heterogeneity. Benefits and costs are measured by the ratio of heterogeneous and homogeneous
population growth rates over one cycle, for a responsive population in (A) and for a constitutive population in (B). For the responsive strategy the
benefit of heterogeneity increases with the maladaptation cost and with the variability. The fitness of a constitutive population (B) which is well
adapted to environmental cycles where B prevails (wv0:5) is reduced by variability. Only when the population is significantly maladapted (ww0:5)
heterogeneity provides a benefit. Note that benefit values in (B) are clipped at 1:2:
doi:10.1371/journal.pone.0027033.g007
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environment changes once again. With a constitutive-passive

strategy a population can evolutionarily tune its phenotype to an

optimal intermediate level, which on one hand allows suboptimal

(intermediate) growth at all times in both environments [16], and

which on the other hand bypasses the adaptation lag. As a function

of the maladaptation cost, the time scales of environmental

changes, and of the genetic response we have studied which is the

optimal constitutive expression-level and under which conditions it

confers faster growth than a responsively regulated expression.

We found that the optimal constitutive level in a changing

environment is different from the average optimal expression level

(Figure 3): when the growth rate is a convex function of the

expression level, the optimum maximizes growth in one

environment while providing minimal growth in the other. When

the growth rate is a concave function, the optimal constitutive level

is an intermediate one, providing intermediate growth in both

environments. Interestingly, whether convex or concave, the

optimum level is generally different from the average demand for

the gene product.

At large maladaptation costs the constitutive strategy confers

net-growth only when one of the environmental conditions

prevails, otherwise a fast responding strategy becomes imperative

to achieve net growth. A responsive population that cannot

respond sufficiently fast, however, lags behind the environment: its

expression state slowly oscillates around the averaged demand for

the gene product and does not reach the optimum in any of the

two environments (cf. Figure 1C). Under these conditions

constitutive optimal expression provides a larger time-averaged

growth rate than responsively regulated expression, cf. Figure 4.

The responsive vs. constitutive regimes are separated by a first

order phase-transition. This indicates that a fast genetic response

cannot evolve starting from constitutive expression via a slow

response, because it would have to go through a regime of lower

fitness. This condition may give rise to evolutionary hysteresis as

recently suggested for the evolution of stochastic switching [24].

An interesting question that arises, is how responsive gene

expression can evolve from constitutive expression.

Previous studies [6,33] had found that constitutive expression

can only be better than responsive expression if the cost for

sensing and regulatory machinery is high. In other words, when

regulation comes ‘‘for free’’ these studies predict that regulation

will always be selected for. In striking contrast, we neglected the

cost of regulation and still find that constitutive expression can be

better than adaptive expression. This result is a mere conse-

quence of explicitly taking into account the (slow) adaptation

dynamics and the intermediate states, which were neglected in

previous studies.

We find that a responsive strategy has significantly larger

growth rates in random environments compared to periodic

environments when the time scales of the genetic response and

environmental change are comparable, see Figure 5B. A similar

effect was previously observed in a model of stochastic switching

[23], therefore it would be very interesting to verify this prediction

experimentally. Furthermore we find that in a changing

environment a responsive strategy can benefit from inter-cellular

noise, in particular when environmental durations are comparable

to the population averaged response time, whereas the fitness of

the constitutive strategy is impaired, cf. Figure 6 and 7.

Thus, our main conclusions are: i) that a constitutive gene-

expression strategy is better than a responsive strategy when the

environments are asymmetric or when a response is not sufficiently

fast and ii) that constitutively expressed states are selected against

noise whereas genes that respond to environmental changes may

benefit from noise.

Recent analysis of yeast high-throughput data indeed confirm

this result [39,48–50]: genes which are constitutively expressed

and under an almost constant demand (commonly referred to as

housekeeping genes) have below-average levels of gene expression

noise, the proteasome having the least [39]. This is in agreement

with other theoretical works on gene expression in a constant

environment [17,35,35,51]. Tightly regulated genes, which

respond to environmental perturbations, however, show system-

atically higher levels of gene expression noise. This is particularly

striking for stress resistance genes and for the products of

metabolic systems in the repressed state [39,42,46,49–52]. In

principle the noise levels can be tuned by the cell [36]; therefore it

would be interesting to experimentally verify a correlation between

gene expression noise, gene response time, and the frequency of

demand for a gene product. More specifically this may be achieved

in a laboratory evolution experiment where a noisy gene that

responds to environmental perturbations is put under constant

demand. According to our analysis evolution will then select

against gene expression noise.

Complementing previous works on phenotypic switching [6,23–

25] our results allow to divide the environmental parameter space

into three regimes of optimal growth strategies: a) When

populations can rapidly switch between adapted states the

responsive switching strategy is the best. b) When adaptation is

slow and environments are symmetric, stochastic switching is

preferred over responsive switching [23–25]. c) When a response is

slow and the environment is asymmetric, constitutive expression is

better than responsive switching (this study), whereas stochastic

switching can be worse [24,25].

Our predictions on optimality of constitutive expression can be

verified experimentally as follows. In a constant lactose environ-

ment with saturating inducer concentrations, the expression level

of the lac-operon was shown to adapt to an optimum within a few

hundred generations [16]. Using a similar protocol the constitutive

mutants, lacI{ or lacO{, can be evolved in a changing

environment where the demand for Lac proteins oscillates in time.

Our method predicts the (optimal) expression levels to which a

constitutively expressing strain will evolve as a function of the

expression demand w.

Recently developed promoters allow for a graded induction of

various sugar systems [53,54]. By varying the inducer concentra-

tion these promoters can be used to measure the growth-rate

dependence on the expression level of different genes (i.e., the cost-

benefit relationship) and to determine the optimal constitutive

expression levels at different demands for the gene product w. It

would also be very interesting to use these promoters to

characterize a large set of cost-benefit functions: do all functions

fall into a certain class? Are there threshold-like cost-benefit

functions? Classifying and understanding the shape of these

functions may provide profound insights into cellular expression

regulation.

Using microfluidic devices [55] the time-averaged growth rates

in a rapidly changing environment can be measured [22, 34,

allowing comparison to our constitutive vs. responsive strategy

diagrams, see Figure 4B. For E. coli, using the experimentally

determined cost-benefit data of the lac-operon (not expressing

LacZ when lactose is available: Clacz~0:17, expressing LacZ

when lactose is unavailable Clac{~0:04, n&1:5, at 0:6mM [16])

our analysis predicts that constitutive lac-expression will have a

growth rate advantage when the expression demand lies above

w~0:3 at an environmental cycle duration T&5=r (where r is the

response rate of the lac-operon). When the cycle duration is

longer, e.g. T§20=r, then the responsive strategy has sufficient

time to fully adapt and the intermediate-constitutive strategy will
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only have higher fitness when the demand for lac-expression also

increases above w§0:8. Together this indicates that the lac-

operon was optimized for rare lactose availability with long cycle

durations, consistent with previous works [16,17]. Indeed, in a

natural setting E. coli finds lactose only during ƒ3 hours while

traversing the primary mammalian intestine [1], whereas lactose is

unavailable in most other habitats (colon, soil, water). Assuming a

cycle duration T~60{1000h (hence the demand 0:003ƒw
ƒ0:05), our analysis consistently predicts that regulated-induction

of Lac-proteins confers higher fitness than optimal constitutive

expression.

Finally, a comparison of regulatory strategies across different

species that evolved in different habitats would provide further

insight into the interplay of environmental demand frequency and

the requirements for the regulation of genes [1]. Specifically,

constitutive gene expression levels and gene induction patterns

may differ significantly between the wild type S. Cerevisiae

populations, and populations which were used over many

generations in industrial fermenters, e.g., breweries.

In this paper we have studied optimal gene expression strategies

in a rapidly changing environment. We analyzed the interplay

between the timescales of genetic response and the demand for a

phenotype, the maladaptation costs, and the fitness. Some of our

predictions agree with experimental observations, and we suggest

the experiments needed to verify others. We believe this will

stimulate further experimental work and – in line with our

predictions – deepen our understanding of microbial gene

expression strategies.
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