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Abstract. The aim of the present study was to investigate the 
effects of the transcription factor forkhead box P3 (FOXP3) 
in neutrophils on the progression of oral squamous cell carci-
noma (OSCC). Cancer tissue samples and paracarcinoma 
tissues were collected from 23 patients with OSCC for the 
current study. In addition, SCC‑9, a human tongue carcinoma 
cell line, was co‑cultured with primary human neutrophils and 
treated with recombinant interleukin 8 (IL‑8). The effect of 
FOXP3 on the proliferation of SCC‑9 cells was analyzed using 
a Cell Counting Kit 8 assay. FOXP3 expression in neutrophils 
was analyzed by quantitative PCR following IL‑8 treatment. 
FOXP3 protein expression in neutrophils and the amount 
of IL‑8 protein in the OSCC tumor microenvironment were 
determined by immunofluorescence analysis. The present 
study demonstrated that IL‑8 downregulated FOXP3 mRNA 
expression in neutrophils. Neutrophils and peptide P60, a 
specific inhibitor of FOXP3, increased proliferation of SCC‑9 
cells. In patients with OSCC, FOXP3 protein expression in 
neutrophils of the stage IV group was significantly lower 
compared with that of the stage II and stage III groups, while 
IL‑8 protein expression was higher in cancer tissues compared 
with that in paracarcinoma tissues. In summary, IL‑8 in the 
tumor microenvironment may recruit neutrophils, and down-
regulation of FOXP3 in neutrophils by IL‑8 may promote the 
progression of OSCC.

Introduction

In 2012, 300,400 newly diagnosed cases of oral cancer were 
reported, and 145,400 patients succumbed to oral cancer world-
wide (1). Oral squamous cell carcinomas (OSCCs) are the most 
common type of oral cancer (2). Interleukin (IL)‑8 is a key 
cytokine that promotes tumor progression (3). Additionally, 
a previous study demonstrated that OSCC cells may secrete 
IL‑8 (4). IL‑8 released by tumor cells recruits neutrophils from 
the circulating blood to the local tumor microenvironment (3). 
Neutrophils entering the tumor microenvironment exert 
various biological functions, including promotion of tumor 
angiogenesis and tumor cell proliferation (5,6).

The forkhead/winglike spiral transcription factor forkhead 
box P3 (FOXP3) is a member of the forkhead transcription 
factor family (7). As a key transcription factor, FOXP3 serves 
an important role in the formation of regulatory T cells 
(Tregs) and their immunosuppressive function (7). Several 
studies on FOXP3 have focused on Tregs (8‑10), and previous 
studies demonstrated that FOXP3 is expressed not only in 
Tregs, but also in various types of cancer (11‑13), including 
pancreatic cancer (11). A study by Hinz et al (11) indicated that 
pancreatic cancer cells expressing FOXP3 attenuate activated 
T‑cell proliferation. By specifically reducing FOXP3 expres-
sion in pancreatic cancer cells, its inhibitory effect on T‑cell 
proliferation can be partially reduced (11).

Neutrophil infiltration of a tumor microenvironment is 
a common manifestation of tumor pathology  (5,6,14,15). 
Tumor‑associated neutrophils (TANs) are classified as the 
N1 type, with an antitumor effect, and the N2 type, with a 
tumor‑promoting effect  (16,17). The phenotype of TANs 
is associated with factors in the tumor microenvironment, 
including transforming growth factor β and interferon β (16,17). 
A study by Nozawa et al (18) revealed that TANs promote 
tumor cell proliferation in pancreatic cancer. Additionally, 
neutrophils are not only common immune killer cells, but also 
a potential immunoregulatory cell type (19). Whether FOXP3 
is expressed in neutrophils and whether its expression serves 
a role in tumor progression, to the best of our knowledge, has 
not been reported on so far.

In the present study, quantitative PCR (qPCR) was 
performed to detect the effect of cytokine IL‑8 on the expres-
sion levels of FOXP3 in neutrophils, and a Cell Counting Kit 8 
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(CCK‑8) proliferation assay was used to evaluate the effect of 
FOXP3 expression on the proliferation of OSCC cells in vitro. 
Furthermore, immunofluorescence staining was conducted to 
detect the expression levels of FOXP3 in neutrophils in OSCC 
tissue samples in vivo. The present study broadens the range of 
known mechanisms via which neutrophils promote tumor cell 
proliferation and tumor progression.

Materials and methods

Human samples. Cancer tissue samples and paracarcinoma 
tissues (1.5 cm away from the cancer) were collected from 
patients with OSCC at the College of Stomatology, Guangxi 
Medical University (Nanning, China) between July 2017 and 
December 2017. Patients with OSCC included in the present 
study had not been previously treated, and were candidates 
for surgical resection of primary tumors and selective or 
radical neck dissection. The exclusion criteria were: i) Patients 
with other severe systemic disorders or distant metastasis; 
and ii)  patients with samples that were inadequate for 
immunofluorescence staining.

Samples from 23 patients with OSCC were included in 
the present study. The median age of the patients was 52 years 
(range, 24‑82 years); 14 patients were male, and 9 patients were 
female. According to the Union for International Cancer Control 
7th Edition staging system (20), the patients were divided into 
stage II (n=6), III (n=7) and IV (n=10) groups. Each sample was 
stained using hematoxylin and eosin as described previously (21). 
Histopathological diagnoses were confirmed by at least two 
independent pathologists. Notable intercellular bridging and 
keratinized beads were observed in the cancer tissues, histolog-
ical features which are consistent with squamous cell carcinoma. 
Tissue samples were soaked in 10% buffered formalin at room 
temperature for 48 h, followed by paraffin embedding. Blood 
samples were obtained from 9 healthy donors (5  men and 
4 women; median age, 45; age range, 28‑56) and placed into 
heparinized tubes at room temperature and processed within 2 h 
of blood collection. The Ethics Committee of Guangxi Medical 
University approved the study protocol, and all patients and 
healthy donors provided written informed consent.

Cells and cell culture. SCC‑9 cells were obtained from the 
Fuheng Cell Center (Shanghai, China). The cell line was 
authenticated by Shanghai Biowing Applied Biotechnology 
Co., Ltd., using short tandem repeat (STR) profiling  (22), 
according to the American National Standards Institute 
Standard (ASN‑0002) set forth by the American Type Culture 
Collection Standards Development Organization (22). The 
STR results revealed that this cell line had no multiple alleles 
and no cross contamination of human cells. The DNA of 
the cell line was found to match perfectly with the type of 
cells in a cell line retrieval, and the DSMZ database (dsmz.
de/services/human‑and‑animal‑cell‑lines/online‑str‑analysis) 
demonstrated that the cells, called SCC‑9, corresponded 
to the cell number CRL‑1629. SCC‑9 cells were main-
tained in DMEM/F12 medium (cat. no.  319‑085‑CL; 
Wisent Biotechnology) supplemented with 10% FBS (cat. 
no. 086‑110; Wisent Biotechnology) and 1% penicillin/strep-
tomycin solution (cat. no. 450‑201‑EL; Wisent Biotechnology). 
Neutrophils were isolated from healthy donor blood samples 

by means of Polymorphprep™ (cat. no. 1114683; Axis‑Shield 
Diagnostics, Ltd.) according to the manufacturer's protocol, 
and neutrophils were resuspended in RPMI‑1640 medium (cat. 
no. 350‑006‑CL; Wisent Biotechnology) supplemented with 
10% FBS and 1% penicillin/streptomycin solution. All cells 
were cultured at 37˚C in a humidified atmosphere containing 
5% CO2, and all subsequent culturing were performed under 
the same conditions.

Isolation of neutrophils and co‑culture with SCC‑9 cells. 
To isolate neutrophils, heparinized blood was layered on 
Polymorphprep according to the manufacturer's protocol. 
Briefly, 5 ml heparinized blood was carefully layered over 5 ml 
Polymorphprep in a 15 ml centrifuge tube. The samples were 
centrifuged at 500 x g for 30 min at 20˚C. Subsequently, the 
lower phase containing neutrophils was collected, diluted with 
PBS (cat. no. P1010; Beijing Solarbio Science & Technology 
Co., Ltd.) and centrifuged at 400 x g for 10 min at 20˚C. 
The neutrophils were resuspended in RPMI‑1640 medium 
supplemented with 10% FBS.

The co‑culture experiments were conducted in 96‑well 
plates, as described previously (23). The SCC‑9 cells were 
plated at a density of 5x105 cells/ml in DMEM/F12 medium 
containing 10% FBS. After 24 h, the medium was discarded, 
and the cells were incubated in 100 µl RPMI‑1640 medium 
supplemented with 10% FBS. Neutrophils were directly added 
to the tumor cells at a final density of 5x105 cells/ml. To inves-
tigate the effect of FOXP3 on the proliferation of SCC‑9 cells 
in co‑culture, the cells were treated with IL‑8 (100 ng/ml; cat. 
no. 200‑08; PeproTech, Inc.) or peptide P60 (P60; 100 µM; 
cat. no. 350582; Abbiotec, Inc.), a specific peptide inhibitor of 
FOXP3 (24). The plates were incubated for 24 h at 37˚C in a 
humidified atmosphere containing 5% CO2.

Cell proliferation assay. Cell proliferation was assessed using 
the CCK‑8 assay (cat. no. 70‑CCK805; Hangzhou MultiSciences 
(Lianke) Biotech Co., Ltd.) according to the manufacturer's 
protocol. For co‑culture experiments, SCC‑9 cells were 
plated at a density of 5x105 cells/ml in DMEM/F12 medium 
containing 10% FBS. After 24 h, the medium was discarded, 
and the cells were incubated in 100 µl of RPMI‑1640 medium 
supplemented with 10% FBS. Neutrophils were directly 
added to the tumor cells at a final density of 5x105 cells/ml. 
To investigate the effect of FOXP3 on the proliferation of 
SCC‑9 cells in co‑culture, the cells were treated with human 
recombinant IL‑8 (100 ng/ml; cat. no. 200‑08; PeproTech, Inc.) 
or P60. Subsequently, 100 µl RPMI‑1640 medium containing 
10% FBS and 10 µl CCK‑8 reagent was added. Optical density 
was measured at 450 nm on a microplate reader after 2 h. The 
experiment was independently repeated three times.

Reverse‑transcription (RT)‑qPCR. To examine the effects 
of IL‑8 on FOXP3 expression in neutrophils, neutrophils 
(1x106 cells/well) were cultured in 24‑well plates in RPMI‑1640 
medium supplemented with 10% FBS and treated with recom-
binant human IL‑8 (100 ng/ml, diluted in distilled water) or 
treated with the same volume of PBS (control group) for 12 h.

For mRNA analysis, RNA (200  ng per sample) was 
extracted from neutrophils using RNAiso Plus reagent (cat. 
no. 9108; Takara Bio, Inc.) according to the manufacturer's 
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protocol. Complementary DNA (cDNA) was synthesized 
with the PrimeScript™ RT Reagent kit with gDNA Eraser 
(Perfect Real Time) (cat. no.  RR047A; Takara Bio, Inc.) 
according to the manufacturer's protocol. The reverse tran-
scription temperature protocol used was: 37˚C for 15 min 
followed by 85˚C for 5  sec. The primers for GAPDH and 
FOXP3 were purchased from Takara (Takara Bio, Inc.). The 
primer sequences were as follows: FOXP3 forward, 5'‑GAA​
ACA​GCA​CAT​TCC​CAG​AGT​TC‑3' and reverse, 5'‑ATG​GCC​
CAG​CGG​ATG​AG‑3'  (25); and GAPDH forward, 5'‑GCA​
CCG​TCA​AGG​CTG​AGA​AC‑3' and reverse, 5'‑TGG​TGA​
AGA​CGC​CAG​TGG​A‑3'. GAPDH was used as an internal 
control. qPCR was performed on an ABI 7500 real‑time PCR 
system (Applied Biosystems; Thermo Fisher Scientific, Inc.) 
using TB Premix Ex Taq™ II (cat. no. RR820A; Takara Bio, 
Inc.) according to the manufacturer's protocol. The thermo-
cycling conditions were: Denaturation at 95˚C for 30  sec; 
followed by 40 cycles at 95˚C for 5 sec and 60˚C for 34 sec, 
and a final extension step of 95˚C for 15 sec, 60˚C for 1 min, 
95˚C for 15 sec and 60˚C for 15 sec. The experiment was 
independently repeated three times. The 2‑ΔΔCq method was 
used to calculate the relative fold in gene expression deter-
mined from quantitative PCR experiments (26,27). The fold 
change in cDNA of the target gene relative to the GAPDH 
endogenous control was determined by the following equa-
tion: Fold change=2‑ΔΔCq, where ΔΔCq=[(CqFOXP3‑CqGAPDH) 
(experimental group)‑(CqFOXP3‑CqGAPDH) (control group)]. The 
Ct value is the number of amplification cycles at which the 
fluorescence signal reaches a set threshold.

Immunofluorescence staining. Tissue samples were cut into 
4‑µm‑thick sections. The sections were deparaffinized with 
xylene and rehydrated in a descending ethanol series of 70, 
80, 90, 95 and 100%, followed by antigen retrieval with citrate 
buffer (cat. no. mvs‑0066; Fuzhou Maixin Biotech Co., Ltd.) 
with pH 6.0, microwaved on high power to boiling point 
for 3 min and subsequently blocked with 5% BSA (Beijing 
Solarbio Science & Technology Co., Ltd.; cat. no. SW3015) 
for 30 min. The sections were incubated at 4˚C overnight with 
the following primary antibodies at 1:100 dilution: Rabbit 
polyclonal anti‑human FOXP3 antibody (cat. no. ab10901; 
Abcam), mouse monoclonal anti‑human myeloperoxidase 
(MPO) antibody (cat. no.  ab25989; Abcam) and mouse 
monoclonal anti‑human IL‑8 antibody (cat. no. sc‑8427; Santa 
Cruz Biotechnology, Inc.). The sections were washed with 
PBS, followed by incubation with the following secondary 
antibodies at 1:1,000 dilution for 1 h at 37˚C: Goat anti‑rabbit 
immunoglobulin G (IgG) antibody (cat. no. ab150077; Abcam) 
and goat anti‑mouse IgG antibody (cat. no. ab150114; Abcam). 
Sections were washed with PBS followed by incubation with 
DAPI (5 µg/ml; cat. no. C0060; Beijing Solarbio Science & 
Technology Co., Ltd.) at 37˚C for 10 min. The tissue sections 
were washed with PBS before mounting on the slides with 
Solarbio Fluorescence Mounting medium (cat. no. S2100; 
Beijing Solarbio Science & Technology Co., Ltd.). SCC‑9 cells 
were fixed with 4% paraformaldehyde at room temperature, 
and permeabilized with 0.3% Triton X‑100 (Beijing Solarbio 
Science & Technology Co., Ltd.; cat. no. T8200) for 20 min. 
After blocking with 5% BSA at 37˚C for 30 min, the samples 
were stained as described above. Images were captured under 

a fluorescence microscope (magnification, x400; Olympus 
Corporation), and the integrated optical density (IOD) of 
FOXP3 protein expression in three randomly selected fields 
was measured using Image Pro‑Plus 6.0 software (version 6.0; 
Media Cybernetics, Inc.). The IOD mean value of each section 
was determined after analyzing three random images.

Statistical analysis. Each experiment was repeated three times 
and the data are expressed as the mean ± standard deviation. 
IBM SPSS Statistics software (version 20.0; IBM Corp.) was 
used to perform statistical analyses. A paired Student's t‑test 
was used to analyze the difference between FOXP3 mRNA 
expression in neutrophils. An unpaired Student's t‑test was 
used to analyze the immunofluorescence results of FOXP3 
protein expression in neutrophils. Cell proliferation assays 
were analyzed using a one‑way ANOVA with a post‑hoc 
Tukey's. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Neutrophils and IL‑8 promote SCC‑9 cell proliferation. 
OSCC cells secrete IL‑8, and high concentrations of IL‑8 
recruit neutrophils to the cancer microenvironment; thus, 
there are large quantities of IL‑8 and neutrophils in the tumor 
microenvironment (3,4). To investigate the effects of IL‑8 and 
neutrophils on the proliferation of OSCC cells, neutrophils 
and OSCC cells were co‑cultured and treated with IL‑8 for 
24 h, and SCC‑9 cell proliferation was assessed using a CCK‑8 
assay. The results revealed that IL‑8 and neutrophils exerted a 
synergistic effect on SCC‑9 cells and together promoted their 
proliferation (P<0.001; Fig. 1).

It has previously been shown that neutrophils adhere to the 
surface of epithelial cells through adhesion molecules (28), and 
IL‑8 promotes the adhesion of neutrophils by upregulating the 
expression of these adhesion molecules (29). To confirm that the 
increased proliferation in the SCC‑9/neutrophil/IL‑8 group was 
not due to increased adhesion promoted by neutrophils, after 
washing, neutrophils were detected by immunofluorescence 
staining using an MPO antibody, which has been used as a 
neutrophil‑specific antibody in previous studies (30,31). The 
results confirmed that there were no adherent neutrophils on the 
surface of SCC‑9 cells in 96‑well plates after washing (Fig. S1).

IL‑8 downregulates FOXP3 mRNA expression in neutrophils. 
Various studies have demonstrated that FOXP3 is expressed in 
a variety of tumor cells and is involved in tumor cell prolifera-
tion and apoptosis (11,12,32). To test if IL‑8 induces a change 
in FOXP3 expression in neutrophils, human peripheral blood 
neutrophils were stimulated with recombinant human IL‑8 
and the mRNA expression levels of FOXP3 in neutrophils 
were evaluated. The results indicated that IL‑8 downregulated 
FOXP3 mRNA expression in neutrophils (P=0.005; Fig. 2).

Neutrophils and an inhibitor of FOXP3 promote proliferation 
of SCC‑9 cells. To investigate the effect of FOXP3 in neutro-
phils on the proliferation of SCC‑9 cells, neutrophils and 
OSCC cells were co‑cultured and treated with P60, a specific 
peptide inhibitor of FOXP3, for 24 h. Subsequently, SCC‑9 
cell proliferation was assessed using a CCK‑8 assay. The 
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results revealed that P60 treatment of co‑cultured neutrophils 
and SCC‑9 cells increased the proliferation of SCC‑9 cells in 
compared with SCC‑9 cells alone (P=0.004; Fig. 3), suggesting 
that a combination of neutrophils and an inhibitor of FOXP3 
together promote the proliferation of SCC‑9 cells.

Protein expression levels of FOXP3 in neutrophils in the 
OSCC tumor microenvironment. To investigate the associa-
tion of FOXP3 in neutrophils and OSCC in vivo, cancer tissue 
samples from 23 patients were stained by immunofluorescence 
to detect FOXP3 expression in neutrophils infiltrating the 
tumor microenvironment. MPO was also stained as marker of 
neutrophils (30,31). The results revealed that FOXP3 protein 
expression in neutrophils was significantly lower in patients 
with stage IV cancer compared with those with stage II 
(P=0.001) and III (P=0.008) (Fig. 4).

Protein expression levels of IL‑8 in the OSCC tumor micro‑
environment. Fujita et al (33) reported that high expression 
of IL‑8 in oral cancer is associated with poor prognosis, 
suggesting that IL‑8 may promote proliferation and metastasis 
of oral cancer cells. The aforementioned in vitro co‑culture 
experimental results revealed that IL‑8 downregulated 
FOXP3 mRNA expression in neutrophils, and neutrophils 
treated with inhibitor of FOXP3 enhanced proliferation of 
SCC‑9 cells. To investigate if IL‑8 protein expression is also 
altered in vivo, immunofluorescence was conducted to detect 
IL‑8 protein expression in cancer and paracarcinoma tissue 
samples from patients with OSCC. The results demonstrated 
that IL‑8 protein was expressed in both OSCC tissues and 
paracarcinoma tissues (Fig. 5).

Discussion

Recent studies (34-36) suggest that FOXP3 is expressed in 
a variety of tumor cells and its protumor or antitumor roles 
are a controversial topic. Hinz et al  (11) demonstrated that 
T‑cell proliferation is observed after specific silencing of 
FOXP3 expression with small interfering RNAs in pancreatic 
cancer cells. This result indicates that pancreatic cancer cells 
expressing FOXP3 inhibit T‑cell proliferation, and thereby 
promote tumor progression. However, FOXP3 also performs 
a tumor suppressor function in breast cancer cells  (37,38). 
Zhang et al (37) reported that FOXP3 is expressed in breast 
cancer cells and is negatively associated with breast cancer 
metastasis. Furthermore, a previous study demonstrated 
that FOXP3 inhibits adhesion and invasiveness of breast 
cancer cells by downregulating CD44 (37). To date, however, 
FOXP3 expression and its role in neutrophils, to the best of 
our knowledge, have not been reported on. The present study 
demonstrated that IL‑8 downregulated the expression of 
FOXP3 in neutrophils, and following P60 inhibition of FOXP3, 
neutrophils promoted the proliferation of SCC‑9 cells. A study 
by Casares et al (24) reported that P60 enters the cells, down-
regulates FOXP3 nuclear translocation and inhibits the function 
of FOXP3 protein in vitro. It has been identified that P60 alone 

Figure 1. Neutrophils and IL‑8 promote SCC‑9 cell proliferation in vitro. 
SCC‑9 cell were co‑cultured with neutrophils and treated with IL‑8 
(100 ng/ml) for 24 h. Neutrophils and IL‑8 increased SCC‑9 cell proliferation 
compared with SCC‑9 cells alone. **P<0.01, ***P<0.001. The experiment was 
independently repeated three times. Data are presented as the mean ± SD. 
**P<0.01, ***P<0.001. IL‑8, interleukin 8; OD, optical density.

Figure 3. Neutrophils and inhibition of FOXP3 promote proliferation of 
SCC‑9 cells. SCC‑9 cells were co‑cultured with neutrophils and treated with 
P60, an inhibitor of FOXP3 (100 µM) for 24 h. The experiment was indepen-
dently repeated three times. Data are presented as the mean ± SD. *P<0.05, 
**P<0.01. OD, optical density; FOXP3, forkhead box P3; P60, peptide P60.

Figure 2. IL‑8 downregulates FOXP3 expression in neutrophils. Neutrophils 
were treated with IL‑8 (100 ng/ml) or PBS for 12 h. FOXP3 mRNA expres-
sion was detected by qPCR, and GAPDH served as an internal control. The 
experiment was independently repeated three times. Data are presented as 
the mean ± SD. **P<0.01. FOXP3, forkhead box P3; IL‑8, interleukin 8.
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Figure 4. FOXP3 protein expression in neutrophils in the oral squamous cell carcinoma tumor microenvironment. (A) FOXP3 (green) and MPO (red) expres-
sion in 23 cancer tissue samples at stage II, III and IV was detected by immunofluorescence. Nuclei (blue) were counterstained with DAPI. Scale bar, 20 µm. 
(B) FOXP3 expression was quantified based on IOD of fluorescence staining. Data are presented as the mean ± SD. **P<0.01. FOXP3, forkhead box P3; MPO, 
myeloperoxidase; IOD, integrated optical density.

Figure 5. IL‑8 protein expression in oral squamous cell carcinoma and paracarcinoma tissue samples. IL‑8 protein expression (red) was detected by immuno-
fluorescence. Nuclei (blue) were counterstained with DAPI. Scale bar, 20 µm. IL‑8, interleukin 8.
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does not alter effector T cell or Treg proliferation in response 
to stimulation in vitro (24). In the present study, SCC‑9 cells 
were treated with P60 for 24 h, and there was no statistically 
significant difference identified in the proliferation of SCC‑9 
cells compared with the control group (P=0.656). Therefore, 
P60 alone may not affect the proliferation of SCC‑9 cells. The 
results revealed that IL‑8 downregulated FOXP3 expression in 
neutrophils, but its specific signaling pathway was not examined 
in the present study. According to other studies, IL‑6 and IL‑27 
inhibit FOXP3 expression by activating the STAT3 signaling 
pathway (39,40). Furthermore, a study by Qu et al (41) revealed 
that IL‑8 increased STAT3 phosphorylation, whereas knockout 
of IL‑8 reduced phosphorylation of STAT3, suggesting that 
IL‑8 may also suppress FOXP3 expression in neutrophils by 
activating the STAT3 signaling pathway.

TANs serve an important role in the progression of tumor 
development. For example, neutrophil‑released neutrophil 
elastase (NE) causes a release of growth factors, thereby 
promoting tumor cell proliferation  (6). NE also promotes 
tumor cell proliferation by degrading insulin receptor substrate 
1 (42). In addition, in the tumor microenvironment, neutrophils 
promote the proliferation of tumor cells by releasing neutrophil 
extracellular traps (NETs) into the microenvironment (43,44). 
The present study revealed that IL‑8 downregulated FOXP3 
expression in neutrophils, and IL‑8 treatment combined with 
co‑culturing with neutrophils promoted the proliferation 
of SCC‑9 cells. In addition, the present study demonstrated 
that the expression of FOXP3 in neutrophils in samples from 
patients with stage IV tumors was lower compared with that in 
stage III and II patients. This suggested that downregulation of 
FOXP3 in neutrophils in the cancer microenvironment may be 
associated with progression of OSCC. Chung et al (45) demon-
strated that in Foxp3‑deficient mice, the microglia produced 
increased quantities of reactive oxygen species (ROS) when 
treated with lipopolysaccharide compared with the wild‑type 
mice. FOXP3 negatively regulated the production of ROS by 
activating NF‑κB (45). A previous study on NETs suggested 
that increased levels of ROS in neutrophils can promote the 
formation and release of NETs (46). Considering the results of 
these previous studies, it was hypothesized that IL‑8 recruited 
neutrophils from the blood vessel to the local tumor microenvi-
ronment and downregulated FOXP3 expression in neutrophils. 
The downregulation of FOXP3 expression in neutrophils may 
subsequently lead to increased production of ROS in neutro-
phils, and potentially promote the production and release of 
NETs, stimulating the proliferation of OSCC cells.

In summary, IL‑8 in the tumor microenvironment may 
recruit neutrophils, and downregulation of FOXP3 in neutro-
phils by IL‑8 may promote the progression of OSCC. These 
finding expands the range of known mechanisms through 
which neutrophils promote proliferation of tumor cells and 
thus, tumor progression. However, additional studies are 
required to fully elucidate the underlying mechanisms.
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