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Genome-wide transcriptome profiling is a powerful tool for identifying key genes and pathways involved in
plant development and physiological processes. This review summarizes studies that have used transcriptome
profiling mainly in rice to focus on responses to macronutrients such as nitrogen, phosphorus and potassium,
and spatio-temporal root profiling in relation to the regulation of root system architecture as well as nutrient
uptake and transport. We also discuss strategies based on meta- and co-expression analyses with different
attributed transcriptome data, which can be used for investigating the regulatory mechanisms and dynamics
of nutritional responses and adaptation, and speculate on further advances in transcriptome profiling that
could have potential application to crop breeding and cultivation.
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Introduction

As latest estimates suggest that the world human population
will have increased by 2 billion by 2050, innovative solu‐
tions will be required for improvement of agricultural food
productivity. Rice is a major cereal crop that is the staple
food for almost half of the world’s population. To ensure
food security for the growing world population, it will be
necessary for rice yield to approximately double in the
next 30 years (Ray et al. 2013). Plants require 17 essential
elements, of which nitrogen (N), phosphorus (P) and potas‐
sium (K) are applied to rice fields as chemical fertilizers
in large quantities. As well as having marked effects on
crop yield, this also creates various issues related to agri‐
cultural management and the natural environment. Most of
N fertilizers are released into the air, water or soil, creating
severe environmental pollution because approximately 20%
of the applied N fertilizer is taken up by the rice plant (Ju
et al. 2009). Since most of the P existing naturally in soil
is in the form of organic compounds or sparingly soluble
cationic complexes, phosphate (Pi), an inorganic form of
phosphorus available for plants, is a limiting factor for
crop production in more than 50% of the world’s cultivable
soils (Lynch 2011). In addition, approximately 20% of the
applied Pi is absorbed by plants, and then the remainder
forms insoluble organic complexes, thereby causing pollu‐
tion to environment as in the case of N (Vance et al. 2003).
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Although K is the fourth most abundant mineral element
on earth (Sparks and Huang 1985), only free K ions can
be absorbed and utilized by plants, and the concentration of
free K in the soil is usually below 1 mM (Luan et al. 2009).

Plants absorb nutrients from soil and then translocate
them to various organs. To maintain this process, plants
have a high adaptability to the nutritional environment in
the rhizosphere and exhibit various physiological and mor‐
phological responses such as modulation of the root system
architecture (RSA) and regulation of nutrient absorption
and transport processes. Therefore, in order to develop new
rice varieties with better nutrient use efficiency and toler‐
ance to unfavorable nutrient conditions, it is necessary to
understand the molecular mechanisms involved in response
and adaptation to nutritional environments, allowing sus‐
tainable optimization of crop production and reduction of
environmental impacts. Genome-wide transcriptome analy‐
sis is a powerful approach for clarifying these molecular
aspects and providing information on the regulatory net‐
works that control plant nutrient acquisition and usage.
In an attempt to identify genes that are responsive to
nutrient conditions in terms of N, P and K, a number of
studies involving comprehensive transcriptome analysis of
various plant species, including rice, have been reported
(rice: Table 1, others: Armengaud et al. 2004, Canales et
al. 2014, Gelli et al. 2014, Hammond et al. 2003, Hao et al.
2011, Krapp et al. 2011, Misson et al. 2005, Nilsson et al.
2010, Wang et al. 2000, 2003, Woo et al. 2012).

Response to nitrogen

N is needed in large amounts for plants to grow and is a
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constituent of cellular molecules such as adenosine triphos‐
phate (ATP), amino acids, nucleic acids, and chlorophyll.
Thus, N deficiency affects all fundamental aspects of plant
growth and development, and causes leaf chlorosis, modu‐
lation of the RSA and reduced yield. Generally, mild N
deficiency lead to an increase of root growth, while root
growth is inhibited in cases of excess supply of N and
severe N deficiency (Giehl and Wirén 2014). In rice, it has
also been reported that root length and biomass are
increased and shoot biomass is decreased under low N, and
that high N conditions promote shoot growth and suppress
root growth, respectively (Hsieh et al. 2018, Sinha et al.
2018, Sun et al. 2016, Xin et al. 2019a, 2019b). The com‐
plex and diverse morphological and physiological changes
induced by N starvation suggest that response and adapta‐
tion to N deficiency involve multiple signaling and
metabolic pathways. Whole-genome transcriptome analy‐
ses of rice shoots and/or roots derived from seedling plants
grown under various N conditions, i.e., N-free (–N), low N,
high N and recovery of N after deficiency (+N), has been
conducted (Table 1).

N absorption, assimilation and remobilization
Many previous studies in this field have been conducted

using mainly Arabidopsis, and this has led to clarifica‐
tion of the genes and molecular mechanisms involved in
the absorption, distribution, and assimilation of N (Wang
et al. 2018b, Xuan et al. 2017). In rice, the key compo‐
nents such as nitrate transporter genes (NRTs/NPFs) and
ammonium transporters genes (AMTs) have now been iden‐
tified and characterized. OsNPF8.9 (OsNRT1.1), OsNPF6.5
(OsNRT1.1B), OsNRT1.1b, OsNPF2.4 (OsNRT1.6),
OsNRT2.1, OsNRT2.2, OsNRT2.3a, OsNRT2.3b,
OsNRT2.4 and OsNPF2.2 play a role in uptake in the
rhizosphere and/or translocation of NO3

– (Fan et al. 2015,
Feng et al. 2011, Hu et al. 2015, Li et al. 2015, Lin et
al. 2000, Tang et al. 2012, Wang et al. 2018a, Xia et al.
2015, Yan et al. 2011). On the other hand, it has been pro‐
posed that the ammonium transporters (AMTs), OsAMT1,
OsAMT2, and OsAMT3, function in the absorption of
NH4

+ (Sonoda et al. 2003, Suenaga et al. 2003). Absorbed
NO3

– is converted by the nitrate reductase (NR) and the
nitrite reductase (NiR) to NH3 and then NH3 feeds into
the GS/GOGAT cycle of amino acid biosynthesis. In the
assimilation, the cytosolic glutamine synthetase genes, i.e.,
GS1;1, GS1;2, and GS1;3, and the NADH-glutamate syn‐
thase genes, i.e., NADH-GOGAT1 and NADH-GOGAT2,
have been identified in rice (Tabuchi et al. 2005, Tamura et
al. 2010, 2011), and their encoded isoenzymes are thought
to have distinct and non-overlapping functions; OsGS1;2
and OsNADH-GOGAT1 are expressed mainly in root sur‐
face cells and the expression of OsGS1;1 and OsNADH-
GOGAT2 has been observed mainly in the vascular tissues
of mature leaf blades (Tabuchi et al. 2007). Remobiliza‐
tion of nitrogen from senescent leaves is closely related to
nutrient use efficiency. Autophagy is an evolutionarily con‐

served degradation system for intracellular components in
eukaryotic cells (Nakatogawa et al. 2009) and its machin‐
ery has been demonstrated to contribute nitrogen remobi‐
lization in Arabidopsis and rice (Guiboileau et al. 2012,
Wada et al. 2015).

Expression dynamics of the genes responsive to N condi‐
tions

Yang et al. (2015a) identified 862 genes (394 in roots/468
in shoots) that were differentially expressed under N-free
conditions but only 178 genes (63 in roots/115 in shoots)
that were differentially expressed under high NH4

+ condi‐
tions within a short period of 4 h after each treatment. It has
also been reported that the expression of 166, 553, and 722
genes was changed in shoots exposed to low N conditions
(×1/4, ×1/16, and ×1/64) for 5 days and that 10, 5, and
58 genes were differentially expressed under high-N condi‐
tions (×4, ×16, and ×64) (Fig. 1). These results indicated
that marked and rapid changes in gene expression are nec‐
essary for adaptation to N deficiency within a short period,
but not for adaptation to High N. On the other hand, with
regard to longer periods of treatment, Xin et al. (2019a)
recently demonstrated that the expression of 696 and 808
genes changed in roots after 30 days of exposure to low and
high N conditions, respectively.

A total of 3518 differential expressed genes (DEGs)
were identified in both shoots and roots of rice seedlings
under N-deficient conditions, but only 462 genes (13.1%
of the total) showed overlapped expression in both sample
types (Cai et al. 2012). In addition, 1,158 genes were
differentially expressed in leaf sheaths and 492 genes in
roots under N starvation, and among them, only 36 genes
were shared between the samples (Yang et al. 2015b).
These results suggested that genes identified as DEGs in
each organ contributed specific functions to facilitate dis‐
tinct response strategies for adaptation to N starvation. In
shoots, many genes involved in protein biosynthesis, carbo‐
hydrate metabolism, amino acid metabolism and photosyn‐
thesis were down-regulated, whereas key genes associated
with amino acid degradation were up-regulated in N defi‐
ciency (Takehisa et al. 2015, Xin et al. 2019b). Carbon
metabolism such as the tricarboxylic acid (TCA) cycle
regulates the nitrogen assimilation pathway by providing
α-ketoglutarate for GS/GOGAT cycle and the expression
of key genes related to TCA cycle were promoted under
low N condition, thereby enhancing the nitrogen assimila‐
tion (Xin et al. 2019b). Xin et al. (2019a) demonstrated
that in rice roots the expression of many key genes and
metabolite in phenylpropanoid biosynthesis pathway were
changed depending on N concentration and proposed that
the differences in phenylpropanoid metabolism are the
main factors causing optimization of root architecture in
response to N availability. In Arabidopsis, it has been
reported that the activities of N remobilization enzymes are
promoted in shoots, allowing root growth using transported
amino acids (Krapp et al. 2011). The results obtained by
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the studies with transcriptome and metabolome analyses
account for the observed increase in the root/shoot ratio
under N deficiency conditions.

Response to phosphorus

P is a constituent of molecules such as ATP, nucleic acids,
and membrane lipids, and is associated with fundamen‐
tal processes such as signal transduction, photosynthesis
and respiration. P deficiency induces various morphologi‐
cal and physiological responses in plants, such as growth
retardation, modification of the RSA, secretion of organic
acids and phosphatases from roots into the soil to increase
Pi uptake, and replacement of phospholipid with non-
phosphorous lipids for Pi recycling (Chiou and Lin 2011,
Härtel et al. 2000, Plaxton and Tran 2011, Poirier and
Bucher 2002, Rouached et al. 2010). In rice, it has been
reported that under P deficient condition plant height and
shoot biomass are decreased whereas lateral root elongation
of seminal roots is promoted in order to increase the surface
area in contact with the soil for efficient Pi acquisition
(Hu and Chu 2011, Li et al. 2009). In addition, tiller bud
outgrowth is inhibited under conditions of P deficiency via
the strigolactone-mediated pathway (Umehara et al. 2010).
On the other hands, it has been demonstrated that excess
P supply reduces growth of primary and lateral roots in
Arabidopsis (Shukla et al. 2017).

Signaling pathways under conditions of P deficiency
The molecular mechanisms underlying sensing, signal‐

ing and adaptation to P deficiency have been well stud‐
ied. PHOSPHATE STARVATION RESPONSE1 (PHR1) in
Arabidopsis is a MYB transcription factor playing key roles
in the regulation of P-starvation signaling and P homeosta‐
sis by binding to a cis-element via the PHR1 binding site
(P1BS) (Bari et al. 2006, Bustos et al. 2010, Rubio et al.
2001). PHR1 regulates downstream genes and non-coding

RNAs including SPX (SYG/PHO81/XPR1) domain genes
(SPXs), phosphate transporters (PTs/PHTs), purple acid
phosphatases (PAPs), INDUCED BY PHOSPHATE STAR‐
VATION1 (IPS1) (Bari et al. 2006, Bustos et al. 2010,
Nilsson et al. 2007, Rubio et al. 2001), and miRNAs (Kuo
and Chiou 2011). miRNA399, in particular, is induced by
P starvation via the PHR1-mediated signaling pathway
and suppresses its target PHOSPHATE2 (PHO2), which
encodes a ubiquitin-conjugating enzyme (Aung et al. 2006,
Bari et al. 2006, Chiou et al. 2006, Fujii et al. 2005, Lin
et al. 2008). PHO2 degrades PHO1, a protein involved in
the xylem loading of P, and promote the degradation of
PHT1 proteins (Huang et al. 2013, Liu et al. 2012). In
rice, a number of key genes such as OsPHR1 and OsPHR2,
homologs of PHR1 (Zhou et al. 2008), OsPHO2/LEAF TIP
NECROSIS1 (LTN1) (Cao et al. 2014, Hu et al. 2011),
OsIPS1/2 (Hou et al. 2005), SPX1-3 and SPX5-6 (Liu et al.
2010, Wang et al. 2009a, 2009b, 2012), OsPTs (Liu et al.
2011, Paszkowski et al. 2002) and OsPAPs (Zhang et al.
2011) have been identified and characterized.

Expression signature of the genes responsive to P condi‐
tions

As is the case for N, a number of studies have used
transcriptome analysis to clarify plant responses and adap‐
tation to conditions where P is absent and/or low (Table 1).
After 6 h of exposure to P deficiency, several genes related
to iron homeostasis such as iron transporter and ferritins
were shown to be upregulated in both roots and shoots,
and expression of high-affinity Pi transporter genes (OsPT1
and OsPT4) was induced at 24 h (Secco et al. 2013,
Takehisa et al. 2013). Then, at 3 days, the expression
of non-coding RNA IPS1 and high-affinity Pi transporter
genes (OsPT3 and OsPT6) was increased. Under long-
term P deficiency (for 7 days or more), a large number
of genes were differentially expressed, and well-known
genes and non-coding RNAs such as OsPT3, OsPT10,

Fig. 1. Number of differentially expressed genes (DEGs) in shoots at 5 days after treatment with varying concentrations (×1/64, ×1/16, ×1/4,
×4, ×16, ×64 of control condition) of N, P and K, respectively (modified from Takehisa 2019). Seven-day old seedlings grown under a normal
nutrient condition were subjected to N, P, and K deficiency and excess treatments (Takehisa et al. 2015, Takehisa and Sato 2019). One-way
ANOVA and fold change (FC) analysis in each nutrient experiment identified 979 probes (805 genes) for N (FC > 5), 798 probes (691 genes) for
P (FC > 3), and 328 probes (285 genes) for K (FC > 3), respectively (Takehisa and Sato 2019).
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MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE 2
(MGD2), and IPS1 were markedly upregulated (more
than 150-fold) at 21 days (Secco et al. 2013). Functional
categories overrepresented among the genes upregulated
under P deficiency were lipid metabolism, phenylpropanoid
metabolism, cytochrome P450 and transport functions in
Arabidopsis and rice (Misson et al. 2005, Morcuende et al.
2007, Secco et al. 2013). Furthermore, Secco et al. (2013)
analyzed the transcriptome of samples after Pi resupply to
plants after P deficiency for 21 days and identified some
transcription factor genes including WRKYs and MYBs that
had been specifically expressed as early as 1 h after Pi
resupply. Comparison among rice cultivars with different
responses to P deficiency revealed that a number of genes
involved in phospholipid remobilization and modulation of
the RSA (Mehra et al. 2016) and several genes associated
with the TCA cycle (Li et al. 2010) were highly expressed
in the tolerant cultivars.

Response to potassium

K is present in high amounts in plant cells (2–10% of plant
dry weight) and is absolutely required for plant growth
(Leigh and Wyn Jones 1984). It plays crucial roles in
many physiological processes in living plant cells, includ‐
ing osmotic adjustment, enzyme activation, and regulation
of cellular pH and cation-anion balance. K deficiency
affects shoot and root development and leads to reduced
leaf area, interveinal chlorosis, curling of leaf tips, and
reduced root growth (Cakmak et al. 1994, Hu et al. 2016,
Jung et al. 2009, Zhao et al. 2016). However, unlike N
or P deficiency, K deficiency does not lead to major alter‐
ations in gene expression levels in both Arabidopsis and
rice (Armengaud et al. 2004, Gierth et al. 2005, Ma et
al. 2012, Takehisa et al. 2013). Recently, Nishida et al.
(2017) performed genome-wide analysis of exon combina‐
tion patterns in response to several nutrient deficiency con‐
ditions in Arabidopsis and revealed that a number of genes
including MYB transcription factor genes showed differen‐
tial alternative splicing only in low K condition. Therefore,
these results suggested that most of the initial response
to K deficiency might be post-transcriptional and/or post-
translational. It has been reported that only a few genes are
regulated by short-term K deficiency, including the genes
encoding high-affinity potassium transporters such as HKT
and HAK, calcium sensor protein, peroxidase involved
in scavenging of reactive oxygen species (ROS), protein
kinase, and phosphatase in rice (Ma et al. 2012, Takehisa
et al. 2013); the transcript levels of OsHAK1, OsHAK5,
OsHAK7 and OsHAK16 are significantly increased in roots
under K deficiency (Bañuelos et al. 2002, Okada et al.
2008, Yang et al. 2014). In Arabidopsis, signal transduc‐
tion induced via the CBL (calcineurin B-like protein)-CIPK
(CBL-interacting protein kinase) complex has been shown
to mediate the phosphorylation of high-affinity K channel
AKT1, thus promoting the absorption of K (Li et al. 2006,

Xu et al. 2006). In rice, OsAKT1, has also been shown
to play a critical role in K uptake (Li et al. 2014). Also,
a member of the type III peroxidase family, RCI3, is
involved in the production of ROS, which can directly acti‐
vate a high-affinity K transporter gene, AtHAK5, through
RAP2.11, a AP2-EREBP transcription factor (Kim et al.
2010, 2012).

Common and differing features of responses to
varied N, P, and K conditions

In comparison with P and K, N deficiency dramatically
and rapidly alters gene expression. In fact, one study has
shown that 982 and 592 genes were differentially expressed
in roots and shoots, respectively, at 1 h after exposure to
N deficiency (Cai et al. 2012). On the other hand, the
expression of only several dozen or fewer genes was found
to change at 24 h after exposure to P deficiency, although
there were a number of DEGs at 3 days or more (179 in
shoots and 91 in root at 3 days, and 953 and 689, respec‐
tively, at 7 days) (Secco et al. 2013). Transcriptome analy‐
sis using the same experimental platform showed that while
1245 and 1946 genes were differentially expressed in roots
at 6 h and 24 h after exposure to N deficiency, respectively,
only one and 382 DEGs were identified at 6 h and 24 h
after exposure to P deficiency, respectively (Takehisa et al.
2013). As is the case for P, only a few genes were differen‐
tially expressed at 6 h after exposure to K deficiency. In
addition, in rice shoots, differences in expression profiles
were evident in response to excess and deficiency of N,
P, and K at 5 days after the treatment (Fig. 1). The expres‐
sion of a number of genes was up- and down-regulated
under N deficiency, but far fewer genes showed expression
changes under N excess condition. The number of DEGs
extracted under P deficiency was similar to that under
P excess condition. Interestingly, DEGs tended to be up-
and down-regulated under conditions of K deficiency and
excess, respectively.

Although significant differences were observed in the
response to each nutrient condition, one notable feature was
that genes related to the regulation of ROS levels were
commonly among those that were up-regulated under not
only K deficiency but also N and P deficiency (Takehisa
et al. 2013). OsGLP1 encoding a germin-like protein was
strongly up-regulated under each type of nutrient deficiency,
and is reportedly associated with biotic and abiotic stress
tolerance via hyper-accumulation of hydrogen peroxide
(Banerjee et al. 2010a, Banerjee and Maiti 2010b). As is
the case for K, class-III peroxidase genes and RAP2.11
were also upregulated under conditions of N and P defi‐
ciency. Therefore, the ROS signaling pathway may play an
important role in adaptation to macronutrient deficiencies.

Root system architecture

Roots are essential for plant growth and development,
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anchoring plants to growth substrates, promoting the uptake
of water and nutrients from the soil, and responding to
biotic and abiotic stresses. Root architectural and physio‐
logical characteristics are closely related to nutrient uptake
and allocation, growth and yield in crop plants. Modifica‐
tions to the RSA under nutrient deficiency are complex,
and dependent on plant species and experimental condi‐
tions (i.e. nutrient concentration). In rice, N and P defi‐
ciency leads to elongation of the primary (seminal) root
(Niu et al. 2013, Sun et al. 2014, 2016, Zhang et al. 2012)
and changes in lateral root length and density (Mehra et
al. 2016, Sun et al. 2014). Nitric oxide (NO) is a signal‐
ing molecule involved in many physiological processes
during root development and nutrient assimilation (Bai et
al. 2014, Correa-Aragunde et al. 2004, Fernández-Marcos
et al. 2011, Frungillo et al. 2014, Jin et al. 2009, Lombardo
et al. 2006, Manoli et al. 2014, Pagnussat et al. 2002,
2003). NO induced by N and P deficiencies is positively
correlated with elongation of the seminal roots in rice, via
a pathway mediated by a plant hormone, strigolactone (Sun
et al. 2014, 2016).

The rice root system is composed of the seminal root,
crown root, lateral root and root hair, all derived from dif‐
ferent cells. Thus, to fully clarify the mechanisms respon‐
sible for morphological changes in roots, information on
gene expression in each cell type is required. Root cell-type
transcriptome profiling has been performed for Arabidopsis
(Birnbaum et al. 2003, Brady et al. 2007, Dinneny et al.
2008, Gifford et al. 2008, Nawy et al. 2005), rice (Takehisa
et al. 2012) and maize (Dembinsky et al. 2007, Yu et al.
2015, 2016, Woll et al. 2005). In rice, tissue- and cell-type

transcriptome analysis has been conducted using a com‐
bination of laser microdissection and microarray analysis
(Takehisa et al. 2012). In that study, crown roots were
divided into 8 parts with different developmental stages
along the longitudinal axis and 3 radial tissue types, i.e.,
epidermis, exodermis and sclerenchyma; cortex; and endo‐
dermis, pericycle and stele. Expression profiling of the
samples defined major sites for uptake and transport of
nutrients as well as the radial transport system from the
rhizosphere to the xylem vessels specific for each nutri‐
ent. In addition, 2 gene sets were identified; one contains
71 genes such as CROWN ROOTLESS 1/ADVENTITIOUS
ROOTLESS 1 (CRL1/ARL1) (Inukai et al. 2005, Liu et al.
2005) and a homolog of Arabidopsis PUCHI (Hirota et
al. 2007), which have function in lateral root formation,
and the other set contains 78 genes, many of which were
associated with cell division and root elongation (Takehisa
et al. 2012). Expression profiling of these gene sets with
a dataset, which consists of various organs/tissue sample
data (Sato et al. 2011a, 2011b), revealed that the former
was expressed specifically in roots whereas the latter was
expressed in immature organs at the reproductive/ripening
stages (Fig. 2), thereby further supporting the possibility
that the former genes are specifically associated with lateral
root formation whereas the latter function in cell division
and elongation in whole tissues. Moreover, it was reported
that several of the above 71 genes are differentially regu‐
lated in the Osiaa13 mutant compared with the wild type,
indicating that these may function in lateral root initiation
via an OsIAA13-mediated auxin signaling pathway (Kitomi
et al. 2012). Furthermore, these gene sets were used for

Fig. 2. Expression profile of 71 genes functioning specifically in lateral root formation (A) and 78 genes associated with root cell division and
elongation (B) based on transcriptome data for various organs and tissues at different developmental stages. The 71 and 78 genes were identified
by Takehisa et al. (2012). The data for various organs and tissues consist of 143 microarray data derived from the leaf blade (6 samples), leaf
sheath (4) root (4), stem (3), panicle (3), anther (3), pistil (3), lemma and palea (6), ovary (4), embryo (5), and endosperm (5) (Sato et al.
2011a). The vegetative and reproductive organ samples were derived mainly from samples at the mature and immature stages of development,
respectively. Expression data were applied to 75th percentile normalization, and log2 transformation. The relative expression value (log2) was
obtained by subtracting the median expression value within the dataset for each probe. The 71 and 78 genes were divided into 6 clusters based
on similarity of expression pattern, respectively, and each cluster was colored in different colors.
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comparison between two cultivars with different responses
to P deficiency (Mehra et al. 2016). Thus, utilization of
transcriptome data for different attribute types can provide
more insight into genes of interest. Further details are
described below.

Meta- and co-expression analyses across dis‐
tinct datasets

Expression profiling of DEGs in other datasets is useful for
their classification based on transcriptional level and depth
understanding of their functions. In addition, coexpression
analysis across multiple datasets is a powerful approach
for predicting the function of unknown genes and for iden‐
tifying key genes and/or modules related to specific biolog‐
ical events of interest (Eisen et al. 1998). These strategies
have been proved to reveal novel factors regulating specific
metabolic pathways in Arabidopsis (Amrine et al. 2015,
Aoki et al. 2007, Hirai et al. 2007, Obayashi and Kinoshita
2010, Shaik and Ramakrishna 2013, Sharma et al. 2018). In
rice, these types of approach have also been used for identi‐
fication and characterization of genes and/or gene networks
(Buti et al. 2019, Cohen and Leach 2019, de Abreu Neto
and Feri 2016, Narsai et al. 2013, Takehisa et al. 2013,
2015, Zhu et al. 2019). Expression profiling of genes
responsive to macronutrient stress (N, P and K deficiency)
in the root in response to phytohormones such as abscisic
acid (ABA), gibberellic acid (GA), auxin (IAA), brassino‐
steroid (BR), cytokinin (CK) and jasmonate (JA) has indi‐
cated that responses to K deficiency may be related to
the signal transduction pathway mediated by JA (Takehisa
et al. 2013). DEGs identified in shoots under macronutri‐
ent deficiency were applied to co-expression analysis by
adding datasets for various organs and tissues at different
stages of development (Takehisa et al. 2015). This identi‐
fied several modules, which mostly comprised genes down‐
regulated under N deficiency, with distinct functions such
as development of immature organs, protein biosynthesis
and photosynthesis in chloroplast of green tissues, as well
as fundamental cellular processes in all organs and tissues.
One of these modules contained a number of protein kinase
genes and nutrient transporter genes encoding ammonium
transporter (OsAMT1;2 and OsAMT3;3), phosphate trans‐
porter (OsPT8), and potassium transporter (OsHAK27).
In Arabidopsis, phosphorylation-dependent regulation has
been reported for transporters/channels related to the trans‐
port of nitrate (NRT1;1/CHL1), potassium (AKT1) and
ammonium (AMT1;1) under conditions of nutrient defi‐
ciency (Lanquar et al. 2009, Lee et al. 2007, Liu and
Tsay 2003, Loqué et al. 2007). These results imply that the
co-expressed genes may play a role in the nutrient usage
mechanism under conditions of nutrient deprivation.

A large number of transcriptome data covering various
organs and tissues, and experimental conditions such as
biotic and abiotic stress, are now available in the public
domain including NCBI-GEO (Barrett et al. 2013) and

ArrayExpress (Kolesnikov et al. 2015). Moreover, several
databases for gene expression in rice, such as RiceXPro
(Sato et al. 2011a, 2013a), OryzaExpress (Hamada et
al. 2011), ROAD (Cao et al. 2012), Expression Atlas
(Petryszak et al. 2016), TENOR (Kawahara et al. 2016),
and RED (Xia et al. 2017) have been developed. In
addition, rice gene coexpression data are available from
ATTED-II (Obayashi et al. 2011), OryzaExpress (Hamada
et al. 2011), RiceFREND (Sato et al. 2013b), RECoN
(Krishnan et al. 2017), and RiceAntherNet (Lin et al.
2017). Therefore, further analysis of nutrient-responsive
genes using this type of transcriptome resource will be
useful for gaining a deeper understanding of when and how
plants respond and adapt to variable nutritional conditions.

Understanding nutrient status dynamics in
the field

As described above, there is now a large volume of tran‐
scriptome data relating to nutrient deficiency or supply,
making it easier to study the mechanisms of adaptive
response and tolerance and identify the genes associated
with these events (Table 1). However, most of the stud‐
ies were based on transcriptome analysis using samples
derived from seedling plants under laboratory conditions
over a relatively short period of time. In contrast, under
field conditions, crop plants respond to multiple factors
simultaneously over a long period throughout their vegeta‐
tive, reproductive, and ripening stages. In addition, it has
been shown that the adaptive responses of crop plants
to nutrient conditions vary among different genetic back‐
grounds and/or growth stages. Therefore, it is important
to understand when nutrient-responsive genes identified
under laboratory conditions are expressed and how their
expression is associated with biological events, such as
tillering, flowering, and ripening for rice, which occur
during the process of growth. There is a large volume
of transcriptome data for rice derived from leaf samples
during the entire period of growth under field conditions
(Nagano et al. 2012, Sato et al. 2011b, 2013a). To identify
the network of core nutrient-response genes under both
laboratory and field conditions, co-expression analysis of
1452 macronutrient-responsive genes identified in the labo‐
ratory was performed using time-course transcriptome data
for rice obtained in the field (Takehisa and Sato 2019).
This analysis successfully identified 3 biomarker gene sets
for monitoring the N and P status of rice plants under
field conditions, including about 10 genes in each set, and
profiling of the biomarker genes made it possible to visu‐
alize growth-stage and soil condition-dependent changes
in nutrient status (Takehisa and Sato 2019). Notably, the
biomarker gene set for P contained P deficiency responsive
genes such as OsSPX1 and MGD2, which is a close homo‐
logue of Arabidopsis MGD2 and MGD3 associated with
replacement of phospholipid with non-phosphorous lipids
for Pi recycling (Kobayashi et al. 2009), were up-regulated

BS Breeding Science
Vol. 71 No. 1 Takehisa and Sato

82



during the tillering stage in rice grown under soil condi‐
tions with a high phosphate retention capacity, indicating
that rice plants express a system for acquisition and recy‐
cling to compensate the P required for tiller development
under such field conditions (Takehisa and Sato 2019).

Conclusion and future perspectives

Transcriptome profiling has contributed to the
identification of key genes/pathways associated with the
response and adaptation of plants to varied nutrient condi‐
tions and alterations of root system architecture important
for uptake of nutrients from the rhizosphere (Fig. 3). Fur‐
thermore, meta- and co-expression analyses using differ‐
ent data makes it possible to highlight nutrient-responsive
genes and identify modules that are related to a common
biological process, and data resource available for such the
analysis has been developed. As crop plants grow under
field conditions, phenomena observed during the growth
process are complex. To improve the nutrient use efficiency
of crop plants and enhance their tolerance to nutrient defi‐
ciency, it would be important to not only isolate genetic
materials with better performance in such traits but also
understand when and how plants respond and adapt to
nutritional conditions. Omics studies focusing on the tran‐
scriptome, proteome, and metabolome would be a power‐
ful approach for profiling of the molecular dynamics that
reflect internal status, thereby enabling the development of
suitable biomarkers for evaluation of nutrient conditions of
plants under field conditions. Indeed, profiling of N and P
biomarkers developed on the basis of transcriptome data
has revealed soil- and growth-stage-dependent changes in
nutrient status (Takehisa and Sato 2019). The information
of internal status obtained by biomarker profiling might be
useful for cultivation management. More recently, it has
been demonstrated that transcriptome data would be useful

for not only genomic prediction but also providing a link
between traits and variation (Azodi et al. 2020). Therefore,
transcriptome-based approach would also have a potential
for screening genetic materials of interest and thus has con‐
siderable applicability to the breeding of crop plants with
various traits including nutritional characteristics that can
complement a genetics-based approach.
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