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Abstract: Molecular docking is a widely-used computational tool for the study of
molecular recognition, which aims to predict the binding mode and binding affinity of
a complex formed by two or more constituent molecules with known structures. An
important type of molecular docking is protein-ligand docking because of its therapeutic
applications in modern structure-based drug design. Here, we review the recent advances
of protein flexibility, ligand sampling, and scoring functions—the three important aspects
in protein-ligand docking. Challenges and possible future directions are discussed in the
Conclusion.
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1. Introduction

Molecular recognitions including enzyme-substrate, drug-protein, drug-nucleic acid, protein-nucleic
acid, and protein-protein interactions play important roles in many biological processes such as signal
transduction, cell regulation, and other macromolecular assemblies. Therefore, determination of the
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binding mode and affinity between the constituent molecules in molecular recognition is crucial to
understanding the interaction mechanisms and to designing therapeutic interventions. Due to the
difficulties and economic cost of the experimental methods for determining the structures of complexes,
computational methods such as molecular docking are desired for predicting putative binding modes
and affinities. In molecular docking, based on the protein structures, thousands of possible poses of
association are tried and evaluated; the pose with the lowest energy score is predicted as the “best match”,
i.e., the binding mode. Since Kuntz and colleagues’ pioneering work [1], significant progress has been
made in docking research to improve the computational speed and accuracy. Among them, protein-ligand
docking is a particularly vibrant research area because of its importance to structure-based drug design
[2–8] and will be the subject of the present review.

A protein-ligand docking program consists of two essential components, sampling and scoring.
Sampling refers to the generation of putative ligand binding orientations/conformations near a binding
site of a protein and can be further divided into two aspects, ligand sampling and protein flexibility.
Scoring is the prediction of the binding tightness for individual ligand orientations/conformations with
a physical or empirical energy function. The top orientation/conformation, namely the one with the
lowest energy score, is predicted as the binding mode. Here, we will review the recent advances in
protein-ligand docking on three important aspects: protein flexibility, ligand sampling, and scoring
function, as illustrated in Figure 1. Challenges and future directions will also be discussed.

Figure 1. Classification of the methods for protein-ligand docking.

 

Protein-ligand 
Docking 

Protein 
flexibility 

Ligand 
sampling 

Scoring 
function 

Soft docking 

Side-chain flexibility 

Molecular relaxation 

Ensemble docking 

Shape matching 

Systematic search 

Stochastic algorithm  

Force field 

Empirical 

Knowledge-based 

Consensus scoring  

2. Protein Flexibility

Ligand binding commonly induces protein conformational changes (referred to as “induced fit”),
which range from local rearrangements of side-chains to large domain motions. Due to the large size and
many degrees of freedom of proteins, their flexibility may be the most challenging issue in molecular
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docking. Current methods to account for protein flexibility can be grouped into four categories: soft
docking, side-chain flexibility, molecular relaxation, and protein ensemble docking [9–14].

2.1. Soft Docking

Soft docking is the simplest method which considers protein flexibility implicitly. It works by
allowing for a small degree of overlap between the ligand and the protein through softening the
interatomic van der Waals interactions in docking calculations [15,16]. The advantages of soft docking
are its computational efficiency and easiness for implementation. However soft docking can account for
only small conformational changes.

2.2. Side-Chain Flexibility

Many of the early attempts to incorporate certain protein conformational changes into molecular
docking focused on side-chain flexibility, in which backbones are kept fixed and side-chain
conformations are sampled. One of the earliest studies is the ligand docking algorithm developed by
Leach, in which discrete side-chain flexibility is included by using a rotamer library [17]. Since then,
researchers have proposed many improved techniques to incorporate continuous or discrete side-chain
flexibility in ligand docking [18–24].

2.3. Molecular Relaxation

The third type of methods account for protein flexibility by firstly using rigid-body docking to place
the ligand into the binding site and then relaxing the protein backbone and side-chain atoms nearby.
Specifically, the initial rigid-body docking allows for atomic clashes between the protein and the placed
ligand orientations/conformations in order to consider the protein conformational changes. Then, the
formed complexes are relaxed or minimized by Monte Carlo (MC), Molecular Dynamic simulations,
or other methods [25,26]. The advantage of the molecular relaxation method is the inclusion of certain
backbone flexibility in addition to the side-chain conformational changes. However, compared to the
side-chain flexibility methods, the relaxation method is more demanding for the scoring function because
it involves not only the side-chain movement but also the more challenging backbone sampling, thereby
inaccuracies in the scoring function may lead to artifacts (e.g., improper backbone torsions) in the relaxed
protein conformations. Moreover, the relaxation method is time-consuming.

2.4. Docking of Multiple Protein Structures

The most widely-used type of methods for incorporating protein flexibility utilize an ensemble of
protein structures to represent different possible conformational changes [9–14]. One of the earliest
studies was done by Knegtel et al. [27], in which an averaged energy grid was constructed by
combining the energy grids generated from individual experimentally-determined protein structures
using a weighting scheme, followed by standard ligand docking. Osterberg et al. extended the method
to AutoDock [28] with a larger ensemble consisting of 21 different conformations of the HIV-1 protease
[29]. The averaging nature of the method may miss the geometric accuracy of the protein. Claussen et
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al. developed a docking program FlexE to dock ligands into an ensemble of protein structures [30], in
which the similar segments of the protein structures in the ensemble are aligned and merged while the
dissimilar segments are used to combinatorially create new possible protein conformations for docking.
In Wei et al.’s algorithm [31], a protein was decomposed into a rigid part and several flexible parts
according to the crystal structures of the protein in the ensemble. For a given ligand placement, only the
best-fit local conformer was kept for each flexible part in the protein, assuming the flexible regions move
independently. The selected local conformers were joined with the rigid part to form the best-fit protein
conformation. Compared to FlexE, this algorithm is significantly faster and scales linearly rather than
exponentially with the protein flexibility. However, the algorithm may rely on the quality of ligand
orientational/conformational sampling, namely whether proper initial ligand placement is included.
Huang and Zou developed a fast ensemble docking algorithm by treating the protein conformational
ensemble as an additional dimension to the traditional six degrees of freedom (three translational plus
three rotational) for ligand energy optimization [32,33]. The algorithm is almost as fast as single docking
whereas keeping the accuracy of sequential docking. The ensemble docking algorithm is not used
for generating new protein structures, but instead for selecting the induced-fit structure from a given
protein ensemble. Following a similar procedure, Abagyan and colleagues expanded Huang and Zou’s
algorithm to create ICM’s ensemble docking algorithm, referred to as four-dimensional (4D) docking
[34]. In addition to experimental structures such as NMR structures or crystal structures bound of the
protein with different ligands, ensembles of protein conformations generated by molecular dynamic
simulations, Monte Carlo simulations, or structure prediction have also been used to account for protein
flexibility [35–43].

3. Ligand Sampling

Ligand sampling is the most basic element in protein-ligand docking. Given a protein target, the
sampling algorithm generates putative ligand orientations/conformations (i.e., poses) around the chosen
binding site of the protein. The binding site can be the experimentally determined active site, a dimer
interface or other site of interest. Ligand sampling is the most successful area being developed in
protein-ligand docking. Roughly, there are three types of ligand sampling algorithms: shape matching,
systematic search, and stochastic algorithms.

3.1. Shape Matching

The shape matching method is one of the simplest sampling algorithms which is often used in the
early stages of the docking process or in the first step of other more advanced ligand sampling methods.
It places the ligand using the criterion that the molecular surface of the placed ligand must complement
the molecular surface of the binding site on the protein. The six degrees of freedom (three translational
and three rotational) of the ligand allow for many possible ligand binding orientations. Therefore, how
to quickly place the ligand in the binding site with a good shape complementarity is the goal of the shape
matching algorithm. Examples of docking programs that use shape matching include DOCK [1], FRED
[44], FLOG [45], EUDOC [46], LigandFit [47], Surflex [48], MS-DOCK [49], and MDock [32,33].
The major advantage of shape matching is its computational efficiency. However, the conformation
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of the ligand is normally fixed during the shape matching process. Therefore, flexible-ligand docking
with the shape matching method is usually performed by docking an ensemble of pre-generated ligand
conformations into the protein [50], followed by merging/reranking of the docked poses from different
docking runs according to their energy scores (see below).

3.2. Systematic Search

Systematic search algorithms are normally used for flexible-ligand docking, which generate all
possible ligand binding conformations by exploring all degrees of freedom of the ligand. There are three
types of systematic search methods: exhaustive search, fragmentation and conformational ensemble.

The most straightforward systematic algorithms are exhaustive search methods, in which
flexible-ligand docking is performed by systematically rotating all possible rotatable bonds of the
ligand at a given interval. Despite its sampling completeness for ligand conformations, the number
of the combinations can be huge with the increase of the rotatable bonds. Therefore, to make the
docking process practical, geometric/chemical constrains are normally applied to the initial screening
of ligand poses, and the filtered ligand conformations are further subject to the more accurate
refinement/optimization procedures. Glide [51,52] and FRED [44] are two typical examples of this
type of hierarchical sampling methods.

In fragmentation methods, the ligand is first divided into different rigid parts/fragments. Then, the
ligand binding conformation is incrementally grown by placing one fragment at a time in the binding
site or by docking all the fragments into the binding site and linking them covalently. DOCK [53], LUDI
[54], FlexX [55], ADAM [56], and eHiTs [57] are example docking programs that use fragmentation
methods.

In conformational ensemble methods [50], ligand flexibility is represented by rigidly docking an
ensemble of pre-generated ligand conformations with other programs such as OMEGA (OpenEye
Scientific Inc, NM). Then, ligand binding modes from different docking runs are collected and ranked
according to their binding energy scores. Examples of the conformational ensemble methods for docking
include FLOG [45], DOCK3.5 [58], PhDOCK [59], MS-DOCK [49], MDock [32,33], and Q-Dock [60].

3.3. Stochastic Algorithms

In stochastic algorithms, ligand binding orientations and conformations are sampled by
making random changes to the ligand at each step in both the conformational space and the
translational/rotational space of the ligand, respectively. The random change will be accepted or rejected
according to a probabilistic criterion. There are four types of stochastic algorithms: Monte Carlo (MC)
methods, evolutionary algorithms (EA), Tabu search methods, and swarm optimization (SO) methods.

In a Monte Carlo method, the probability to accept a random change is calculated by using the
following Boltzmann probability function:

P ∼ exp

[
−(E1 − E0)

kBT

]
(1)

where E0 and E1 stand for the energy scores of the ligand before and after the random change,
respectively, kB is the Boltzmann constant, and T is the absolute temperature of the system. The docking
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programs that use the MC methods include DockVision [61], ICM [18], QXP [62], Prodock [63], and
MCDOCK [64].

Evolutionary algorithms (EAs) search for the correct ligand binding mode based on the idea from
the evolutionary process in biological systems. The most popular type of EAs is the genetic algorithms
(GAs). GOLD [65,66], AutoDock [28], DIVALI [67], DARWIN [68], MolDock [69], PSI-DOCK [70],
FLIPDock [42], Lead finder [71], and EADock [72] are the examples that have implemented evolution
algorithms.

In Tabu search methods, the probability of acceptance depends on the previously explored areas in
the conformational space of the ligand. The random change will be rejected if the RMSD between the
current ligand binding conformation and any of the previously recorded solutions is less than a cutoff;
otherwise, the random change will be accepted. Example docking programs are PRO LEADS [73] and
PSI-DOCK [70].

Swarm optimization (SO) algorithms attempt to find an optimal solution in a search space by modeling
swarm intelligence. In the method, movements of a ligand mode through the search space are guided
by the information of the best positions of its neighbors. Examples of docking programs that use
swarm optimization algorithms include SODOCK [74], Tribe-PSO [75], PSO@Autodock [76], and
PLANTS [77].

4. Scoring Functions

The scoring function is a key element of a protein-ligand docking algorithm, because it directly
determines the accuracy of the algorithm [78–82]. Speed and accuracy are the two important aspects
of a scoring function. An ideal scoring function would be both computationally efficient and reliable.
Numerous scoring functions have been developed in the past decades and can be grouped into three basic
categories according to their methods of derivation: force field, empirical, and knowledge-based scoring
functions.

4.1. Force Field Scoring Functions

Force field (FF) scoring functions [28,83,84] are based on decomposition of the ligand binding energy
into individual interaction terms such as van der Waals (VDW) energies, electrostatic energies, bond
stretching/bending/torsional energies, etc., using a set of derived force-field parameters such as AMBER
[85] or CHARMM [86,87] force fields. One of the major challenges in FF scoring functions is how to
account for the solvent effect. The simplest method is to use a distance-dependent dielectric constant
ε(rij) such as the force field scoring function in DOCK [84]:

E =
∑
i

∑
j

(
Aij

r12ij
− Bij

r6ij
+

qiqj
ε(rij)rij

)
(2)

where rij stands for the distance between protein atom i and ligand atom j, Aij and Bij are the VDW
parameters, and qi and qj are the atomic charges. ε(rij) is usually set to 4rij , reflecting the screening
effect of water on electrostatic interactions.

The most rigorous FF methods are to treat water molecules explicitly such as FEP and TI (see [88]
for review). However, these methods, together with their simplified approaches such as LIEPROFEC,
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and OWFEG are computationally expensive [88]. To reduce the computational expense, accelerated
methods have been developed while preserving the reasonable accuracy by treating water as a
continuum dielectric medium. The Poisson-Boltzmann/surface area (PB/SA) models [89–99] and the
generalized-Born/surface area (GB/SA) models [100–111] are typical examples of such implicit solvent
models.

In addition to the challenge on solvent effect, how to accurately account for entropic effect is an even
more severe challenge for FF scoring functions. Moreover, whether the free energy of ligand binding can
be decomposed into a linear combination of individual interaction terms without calculating the partition
function (“ensemble average”) also remains in question, referred to as the nonadditive problem.

4.2. Empirical Scoring Functions

In empirical scoring functions, the binding energy score of a complex is calculated by summing up
a set of weighted empirical energy terms such as VDW energy, electrostatic energy, hydrogen bonding
energy, desolvation term, entropy term, hydrophobicity term, etc.

∆G =
∑
i

Wi ·∆Gi (3)

where {∆Gi} represent individual empirical energy terms, and the corresponding coefficients {Wi} are
determined by reproducing the binding affinity data of a training set of protein-ligand complexes with
known three-dimensional structures, using least squares fitting [112–121]. Compared to the force field
scoring functions, the empirical scoring functions are normally much more computationally efficient
due to their simple energy terms. However, the general applicability of an empirical scoring function
depends on the training set due to the nature of its fitting to known binding affinities of its training
set. With the rapid increase in the number of crystal structures of diverse protein-ligand complexes
with known binding affinities, a general empirical scoring function could be developed by training on
the binding constants of thousands of protein-ligand complexes. GlideScore [51,52], PLP [119,120],
SYBYL/F-Score [55], LigScore [118], LUDI [115,117], SCORE [116], X-Score [121], ChemScore
[114], MedusaScore [122], AIScore [123], and SFCscore [124] are examples of empirical scoring
functions.

4.3. Knowledge-Based Scoring Functions

The potential parameters of knowledge-based scoring functions are directly derived from the
structural information in experimentally determined protein-ligand complexes [125–128]. The principle
behind knowledge-based scoring functions is the potential of mean force [129], which is defined by the
inverse Boltzmann relation [130–133]

w(r) = −kBT ln[ρ(r)/ρ∗(r)] (4)

where kB is the Boltzmann constant, T is the absolute temperature of the system, ρ(r) is the number
density of the protein-ligand atom pair at distance r in the training set, and ρ∗(r) is the pair density in
a reference state where the interatomic interactions are zero. After the potential parameters w(r) are
derived, the energy of ligand binding for a given complex is simply the sum of the interaction terms for
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all the protein-ligand atom pairs in the complex. Based on the early idea of Tanaka and Scheraga [125],
a number of knowledge-based scoring functions have been developed for protein-ligand interactions.
Compared to the force field and empirical scoring functions, the knowledge-based scoring functions
offer a good balance between accuracy and speed. Namely, because the potentials in Equation. (4)
are extracted from a large number of structures rather than attempting to reproduce the known affinities
by fitting, the knowledge-based scoring functions are relatively robust and general [134–137]. Their
pairwise characteristic also enables the scoring process to be as fast as empirical scoring functions.

As the ideal reference state is inaccessible for complicated systems like proteins [132], one major
challenge for knowledge-based scoring functions is the calculation for the afore-mentioned reference
state; based on the methods knowledge-based scoring functions can be classified into three categories:
traditional atom-randomized reference state, corrected reference state, and circumventing the reference
state.

Traditional methods to approximate the reference state are randomization of the atoms in the training
set. Examples include DrugScore [138,139], SMoG [140,141], BLEEP [142,143], GOLD/ASP [144],
MScore [145], and KScore[146]. The disadvantage of the atom-randomization approximation is the
neglection of the effects of excluded volume, interatomic connectivity, etc. [132]. Methods like PMF
[134,135] and DFIRE [147] have introduced correction terms for the reference state. Yet, binding mode
prediction and virtual database screening are main problems for most knowledge-based scoring functions
as a result of the reference state problem. To circumvent the long-standing reference state problem,
Huang and Zou have developed a physics-based iterative method and derived the ITScore scoring
function, which has been extensively tested with multiple benchmarks for binding mode prediction,
affinity prediction and virtual screening [136,137,148].

Other challenges for knowledge-based scoring functions include extension of the pairwise interactions
to many-body interactions to account for hydrogen bonding and other directional interactions,
development of an accurate method for entropic calculations [148], etc.

4.4. Consensus Scoring

Consensus scoring is not really a specific type of scoring function but a technique in protein-ligand
docking [149]. It improves the probability of finding a correct solution by combining the scoring
information from multiple scoring functions in hopes of balancing out the errors of the individual scoring
functions. Therefore, the main issue in consensus scoring is how to make the combination rule for
individual scores so that the true binders can be discriminated from others according to the consensus
rule [150,151]. MultiScore and X-Cscore are two examples of consensus scoring methods [121,152].

4.5. Clustering and Entropy-Based Scoring Methods

In addition to consensus scoring, another technique to improve the performances of scoring functions
is clustering-based scoring methods, which incorporate the entropic effects by dividing generated ligand
binding modes into different clusters [169–171]. The entropic contribution in each cluster is measured
by the configurational space covered by the ligand poses or the number of the ligand poses in the
cluster. One restriction in clustering-based scoring methods is that its performance depends on the ligand
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sampling protocol that is used, i.e., it is docking program-dependent. These methods in combination
with ligand conformational sampling using AutoDock have significantly improved binding mode
prediction [148,169–171].

5. Conclusion and Discussions

We have reviewed three important aspects of protein-ligand docking: protein flexibility, ligand
sampling, and scoring functions. Rapid advances in the last two decades have almost solved the ligand
sampling issue. Although equal or even more efforts have been paid to scoring function development,
entropy and desolvation effects remain the two major challenging issues for current scoring functions,
particularly for the force field scoring functions. Speed and accuracy are the two important characteristics
of a scoring function. Because of the rapid increase in computing power, how to improve the accuracy
is the future direction for scoring function development. In contrast to ligand sampling and scoring
functions which have been extensively studied for more than two decades, protein flexibility has only
been addressed recently because of the difficulty resulting from the enormous degrees of freedom
and the limitation of the computing power. The development of computational methods for protein
flexibility is still in its infancy and thereby remains one of the major future directions in protein-ligand
docking. Finally, how to evaluate different docking programs and scoring functions is another active
area [153–157]. Although many comparison studies for docking and scoring have been published
[158–166], publicly available docking benchmarks such as DUD (http://dud.docking.org/) [167,168]
and CSAR (http://www.csardock.org/) are extremely valuable for systematic and consistent evaluation
and improvement of new and existing docking algorithms.

Acknowledgments

We thank Sam Z. Grinter for critical reading of the manuscript. Support to XZ from OpenEye
Scientific Software Inc. (Santa Fe, NM) and Tripos, Inc. (St. Louis, MO) is gratefully acknowledged.
XZ is supported by NIH grant R21GM088517, Cystic Fibrosis Foundation grant ZOU07I0, the Research
Board Award RB-07-32 and the Research Council Grant URC 09-004 of the University of Missouri. The
work is also supported by Federal Earmark NASA Funds for Bioinformatics Consortium Equipment and
additional financial support from Dell, SGI, Sun Microsystems, TimeLogic, and Intel.

References

1. Kuntz, I.D.; Blaney, J.M.; Oatley, S.J.; Langridge, R.; Ferrin, T.E. A geometric approach to
macromolecule-ligand interactions. J. Mol. Biol. 1982, 161, 269-288.

2. Brooijmans, N.; Kuntz, I.D. Molecular recognition and docking algorithms. Annu. Rev. Biophys.
Biomol. Struct. 2003, 32, 335-373.

3. Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: An overviewof search
algorithms and a guide to scoring functions. Proteins 2002, 47, 409-443.

4. Shoichet, B.K.; McGovern, S.L.; Wei, B.; Irwin, J.J. Lead discovery using molecular docking.
Curr. Opin. Chem. Biol. 2002, 6, 439-446.



Int. J. Mol. Sci. 2010, 11 3025

5. Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for
drug discovery: Methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935-948.

6. Muegge, I.; Rarey, M. Small molecule docking and scoring. Rev. Comput. Chem. 2001, 17, 1-60.
7. Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: Current status and future

challenges. Proteins 2006, 65, 15-26.
8. Kolb, P.; Ferreira, R.S.; Irwin, J.J.; Shoichet, B.K. Docking and chemoinformatic screens for new

ligands and targets. Curr. Opin. Biotech. 2009, 20, 429-436.
9. Carlson, H.A. Protein flexibility is an important component of structure-based drug discovery.

Curr. Pharm. Des. 2002, 8, 1571-1578.
10. Carlson, H.A.; McCammon, J.A. Accommodating protein flexibility in computational drug

design. Mol. Pharmacol. 2000, 57, 213-218.
11. Teodoro, M.L.; Kavraki, L.E. Conformational flexibility models for the receptor in structure based

drug design. Curr. Pharm. Des. 2003, 9, 1635-1648.
12. Teague, S.J. Implications of protein flexibility for drug discovery. Nat. Rev. Drug Discov. 2003,

2, 527-541.
13. Cozzini, P.; Kellogg, G.E.; Spyrakis, F.; Abraham, D.J.; Costantino, G.; Emerson, A.; Fanelli,

F.; Gohlke, H.; Kuhn, L.A.; Morris, G.M., et al. Target flexibility: An emerging consideration in
drug discovery and design. J. Med. Chem. 2008, 51, 6237-6255.

14. Totrov, M.; Abagyan, R. Flexible ligand docking to multiple receptor conformations: A practical
alternative. Curr. Opin. Struct. Biol. 2008, 18, 178-184.

15. Jiang, F.; Kim, S.H. Soft docking: Matching of molecular surface cubes. J. Mol. Biol. 1991, 219,
79-102.

16. Ferrari, A.M.; Wei, B.Q.; Costantino, L.; Shoichet, B.K. Soft docking and multiple receptor
conformations in virtual screening. J. Med. Chem. 2004, 47, 5076-5084.

17. Leach, A.R. Ligand docking to proteins with discrete side-chain flexibility. J. Mol. Biol. 1994,
235, 345-356.

18. Abagyan, R.; Totrov, M.; Kuznetzov, D. ICM – a new method for protein modeling and design:
Applications to docking and structure prediction from the distorted native conformation. J.
Comput. Chem. 1994, 15, 488-506.

19. Desmet, J.; Wilson, I.A.; Joniau, M.; De Maeyer, M.; Lasters, I. Computation of the binding of
fully flexible peptides to proteins with flexible side-chains. FASEB J. 1997, 11, 164-172.

20. Schaffer, L.; Verkhivker, G.M. Predicting structural effects in HIV-1 protease mutant complexes
with flexible ligand docking and protein side-chain optimization. Proteins 1998, 33, 295-310.

21. Schnecke, V.; Kuhn, L.A. Virtual screening with solvation and ligand-induced complementarity.
Perspect. Drug Discov. Des. 2000, 20, 171-190.

22. Frimurer, T.M.; Peters, G.H.; Iversen, L.F.; Andersen, H.S.; Moller, N.P.; Olsen, O.H.
Ligand-induced conformational changes: Improved predictions of ligand binding conformations
and affinities. Biophys. J. 2003, 84, 2273-2281.

23. Meiler, J.; Baker, D. ROSETTALIGAND: Protein-small molecule docking with full side-chain
flexibility. Proteins 2006, 65, 538-584.



Int. J. Mol. Sci. 2010, 11 3026

24. Nabuurs, S.B.; Wagener, M.; de Vlieg, J. A flexible approach to induced fit docking. J. Med.
Chem. 2007, 50, 6507-6518.

25. Apostolakis, J.; Pluckthun, A.; Caflisch A. Docking small ligands in flexible binding sites. J.
Comput. Chem. 1998, 19, 21-37.

26. Davis, I.W.; Baker, D. ROSETTALIGAND docking with full ligand and receptor flxibility. J.
Mol. Biol. 2009, 385, 381-392.

27. Knegtel, R.M.; Kuntz, I.D.; Oshiro, C.M. Molecular docking to ensembles of protein structures.
J. Mol. Biol. 1997, 266, 424-440.

28. Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J.
Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy
function. J. Comput. Chem. 1998, 19, 1639-1662.

29. Osterberg, F.; Morris, G.M.; Sanner, M.F.; Olson, A.J.; Goodsell, D.S. Automated docking to
multiple target structures: Incorporation of protein mobility and structural water heterogeneity in
AutoDock. Proteins 2002, 46, 34-40.

30. Claussen, H.; Buning, C.; Rarey, M.; Lengauer, T. FlexE: Efficient molecular docking considering
protein structure variations. J. Mol. Biol. 2001, 308, 377-395.

31. Wei, B.Q.; Weaver, L.H.; Ferrari, A.M.; Matthews, B.W.; Shoichet, B.K. Testing a
flexible-receptor docking algorithm in a model binding site. J. Mol. Biol. 2004, 337, 1161-1182.

32. Huang, S.-Y.; Zou, X. Ensemble docking of multiple protein structures: Considering protein
structural variations in molecular docking. Proteins 2007, 66, 399-421.

33. Huang, S.-Y.; Zou, X. Efficient molecular docking of NMR structures: Application to HIV-1
protease. Protein Sci. 2007, 16, 43-51.

34. Bottegoni, G.; Kufareva, I.; Totrov, M.; Abagyan, R. Four-dimensional docking: A fast and
accurate account of discrete receptor flexibility in ligand docking. J. Med. Chem. 2009, 52,
397-406.

35. Broughton, H.B. A method for including protein flexibility in protein-ligand docking: Improving
tools for database mining and virtual screening. J. Mol. Graph. Model. 2000, 18, 247-257.

36. Carlson, H.A.; Masukawa, K.M.; Rubins, K.; Bushman, F.D.; Jorgensen, W.L.; Lins, R.D.;
Briggs, J.M.; McCammon, J.A. Developing a dynamic pharmacophore model for HIV-1 integrase.
J. Med. Chem. 2000, 43, 2100-2114.

37. Meagher, K.L.; Carlson, H.A. Incorporating protein flexibility in structure-based drug discovery:
Using HIV-1 protease as test case. J. Am. Chem. Soc. 2004, 126, 13276-13281.

38. Lin, J.H.; Perryman, A.L.; Schames, J.R.; McCammon, J.A. Computational drug design
accommodating receptor flexibility: The relaxed complex scheme. J. Am. Chem. Soc. 2002,
124, 5632-5633.

39. Zavodszky, M.I.; Lei, M.; Thorpe, M.F.; Day, A.R.; Kuhn, L.A. Modeling correlated main-chain
motions in proteins for flexible molecular recognition. Proteins 2004, 57, 243-261.

40. Cavasotto, C.N.; Abagyan, R.A. Protein flexibility in ligand docking and virtual screening to
protein kinases. J. Mol. Biol. 2004, 337, 209-225.

41. Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A. Farid, R. Novel procedure for modeling
ligand/receptor induced fit effects. J. Med. Chem. 2006, 49, 534-553.



Int. J. Mol. Sci. 2010, 11 3027

42. Zhao, Y.; Sanner, M.F. FLIPDock: Docking flexible ligands into flexible receptors. Proteins 2007,
68, 726-737.

43. May, A.; Zacharias, M. Protein-ligand docking accounting for receptor side chain and global
flexibility in normal modes: Evaluation on kinase inhibitor cross docking. J. Med. Chem. 2008,
51, 3499-3506.

44. McGann, M.R.; Almond, H.R.; Nicholls, A.; Grant, J.A.; Brown, F.K. Gaussian docking
functions. Biopolymers 2003, 68, 76-90.

45. Miller, M.D.; Kearsley, S.K.; Underwood, D.J.; Sheridan, R.P. FLOG: A system to select
quasi-flexible ligands complementary to a receptor of known three-dimensional structure. J.
Comput. Aided Mol. Des. 1994, 8, 153-174.

46. Pang, Y.P.; Perola, E.; Xu, K.; Prendergast, F.G. EUDOC: A computer program for identification
of drug interaction sites in macromolecules and drug leads from chemical databases. J. Comput.
Chem. 2001, 22, 1750-1771.

47. Venkatachalam, C.M.; Jiang, X.; Oldfield, T.; Waldan, M. LigandFit: A novel method for the
shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 2003, 21,
289-307.

48. Jain, A.N. Surflex: Fully automatic molecular docking using a molecular similarity-based search
engine. J. Med. Chem. 2003, 46, 499-511.

49. Sauton, N.; Lagorce, D.; Villoutreix, B.; Miteva, M. MS-DOCK: Accurate multiple conformation
generator and rigid docking protocol for multi-step virtual ligand screening. BMC Bioinformatics
2008, 9, 184.

50. Lorber, D. M.; Shoichet, B. K. Hierarchical docking of databases of multiple ligand
conformations. Curr. Top. Med. Chem. 2005, 5, 739-749.

51. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky,
M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new
approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.
J. Med. Chem. 2004, 47, 1739-1749.

52. Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L.
Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database
screening. J. Med. Chem. 2004, 47, 1750-1759.

53. Ewing, T.J.A.; Kuntz, I.D. Critical evaluation of search algorithms for automated molecular
docking and database screening. J. Comput. Chem. 1997, 18, 1175-1189.

54. Bohm, H.J. The computer program LUDI: A new method for the de novo design of enzyme
inhibitors. J. Comput. Aided Mol. Des. 1992, 6, 61-78.

55. Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an
incremental construction algorithm. J. Mol. Biol. 1996, 261, 470-489.

56. Mizutani, M.Y.; Tomioka, N.; Itai, A. Rational automatic search method for stable docking models
of protein and ligand. J. Mol. Biol. 1994, 243, 310-326.

57. Zsoldos, Z.; Reid, D.; Simon, A.; Sadjad, B.S.; Johnson, A.P. eHiTS: An innovative approach to
the docking and scoring function problems. Curr. Protein Pept. Sci. 2006, 7, 421-435.



Int. J. Mol. Sci. 2010, 11 3028

58. Lorber, D.M.; Shoichet, B.K. Flexible ligand docking using conformational ensembles. Protein
Sci. 1998, 7, 938-950.

59. Joseph-McCarthy, D.; Thomas, B.E.I.V.; Belmarsh, M.; Moustakas, D.; Alvarez, J.C.
Pharmacophore-based molecular docking to account for ligand flexibility. Proteins 2003, 51,
172-188.

60. Brylinski, M.; Skolnick, J. Q-Dock: Low-resolution flexible ligand docking with pocket-specific
threading restraints. J. Comput. Chem. 2008, 29, 1574-1588.

61. Hart, T.N.; Read, R.J. A multiple-start Monte Carlo docking method. Proteins 1992, 13, 206-222.
62. McMartin, C.; Bohacek, R.S. QXP: Powerful, rapid computer algorithms for structure-based drug

design. J. Comput. Aided Mol. Des. 1997, 11, 333-344.
63. Trosset, J.Y.; Scheraga, H.A. Prodock: Software package for protein modeling and docking. J.

Comput. Chem. 1999, 20, 412-427.
64. Liu, M.; Wang, S. MCDOCK: A Monte Carlo simulation approach to the molecular docking

problem. J. Comput. Aided Mol. Des. 1999, 13, 435-451.
65. Jones, G.; Willett, P.; Glen, R.C. Molecular recognition of receptor sites using a genetic algorithm

with a description of desolvation. J. Mol. Biol. 1995, 245, 43-53.
66. Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic

algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727-748.
67. Clark, K.P. Flexible ligand docking without parameter adjust-ment across four ligand-receptor

complexes. J. Comput. Chem. 1995, 16, 1210-1226.
68. Taylor, J.S.; Burnett, R.M. DARWIN: A program for docking flexible molecules. Proteins 2000,

41, 173-191.
69. Thomsen, R.; Christensen, M.H. MolDock: A new technique for highaccuracy molecular docking,

J. Med. Chem. 2006, 49, 3315-3321.
70. Pei, J.; Wang, Q.; Liu, Z.; Li, Q.; Yang, K.L.; Lai, L. PSI-DOCK: Towards highly efficient and

accurate flexible ligand docking. Proteins 2006, 62, 934-946.
71. Stroganov, O.V.; Novikov, F.N.; Stroylov, V.S.; Kulkov, V.; Chilov, G.G. Lead finder: An approach

to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
J. Chem. Inf. Model. 2008, 48, 2371-2385.

72. Grosdidier, A.; Zoete, V.; Michielin, O. EADock: Docking of small molecules into protein active
sites with a multiobjective evolutionary optimization. Proteins 2007, 67, 1010-1025.

73. Baxter, C.A.; Murray, C.W.; Clark, D.E.; Westhead, D.R.; Eldridge, M.D. Flexible docking using
Tabu search and an empirical estimate of binding affinity. Proteins 1998, 33, 367-382.

74. Chen, H.-M.; Liu, B.-F.; Huang, H.-L.; Hwang, S.-F.; Ho, S.-Y. SODOCK: Swarm optimization
for highly flexible protein-ligand docking. J. Comput. Chem. 2007, 28, 612-623.

75. Chen, K.; Li T.; Cao, T. Tribe-PSO: A novel global optimization algorithm and its application in
molecular docking. Chemom. Intell. Lab. Syst. 2006, 82, 248-259.

76. Namasivayam, V.; Gunther, R. PSO@Autodock: A fast flexible molecular docking program based
on swarm intelligence. Chem. Biol. Drug. Des. 2007, 70, 475-484.



Int. J. Mol. Sci. 2010, 11 3029

77. Korb, O.; Stutzle, T.; Exner, T.E. PLANTS: Application of ant colony optimization to
structure-based drug design. In Ant Colony Optimization and Swarm Intelligence, 5th
International Workshop, Brussels, Belgium, 4-7 September, 2006; pp. 247-258.

78. Gohlke, H.; Klebe, G. Statistical potentials and scoring functions applied to protein-ligand
binding. Curr. Opin. Struct. Biol. 2001, 11, 231-235.

79. Schulz-Gasch, T.; Stahl, M. Scoring functions for protein-ligand interactions: A critical
perspective. Drug Discov. Today: Tech. 2004, 1, 231-239.

80. Jain, A.N. Scoring functions for protein-ligand docking. Curr. Protein Pept. Sci. 2006, 7,
407-420.

81. Rajamani, R.; Good, A.C. Ranking poses in structure-based lead discovery and optimization:
Current trends in scoring function development. Curr. Opin. Drug. Discov. Devel. 2007, 10,
308-315.

82. Gilson, M.K.; Zhou, H.X. Calculation of protein-ligand binding affinities. Annu. Rev. Biophys.
Biomol. Struct. 2007, 36, 21-42.

83. Huang, N.; Kalyanaraman, C.; Irwin, J.J.; Jacobson, M.P. Molecular mechanics methods for
predicting protein-ligand binding. J. Chem. Inf. Model. 2006, 46, 243-253.

84. Meng, E.C.; Shoichet, B.K.; Kuntz, I.D. Automated docking with grid-based energy approach to
macromolecule-ligand interactions. J. Comput. Chem. 1992, 13, 505-524.

85. Weiner, P.K.; Kollman, P.A. AMBER – assisted model building with energy refinementła general
program for modeling molecules and their interactions. J. Comput. Chem. 1981, 2, 287-303.

86. Nilsson, L.; Karplus, M. Empirical energy functions for energy minimization and dynamics of
nucleic acids. J. Comput. Chem. 1986, 7, 591-616.

87. Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M.
CHARMM – a programm for macromolecular energy, minimization, and dynamics calculations.
J. Comput. Chem. 1983, 4, 187-217.

88. Wang, W.; Donini, O.; Reyes, C.M.; Kollman, P.A. Biomolecular simulations: Recent
developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein,
and protein-nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 2001, 30,
211-243.

89. Rocchia, W.; Sridharan, S.; Nicholls, A.; Alexov, E.; Chiabrera, A.; Honig, B. Rapid grid-based
construction of the molecular surface and the use of induced surface charge to calculate reaction
field energies: Applications to the molecular systems and geometric objects. J. Comput. Chem.
2002, 23, 128-137.

90. Grant, J.A.; Pickup, B.T.; Nicholls, A. A smooth permittivity function for Poisson-Boltzmann
solvation methods. J. Comput. Chem. 2001, 22, 608-640.

91. Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of nanosystems:
Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 2001, 98,
10037-10041.

92. Wei, B.Q.; Baase, W.A.; Weaver, L.H.; Matthews, B.W.; Shoichet, B.K. A model binding site for
testing scoring functions in molecular docking. J. Mol. Biol. 2002, 322, 339-355.



Int. J. Mol. Sci. 2010, 11 3030

93. Wang, J.; Morin, P.; Wang, W.; Kollman, P.A. Use of MM-PBSA in reproducing the binding
free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of
efavirenz by docking and MM-PBSA. J. Am. Chem. Soc. 2001, 123, 5221-5230.

94. Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M. Validation and use of the MM-PBSA approach
for drug discovery. J. Med. Chem. 2005, 48, 4040-4048.

95. Kuhn, B.; Kollman, P.A. Binding of a diverse set of ligands to avidin and strepavidin: An accurate
quantitative prediction of their relative affinities by a combination of molecular mechanics and
continuum solvent models. J. Med. Chem. 2000, 43, 3786-3791.

96. Pearlman, D.A. Evaluating the molecular mechanics poisson-boltzmann surface area free energy
method using a congeneric series of ligands to p38 MAP kinase. J. Med. Chem. 2005, 48,
7796-7807.

97. Sims, P.A.; Wong, C.F.; McCammon, J.A. A computational model of binding thermodynamics:
The deisgn of cyclin-dependent kinase 2 inhibitors. J. Med. Chem. 2003, 46, 3314-3325.

98. Huang, D.; Caflisch, A. Efficient evaluation of binding free energy using continuum electrostatics
solvation. J. Med. Chem. 2004, 47, 5791-5797.

99. Thompson, D.C.; Humblet, C.; Joseph-McCarthy, D. Investigation of MM-PBSA rescoring of
docking poses. J. Chem. Inf. Model. 2008, 48, 1081-1091.

100. Still, W.C.; Tempczyk, A.; Hawley, R.C.; Hendrickson, T. Semianalytical treatment of solvation
for molecular mechanics and dynamics. J. Am. Chem. Soc. 1990, 112, 6127-6129.

101. Zou, X.; Sun, Y.; Kuntz, I.D. Inclusion of solvation in ligand binding free energy calculations
using the generalized-Born model. J. Am. Chem. Soc. 1999, 121, 8033-8043.

102. Liu, H.-Y.; Kuntz, I.D.; Zou, X. Pairwise GB/SA scoring function for structure-based drug design.
J. Phys. Chem. B 2004, 108, 5453-5462.

103. Liu, H.-Y.; Zou, X. Electrostatics of ligand binding: Parametrization of the generalized born
model and comparison with the Poisson-Boltzmann approach. J. Phys. Chem. B 2006, 110,
9304-9313.

104. Liu, H.-Y.; Grinter, S.Z.; Zou, X. Multiscale generalized born modeling of ligand binding energies
for virtual database screening. J. Phys. Chem. B 2009, 113, 11793-11799.

105. Majeux, N.; Scarsi, M.; Apostolakis, J.; Ehrhardt, C.; Caflisch, A. Exhaustive docking of
molecular fragments with electrostatic solvation. Proteins 1999, 37, 88-105.

106. Cecchini, M.; Kolb, P.; Majeux, N.; Caflisch, A. Automated docking of highly flexible ligands by
genetic algorithms: A critical assessment. J. Comput. Chem. 2004, 25, 412-422.

107. Huang, D.; Luthi, U.; Kolb, P.; Edler, K.; Cecchini, M.; Audetat, S.; Barberis, A.; Caflisch, A.
Discovery of cell-permeable non-peptide inhibitors of beta-secretase by high-throughput docking
and continuum electrostatics calculations. J. Med. Chem. 2005, 48, 5108-5111.

108. Cho, A.E.; Wendel, J.A; Vaidehi, N.; Kekenes-Huskey, P.M.; Floriano, W.B.; Maiti, P.K.;
Goddard, W.A., II. The MPSim-Dock hierarchical docking algorithm: Application to the eight
trypsin inhibitor cocrystals. J. Comput. Chem. 2005, 26, 48-71.

109. Ghosh, A.; Rapp, C.S.; Friesner, R.A. Generalized Born model based on a surface integral
formulation. J. Phys. Chem. B 1998, 102, 10983-10990.



Int. J. Mol. Sci. 2010, 11 3031

110. Lyne, P.D.; Lamb, M.L.; Saeh, J.C. Accurate prediction of the relative potencies of members of
a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J. Med. Chem.
2006, 49, 4805-4808.

111. Guimaraes, C.R.W.; Cardozo, M. MM-GB/SA rescoring of docking poses in structure-based lead
optimization. J. Chem. Inf. Model. 2008, 48, 958-970.

112. Jain, A.N. Scoring noncovalent protein-ligand interactions: A continuous differentiable function
tuned to compute binding affinities. J. Comput.-Aided Mol. Des. 1996, 10, 427-440.

113. Head, R.D.; Smythe, M.L.; Oprea, T.I.; Waller, C.L.; Green, S.M.; Marshall, G.R. Validate a new
method for the receptor-based prediction of binding affinities of novel ligands. J. Am. Chem. Soc.
1996, 118, 3959-3969.

114. Eldridge, M.D.; Murray, C.W.; Auton, T.R.; Paolini, G.V.; Mee, R.P. Empirical scoring functions:
I. The development of a fast empirical scoring function to estimate the binding affinity of ligands
in receptor complexes. J. Comput.-Aided Mol. Des. 1997, 11, 425-445.
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