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Abstract: This study applied a dual-agent, 13C-pyruvate and 13C-urea, hyperpolarized 13C magnetic
resonance spectroscopic imaging (MRSI) and multi-parametric (mp) 1H magnetic resonance imaging
(MRI) approach in the transgenic adenocarcinoma of mouse prostate (TRAMP) model to investigate
changes in tumor perfusion and lactate metabolism during prostate cancer development, progression
and metastases, and after lactate dehydrogenase-A (LDHA) knock-out. An increased Warburg effect,
as measured by an elevated hyperpolarized (HP) Lactate/Pyruvate (Lac/Pyr) ratio, and associated
Ldha expression and LDH activity were significantly higher in high- versus low-grade TRAMP tumors
and normal prostates. The hypoxic tumor microenvironment in high-grade tumors, as measured
by significantly decreased HP 13C-urea perfusion and increased PIM staining, played a key role in
increasing lactate production through increased Hif1α and then Ldha expression. Increased lactate
induced Mct4 expression and an acidic tumor microenvironment that provided a potential mechanism
for the observed high rate of lymph node (86%) and liver (33%) metastases. The Ldha knockdown
in the triple-transgenic mouse model of prostate cancer resulted in a significant reduction in HP
Lac/Pyr, which preceded a reduction in tumor volume or apparent water diffusion coefficient (ADC).
The Ldha gene knockdown significantly reduced primary tumor growth and reduced lymph node
and visceral metastases. These data suggested a metabolic transformation from low- to high-grade
prostate cancer including an increased Warburg effect, decreased perfusion, and increased metastatic
potential. Moreover, these data suggested that LDH activity and lactate are required for tumor
progression. The lactate metabolism changes during prostate cancer provided the motivation
for applying hyperpolarized 13C MRSI to detect aggressive disease at diagnosis and predict early
therapeutic response.
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1. Introduction

Although a majority of newly diagnosed prostate cancer patients (164,690 men) will have indolent,
non-life threatening disease, an estimated 29,430 men died of metastatic prostate cancer in the United
States alone in 2018 [1]. While those with indolent tumors can be managed with active surveillance,
approximately 30% of these patients will be reclassified as higher risk for disease progression, requiring
definitive therapy [2,3]. There is an unmet clinical need for an accurate, non-invasive imaging
method to detect aggressive, clinically significant cancer early in these patients so timely treatment
of this potentially deadly disease can be initiated. There is growing evidence that the ability of
cancer cells to invade adjacent normal tissues and locally grow and metastasize to distant sites is
significantly impacted by changes in tumor cellular metabolism and environmental conditions such as
reduced perfusion and hypoxia [4]. Specifically, it has been hypothesized that the Warburg effect, an
up-regulation of aerobic glycolysis and production of lactate, the result of the lactate dehydrogenase
(LDH) reaction, is an adaptation of cancer cells that aids in survival, growth, and metastasis [4]. Lactate
dehydrogenase-A (LDHA), a protein subunit of the highly lactate-favoring LDH isoform muscle-type 5
(LDH-5), catalyzes the reduction of pyruvate to lactate and is overexpressed in many cancers, including
prostate tumors [5,6]. Aerobic glycolysis is increased in prostate cancer due in part to genomic loss of
the PTEN (phosphatase and tensin homolog) locus, leading to activation of the PI3K/AKT pathway, and
8q amplification, including of the Myc gene, which occurs in up to 70% and 30% of prostate cancers,
respectively [7]. Also, tumor microenvironment factors, such as reduced perfusion and hypoxia can
further increase aerobic glycolysis [4]. The oxygen-sensitive Hif-1α transcription factor is up-regulated
in regions of tumor hypoxia and increases aerobic glycolysis by increasing the expression and activity
of key enzymes in the glycolytic pathway, such as LDHA as well as monocarboxylate transporters
(MCT1 and 4) responsible for the transport of pyruvate and lactate in and out of the cell [8,9].

Tumor cell export of lactic and other acids, combined with poor tumor perfusion, results in an
acidic extracellular pH in tumors compared with normal tissue under physiologic conditions [10].
The resulting acidic environment promotes cancer aggressiveness and metastasis by facilitating a
degradation of the extracellular matrix by proteinases [11,12], increasing angiogenesis through the
release of VEGF (vascular endothelial growth factor) [13], and inhibiting the immune response to
tumor antigens [14]. Taken together, these observations suggest that interventions to reverse the
Warburg effect, such as the inhibition of LDHA, may harm cancer cells by depriving them of these
survival mechanisms [15,16]. Normal cells should be largely unharmed by such therapies as they
have a much lower reliance on the Warburg effect. In this study, we applied a metabolic imaging
approach with a new dual-agent hyperpolarized (HP) 13C magnetic resonance imaging (MRI) exam
to investigate the interplay between prostate cancer metabolism and the microenvironment and
to elucidate the functional role of LDHA in prostate cancer progression and metastases using the
transgenic adenocarcinoma of mouse prostate (TRAMP) model.

The TRAMP is a transgenic animal model in which tumor development is targeted specifically
to the murine prostate as a consequence of the overexpression of the SV40 T antigen. Histologically,
TRAMP mice develop a prostatic intraepithelial neoplasia (PIN) by 8–12 weeks of age that progresses
to adenocarcinoma with distant metastases (predominately lymph node metastases) by 24–30 weeks of
age. Tumors progress from androgen dependence to independence, and essentially all males develop
tumors [17]. Of particular importance to these studies is that changes in TRAMP prostate and tumor
metabolism and progression mimic the human disease [9,18]. Moreover, we have generated and
utilized in this study an inducible cre-lox mouse model of inducible Ldha knock-out (Cretm-LDHAfl/fl;
TRAMP) to study the consequences of inhibiting the Warburg effect on prostate cancer metabolism,
progression and metastases for the first time.

Hyperpolarized 13C magnetic resonance spectroscopic imaging (MRSI) is a powerful new
metabolic imaging method which uses specialized instrumentation to provide signal enhancements
of over 10,000-fold for 13C magnetic resonance imaging and spectroscopy using enriched, safe,
endogenous, non-radioactive compounds [18]. While prostate cancer is often inadequately evaluated
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using FDG-PET (fluorodeoxyglucose-positron emission tomography; which assesses glucose uptake
and phosphorylation [19,20]), the HP 13C MRSI detects down-stream metabolism, specifically the
metabolic flux of HP 13C-pyruvate to lactate catalyzed by lactate dehydrogenase. Another important
feature of the HP 13C MRSI is that it encodes chemical as well as spatial information, thereby providing
the potential for using multiple hyperpolarized 13C-labeled probes to detect several metabolic and/or
physiologic processes simultaneously after the injection of a single bolus [21]. HP 13C-urea is not
taken up and metabolized by most mammalian tissues and prior publications have demonstrated that
hyperpolarized 13C-urea provides an assessment of tumor perfusion in animal cancer models [21,22].
Methods for co-polarizing 13C-pyruvate and 13C-urea have been developed, and the two agents
successfully polarized, and injected in pre-clinical models to simultaneously measure perfusion and
metabolism [21,22].

The goal of this study was to use a dual-agent, 13C-pyruvate and 13C-urea, HP 13C MRSI approach
to investigate changes in tumor perfusion and metabolism during prostate cancer development,
progression from low- to high-grade disease and metastases, and after Ldha knock-out in order to
assess the functional importance of lactate metabolism in this common and often lethal cancer.

2. Materials and Methods

2.1. Animal Protocol and Handling

All animal studies were conducted in accordance with the policies of the Institutional Animal Care
and Use Committee (IACUC) at the University of California, San Francisco (UCSF) (AN170092-01B,
approved on 11 September 2017) and Beth Israel Deaconess Medical Center (BIDMC) (040-2016,
approved on 18 August 2018). The transgenic mouse model of prostate cancer (TRAMP) was supplied
by Roswell Park Cancer Institute (Buffalo, NY, USA). The TRAMP mice utilized in the prostate
cancer development and progression portions of this study were generated in the C57BL6/FVB
strain background and prepared as previously described [17], and were 17–36 weeks of age. These
TRAMP mice were supplied by Roswell Park Cancer Institute (Buffalo, NY, USA). In the TRAMP
model there is not a specific time or age at which individual mice develop tumors nor a specific time
or age at which tumors progress from low to high grade. In this respect, the heterogeneity in the
TRAMP model mimics what occurs in the human disease. Therefore, mice were screened using 1H
MRI to select mice with normal prostates and low- and high-grade disease for subsequent study. To
study metabolic and perfusion changes tumor perfusion during prostate cancer development and
progression, we performed 1H (T2 wt. anatomic imaging and diffusion-weighted) MRI and HP 13C
MRSI (HP 13C-pyruvate and 13C-urea) on normal mouse prostates (n = 4), low-grade TRAMP tumors
(n = 9) and high-grade TRAMP tumors (n = 11) prior to euthanization and subsequent pathologic,
immunohistochemistry (IHC) and mRNA expression and enzyme activity analyses. Tumor grade was
determined as described in a later section.

Triple transgenic mice bearing the oncogenic T-antigens under the control of the rodent probasin
promoter, the cre recombinase, and floxed murine Ldha genes were generated by crossing TRAMP
mice in the C57BL/6 strain background with Cretm-LDHAfl/fl mice (Figure 1B, left). Administration of
intraperitoneal tamoxifen allowed temporal control of the deletion of the LDHA gene. We utilized this
genetically engineered model to carry out HP 13C MRSI studies according to the schema outlined in
Figure 1A. Baseline TRAMP tumors were selected based on evidence of an adequately sized tumor for
follow-up 1H/HP 13C MR imaging studies based on weekly 1H MRI screening exams. The volumes
of TRAMP tumors used in this study should have reflected a combination of low- and high-grade
disease. However, since this was a longitudinal study in which tumor bearing TRAMP mice went on
for Ldha-knockout, a pathologic assessment of low- and high-grade tumors at baseline was not possible.
Subsequently, a baseline 1H/HP 13C MR imaging study was performed, in which T2-weighted,
diffusion-weighted, and HP 13C MRSI (HP [1-13C] pyruvate and [13C] urea) data were collected. Mice
(n = 17) were then administered a 4–5-day course of tamoxifen (80–100 µL of 33.3 mg/mL solution)
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and MRI studies were repeated at approximately 1-week intervals for 2–3 weeks. There was a 90%
knockdown of LDHA by western blot analyses in the TRAMP mouse by 7 days after administration
(Figure S1). Control animals (n = 8) were administered vehicle only (corn oil without tamoxifen).
After imaging mice were euthanized and subsequent pathological, histopathological, IHC and mRNA
expression and enzyme activity analyses were performed.
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2.2. Hyperpolarization of 13C-Labelled Compounds

A HyperSense™ DNP polarizer (Oxford Instruments, Abingdon, UK) was used to polarize
the 13C probes as described previously [21]. Twenty-four micro liters of neat [1-13C]
pyruvic acid (Isotec Stable Isotopes, Miamisburg, OH, USA) with 16.5 mM trityl radical
[tris(8-carboxy-2,2,6,6,-tetra(methoxyethyl)benzo[1,2-d:4,5-d’]bis(1,3)dithiole-4-yl)methyl sodium salt]
(GE healthcare, Waukesha, WI, USA) and 1.5 mM Dotarem® (Guerbet) and 55 µL [13C] urea (6.4 M in
glycerol, (Isotec Stable Isotopes, Miamisburg, OH, USA) with 17.5 mM trityl radical OX63 (Oxford
Instruments) and 0.2 mM Dotarem® were co-polarized. Optimum polarization was achieved by
adding the urea and pyruvic acid solutions to a sample cup separately and freezing them rapidly in a
liquid nitrogen bath to form two separate glass layers, as previously described [21]. This was followed
by dissolution in 4.5 mL of buffer containing 40 mM Tris, 80 mM NaOH, and 0.3 mM Na2EDTA.
The resulting dissolution mixture contained 80 mM [1-13C] pyruvic acid and 74 mM [13C] urea with
average polarizations of 24 ± 5% and 18 ± 6%, respectively, and an average pH of 7.0 ± 0.5.

2.3. 1H/HP 13C MR Imaging Studies

All MRI experiments were done using a Varian 14.1T imaging spectrometer with a 98 mm bore
vertical magnet and controlled by a direct-drive console (Agilent Technologies, Santa Clara, CA,
USA). The system was equipped with 55 mm 100 G/cm gradients, a quadrature 40 mm proton
coil (Agilent Inc) used for obtaining proton images, and a 40 mm diameter proton/carbon dual
tuned RF (radiofrequency) coil (M2M Imaging) used for HP 13C MRSI in the same imaging session
without altering the animal position. At the time of the MRI experiment, the mice were cannulated
using a 32-gauge IV catheter in the lateral tail vein and anesthetized with 1–1.5% isoflurane/100%
oxygen at a rate of 1 L/min on a heated water bed to maintain physiological body temperature and
positioned vertically in the magnet using a custom animal positioning apparatus. Their respiration
was continuously monitored using an animal monitoring system (SA Instruments, Stony Brook, NY,
USA). For 1H MRI studies, data acquisition was triggered with respiration to reduce motion artifacts.
For the tumor development and progression studies, 1H/HP 13C MRSI studies were performed at a
single time-point, while for the Ldha-knockout, the imaging experiments were performed at baseline
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and, following the administration of tamoxifen or vehicle (corn oil), repeated at ~1-week intervals for
2 to 3 weeks. TRAMP mice were humanely euthanized and dissected and tissues harvested within 6 h
of the MRI study. To measure tumor hypoxia, Pimonidazole (PIM; HypoxyprobeTM, Burlington, MA,
USA) solution was injected approximately 45 min prior to euthanasia at 60 mg/kg.

2.3.1. 1H MRI

Respiratory-gated T2-weighted 1H anatomical images were acquired using a spin-echo pulse
sequence (Axial: FOV = 40 × 40 mm, 256 × 256 matrix, slice thickness = 1 mm with 0.25 mm gap), with
a total of 24 slices covering the entire tumor with a repetition time of 1.6 s and an echo time of 20 ms
resulting in a total acquisition time of ≈7 min. Diffusion weighted imaging (DWI) was performed
using a spin-echo sequence with the diffusion-sensitizing gradient applied along the y-axis; and a
TE/TR = 20/1600 ms, matrix = 128 × 128 zero-filled to 256 × 256, FOV = 40 × 40 mm2, slice thickness
= 1 mm with 0.25 mm gap, 18 slices, gradient duration = 2 ms, delay between gradients = 13 ms, and b
values of with b-values of 25, 180, 323, 508 s/mm2). Water apparent diffusion coefficient (ADC) maps
were calculated using the monoexponential function ( S(b)

S0
= e(−b×ADC)) in VNMRJ 3.1A software

(Varian, Inc., Palo Alto, CA, USA).

2.3.2. HP 13C MRSI

Single time-point, frequency-specific 13C 3D imaging was performed 35 s after an injection of
co-polarized [1-13C] pyruvate and 13C-urea was performed on the mice using a gradient spin-echo
(GRASE) sequence [23] with multiple 180◦ refocusing pulses during the echo train to minimize T2* (*:
off-frequency transverse spin relaxation) effects. The 35 s delay was based on when maximum
hyperpolarized lactate production was observed using dynamic slab-selective 13C spectroscopy.
The 90◦ and 180◦ pulses used in the sequence were chemical shift selective pulses (6 ms SLR pulse)
designed to excite only resonances of interest. Resonances of [1-13C] lactate, [1-13C] alanine, [1-13C]
pyruvate, and [13C] urea were excited and imaged sequentially (Figure 2). Phase encoded steps
were kept at 16 × 12 × 12 and a 40 × 40 × 40 mm3 FOV, 2.5 × 3.3 × 3.3 mm3 resolution and scan
time of 153 ms per image. The 13C data were zero-filled to 32 × 32 × 32 and the magnitude images
were reconstructed to a 1.25 × 1.25 × 1.25 mm3 resolution. 13C data were acquired in the following
order: (1) a 2-degree flip angle slab-selective spectrum, (2) the 3D images of pyruvate, lactate, and
urea using a 3D GRASE sequence and a 90-degree flip angle spectrum. The spectra served as a
supplemental verification of proper polarization levels, sufficient spectral resolution of the HP 13C
labeled metabolites, and successful injections.
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Figure 2. (a) (top) Representative apparent water diffusion coefficient images (ADC, outlined in red)
overlaid on corresponding T2-weighted anatomic images of the normal murine prostate, low- and
high-grade prostate cancer. (a) (bottom) Plots of the distribution of water ADC values across the normal
murine prostate and low- and high-grade TRAMP tumors. (b) Bar graph of the mean ± sdev ADC
values for normal prostate, high- and low-grade cancer. * denotes p < 0.05, *** for p < 0.0005.
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2.4. Histopathologic Analysis

An experienced murine pathologist performed dissection after reviewing the HP 13C data and the
T2-weighted anatomical images. During the dissection process, digital images were taken as a reference
for localization and registration of tumor specimens. The excised tissue was aliquoted for histochemical
processing, gene expression and activity analyses. Formalin-fixed, paraffin-embedded tissue sections
were stained by H&E (hematoxylin and eosin) or immunohistochemically with anti-Ki-67 (DAKO,
Carpinteria CA, USA) or anti-PIM (HP2-200, Hypoxyprobe, HPI, Burlington MA, USA) antibodies. For
primary tumors, the histological index, as defined in Albers et al., was used to pathologically define
high- versus low-grade TRAMP tumors in this study [24]. The histologic index was calculated based
on the weighted percentages of tumor differentiation (normal, well-differentiated, moderately well
differentiated and poorly differentiated) from standard H&E staining. The histologic index ranged
between 0 and 3, where 0 indicated that 100% of the tissue was normal and 3 indicated that 100% of the
tissue was poorly differentiated; low-grade tumors had an index <2 and high-grade had an index ≥ 2.

The prevalence of metastases in control TRAMP (Ldha-intact) and in Ldha-knockout TRAMP, was
calculated by assessing individual animals for either the presence or absence of metastatic disease in
regional periaortic lymph nodes (PALN), more distant perirenal lymph nodes (PRLN), and visceral
metastases (liver and lung), via close visual inspection and photography, at the time of dissection.

2.5. mRNA Expression and Enzyme Activity Analyses

Total RNA was extracted and purified from freshly frozen TRAMP tumor tissues using
RNeasy Kits (Qiagen, Limburg, Netherlands). Total RNA was measured using an RNA6000 Kit
(Agilent, Santa Clara, CA, USA). The RNA extract was then subjected to RQ1 RNAse-free DNAse
(Promega Manufacturing, Madison, WI, USA) to digest in-sample gDNA. cDNA was synthesized by
reverse transcription using a qScript DNA Synthesis Kit (Quanta Biosciences, Gaithersburg, MD,
USA). Quantitative qRT-PCR was then performed to acquire the threshold cycle CT value (ABI
7900HT, Applied Biosystems, Carlsbad, CA, USA). Primers (TaqMan, Life Technologies, Carlsbad,
CA, USA) were selected for quantitative amplification of the genes: hypoxia-inducible factor
Hif1α, lactate dehydrogenase subunits (Ldha, Ldhb), monocarboxylate transporters (Mct1, Mct4) and
vascular endothelial growth factor (Vegf ) relative to the housekeeping gene hypoxanthine-guanine
phosphoribosyltransferase (Hprt).

LDH activity was measured spectrophotometrically (Infinite M200, Tecan, Switzerland) as
described previously [25]. Homogenized tumor tissue incubated with serial dilutions of pyruvate
and excess co-factors were measured at 340 nm to observe the linear decrease in absorbance due to
NADH oxidation. The maximum velocity (Vm) and Michaelis–Menten constant (Km) and Vmax were
calculated, and the activity was normalized to total protein concentration (Quick Start Bradford Protein
Assay, Bio-Rad, Hercules, CA, USA).

2.6. Data Analyses

Imaging data analyses were performed using custom software employing the commercial IDL
(Exelis Visual Information Solutions, Inc., Boulder, CO, USA) and MATLAB (Mathworks, Nattick,
MA, USA) platforms, and the data was displayed using the open-source SIVIC package [26]. Tumor
volumes were calculated from regions-of-interest (ROI’s) drawn on all T2 anatomic image slices
covering the tumor by an experienced murine pathologist (RB). These ROI’s were then overlaid on the
corresponding HP metabolite images [1-13C] lactate, [1-13C] alanine, [1-13C] pyruvate, [13C] urea and
ADC maps to derive mean whole tumor Lactate/Pyruvate (Lac/Pyr), Alanine/Pyruvate (Ala/Pyr)
and Urea/normalized to kidney Urea values, as well as ADC values. Only voxels with metabolite
signal-to-noise ratios ≥ 3 were considered in the analyses. Pixels on the boundary of the prostate or
prostate tumor were not considered in order to reduce partial volume effects, utilizing only voxels that
were 75% within the tumor.
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2.7. Statistical Analysis

Data were presented as mean ± standard error of the mean (SEM). Statistical analysis was
performed using PRISM 7 (GraphPad, La Jolla, CA, USA). One-way ANOVA was used with
Tukey’s post hoc analysis for multiple comparisons. All p-values reported are corrected for multiple
comparisons with an α = 0.05; * denotes p < 0.05, ** for p < 0.005, *** for p < 0.0005 and **** for p < 0.0001.

3. Results

3.1. Anatomical Changes with TRAMP Tumor Evolution and Progression

Representative T2 weighted spin-echo images (Figure 3a) demonstrated both the T2-weighted
contrast and size difference when progressing from the normal prostate (0.04 ± 0.01 cc) to low- (1.20
± 0.6 cc) and high-grade tumors (3.39 ± 0.80 cc). Normal murine prostate histology was highly
glandular with normal secretory epithelial cells lining glands and stromal tissue supporting the glands
(Figure 3b). Low-grade TRAMP tumors demonstrated a loss of simple glandular morphology with
the acini being filled by increased numbers of transformed epithelial cells and tumors composed
primarily of well-differentiated and moderately well-differentiated malignant cells (Figure 3b,c). In
contrast, high-grade tumors exhibited sheets of poorly-differentiated cells. Correspondingly, there was
an overall decrease in T2 signal intensity in regions of low-grade disease as well as regions of higher
T2 signal intensity associated with residual normal prostate tissue. In high-grade tumors, the entire
tumor was associated with low T2 signal intensity (Figure 3a).
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Figure 3. (a) Representative T2-weighted anatomic images of the normal murine prostate, low-grade
and high-grade prostate cancer. (b) Immunochemical staining of excised representative normal murine
prostate and low- and high-grade transgenic mouse model of prostate cancer (TRAMP) tumors;
H&E section, Ki-67 staining, and Pimonidazole (PIM) staining (200× magnification). (c) Bar graph
summarizing the mean ± sdev % positively poorly differentiated, Ki-67, and PIM stained cells of
excised representative normal murine prostate and low- and high-grade TRAMP tumors. * denotes
p < 0.05, ** for p < 0.005, **** for p < 0.0001.
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While normal prostate was non-proliferative and normoxic, there was a significant progression
in both proliferation (Figure 3c, Ki-67) and hypoxia (Figure 3c, PIM) from normal to low-grade and
between low- and high-grade TRAMP tumors. As shown in Figure 4b,c, cells in high-grade tumors
were almost all rapidly proliferating (88 ± 7% of tumor positive for Ki-67) and 19 ± 6% of the tumor
was hypoxic (positive for PIM) as compared to low-grade tumors (22 ± 6% positive for Ki-67, 7 ± 5%
for PIM) and normal TRAMP prostates (0.3 ± 0.2% positive for Ki-67, 0% positive for PIM).

The apparent water diffusion coefficient significantly decreased with the development of prostate
cancer, from 1.5 ± 0.2 × 10−3 mm2/s in the normal mouse prostate to 1.1 ± 0.2 × 10−3 mm2/s
in low-grade cancer (p < 0.05), and to 0.88 ± 0.16 × 10−3 mm2/s in high-grade cancer (p < 0.005)
(Figure 2). In the normal prostate, the water ADC had close to a Gaussian distribution, meanwhile in
low-grade disease, there was a non-Gaussian ADC distribution consistent with regions of normal and
malignant ADC values, and consistent with the histopathological findings. In high-grade tumors most
of the ADC values were below 1 × 10−3 mm2/s, consistent with the histopathological findings that
the tumor primarily consisted of sheets of poorly-differentiated cancer cells with a complete loss of
acinar morphology.

3.2. Changes in Perfusion and Lactate Metabolism with Prostate Cancer Evolution and Progression

High spatial resolution HP 13C MRSI data were acquired using the 3D GRASE approach (Figure 4a)
from four normal murine prostates, nine low-grade TRAMP tumors and eleven high-grade TRAMP
tumors, 35s after an injection of co-polarized [1-13C] pyruvate and 13C-urea. Figure 4b shows
representative HP 13C Lac/Pyr and 13C-urea images overlaid on the corresponding T2-weighted
anatomic images for the normal murine prostate, and low- and high-grade cancer. Hyperpolarized
Lac/Pyr ratio increased with the development of prostate cancer, from 0.39 ± 0.04 in the normal
prostate to 0.84 ± 0.12, and 2.16 ± 0.32 in low- and high-grade disease, respectively (Figure 4c). While
the increase in the Lac/Pyr ratio between the normal prostate and low-grade cancer was non-significant
(p = 0.2), there was a significant (p < 0.0001) 5.5-fold increase in HP Lac/Pyr for high-grade disease
relative to normal, and a significant (p < 0.0005) 2.4 fold increase between low- and high-grade cancer.
There was a non-significant increase in HP 13C urea/renal urea in low-grade cancer (0.87 ± 0.18)
relative to the normal prostate (0.66 ± 0.03) with perfusion significantly (p < 0.05) decreasing in
high-grade cancer (0.50 ± 0.20). The Lac/Urea ratio did not change between normal and low-grade
cancer, but significantly increased 1.8 fold between low- and high-grade cancer (Figure 4c). The increase
in HP Lac/Pyr ratio mirrored changes in LDH activity, with LDH activity non-significantly (p = 0.2)
increasing 1.6 fold between normal and low-grade cancer, and then significantly (p < 0.005) increasing
3.4 fold in high-grade cancer vs. normal and 2-fold (p < 0.05) vs. low-grade cancer (Figure 4d).

Figure 4e summarizes the expression of key transporters and enzymes associated with pyruvate
transport and metabolism (Mct1 and Mct4, Ldha and Ldhb) and of factors impacted by the hypoxic
tumor microenvironment (Hif1α and Vegf ). Interestingly, there was no significant change in expression
for any of the genes investigated between normal and low-grade prostate cancer. A key finding of
this study was that all of the genes studied were significantly elevated between low- and high-grade
prostate cancer. Mct1 and Mct4 were significantly up-regulated (Mct1: 3-fold, p < 0.005, Mct4: 20-fold,
p < 0.0001) in high- versus low-grade TRAMP tumors. Ldha was significantly increased ≈3.5-fold
(p < 0.005) and Ldhb significantly decreased by 3-fold (p < 0.005), which led to a dramatic 5-fold
increase (p < 0.0001) in the Ldha/Ldhb ratio in high- versus low-grade TRAMP tumors. Due to increased
hypoxia in the tumor microenvironment (higher PIM staining), there was also a significant 12-fold
(p < 0.0005) and 2.5-fold (p < 0.05) increase in Hif1α and Vegf expression, respectively, in high- versus
low-grade TRAMP tumors. In both low- and high-grade cancers we observed significant correlations
between Hif1α expression with Ldha (R = 0.97 for both), Mct4 (R = 0.99 and 0.94) and Vegf (R = 0.80 and
0.98). There was also a good correlation between the Lac/Urea ratio and the Hif1α and Vegf mRNA
expression (R = 0.90 and 0.83, respectively).
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Figure 4. (a) (top, left) Pulse sequence diagram of the high-spatial resolution 3D GRASE HP 13C MRSI
imaging approach used for in vivo HP 13C imaging in this study (n and m number of phase encodes
and f is the number of frequencies). (a) (top, right) Resonances of [1-13C] lactate, [1-13C] alanine [1-13C]
pyruvate, and [13C] urea were excited and imaged sequentially as shown for the 13C lactate and 13C
urea phantom. (b) Representative HP 13C Lac/Pyr and 13C-urea images overlaid on the corresponding
T2-weighted anatomic images for the normal prostate, and low- and high-grade cancer. The color scale
of the images represents the magnitude of the Lac/Pyr ratio. (c) Bar graph showing mean ± sdev
values for Lac/Pyr, Urea/kidney Urea and Lac/Urea ratio from the normal mouse prostates and low
and grade tumors studied. (d) Corresponding mean ± sdev LDH activity values. (e) Corresponding
mean ± sdev mRNA expression values of key transporters and enzymes associated with pyruvate
and lactate transport and metabolism (Mct1 and Mct4, Ldha and Ldhb) and of factors impacted by the
hypoxic tumor microenvironment (Hif1α and Vegf ). * denotes p < 0.05, ** for p < 0.005, *** for p < 0.0005.
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3.3. Changes in Lactate Metabolism with Ldha-Knockout

A total of 26 LDHA-TRAMP mice were utilized in the Ldha-knockout studies: 18 of which had
Ldha-knockout accomplished by administration of tamoxifen while the remaining 8 were administered
only vehicle to serve as controls. Figure 5 shows representative T2-weighted and overlaid HP Lac/Pyr
images from an LDHA-TRAMP knockout mouse (Figure 5a) and a vehicle control LDHA-TRAMP
mouse (Figure 5b), at baseline, 1-week and 2-week time-points following the administration of
tamoxifen (Ldha-knockout) or vehicle control (Ldha-intact). In the Ldha-knockout TRAMP there was
a visually clear decrease in the HP Lac/Pyr ratio by 1 week that further decreased by 2 weeks.
The control TRAMP, in contrast, demonstrated an increase in the HP Lac/Pyr ratio by 1 week that
remained relatively constant by 2 weeks (Figure 5a). As shown quantitatively in Figure 6a, there was
a significant (p < 0.0005) reduction in Lac/Pyr ratio at 1 and 2 weeks in Ldha-knockout mice, while
in controls there was a mean significant (p < 0.05) increase in the Lac/Pyr ratio at 1 week that did
not change by the 2 week time point. Tumor volume did not significantly change from baseline for
the Ldha-knockout mice but significantly (p < 0.05) increased for the control mice during the same
time frame (Figure 6b). Reduction in the Lac/Pyr ratio correlated with both a significant reduction
in Ldha expression (79 ± 6%, p < 0.05) and LDH activity (85 ± 3%, p < 0.005) (Figure 6c). There was
no change in the expression of the monocarboxylate transporters (Mct1 and Mct4) in Ldha-knockout
tumors, nor was there a change in HP 13C urea perfusion and expression of factors impacted by the
hypoxic tumor microenvironment (Hif1α and Vegf ). Similar to the tumor volume, the mean ADC did
not change significantly by week 1 (p = 0.08) after Ldha-knockout and remained only slightly higher
than baseline at week 2 (10%, p = 0.23).
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− weighted and overlaid HP Lac/Pyr images from an LDHA-TRAMP

knockout mouse (a) and a vehicle control LDHA-TRAMP mouse (b), at baseline, 1-week and 2-weeks
following the administration of tamoxifen (LDHA-knockout), or vehicle control (LDHA-intact). The
color scale of the images represents the magnitude of the Lac/Pyr ratio. Scale bar: 0–2 relative
Lac/Pyr ratio.
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Figure 6. (a) Graphical presentation showing the mean ± sdev % changes in the HP Lac/Pyr from
baseline of tamoxifen (LDHA-knockout), or vehicle control (LDHA-intact). (b) Corresponding mean ±
sdev % volume changes from baseline. (c) Mean ± sdev % change from control of in Ldha expression
and LDH activity in Ldha-knockout mice. (d)% prevalence of metastasis in control TRAMP to that in
Ldha-knockout mice, concentrating on several typical sites of disease spread: regional lymph nodes
(PALN), the more distant lymph nodes (PRLN), and visceral metastases (liver and lung). * denotes
p < 0.05, ** for p < 0.005, *** for p < 0.0005.

We also carried out an assessment of metastatic disease, comparing the incidence of metastasis in
control TRAMP (Ldha-intact) to that in Ldha-knockout TRAMP, concentrating on several typical sites
of disease spread: regional periaortic lymph nodes (PALN), the more distant perirenal lymph nodes
(PRLN), and visceral metastases (liver and lung). As expected, the incidences of metastases were
highest in the regional lymph nodes (100% and 77%, respectively) and progressively lower in more
distant tissues (43% and 23% in liver, respectively). We observed a reduction in metastases at all of the
sites investigated in Ldha-knockout mice relative to controls; with a significant (p < 0.05) reduction in
both the regional (PALN) and more distant (PRLN) lymph nodes (Figure 6d).

4. Discussion

In this study we used a high magnetic field (14T), high-spatial resolution, dual-agent (13C-pyruvate
and 13C-urea) HP 13C and multi-parametric (T2 and DWI) 1H MRI approach to study changes in
prostate cancer perfusion and the Warburg effect with progression from the normal murine prostate
to low- and high-grade primary prostate cancer and metastases using the TRAMP model. At 14T,
it was possible to image anatomy, water diffusion, perfusion and metabolism in the normal murine
prostate, which is only ≈ 4mm in diameter, as well as in small volume low-grade disease, which
demonstrated regions of cancer and benign prostate tissue as is observed in the human situation. This
was not possible in prior pre-clinical studies using a 3T MRI scanner [22]. T2-weighted anatomical
and diffusion-weighted MRI are the common components of multi-parametric 1H MRI prostate cancer
patient exams. Similar to human prostate cancer [27], TRAMP tumors demonstrated a decrease in
T2 signal intensity during prostate cancer development. This reduction in T2-weighted MRI image
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signal intensity is due to a loss of the normal glandular (ductal) morphology that occurs in regions of
prostate cancer in patients as well as in the TRAMP model [27].

Diffusion weighted imaging (DWI) is sensitive to the motion of water molecules at microscopic
spatial scales within biological tissues, and the apparent water diffusion coefficient (ADC) can
provide unique information about microscopic tissue compartments, as well as pathology of prostate
tissues [28]. In patients, the ADC has been shown to be lower in prostate cancer than in surrounding
benign prostate tissues, with typical ADC values ranging from 2.0 to 1.4 and 1.6 to 0.8 × 10−3 mm2/s,
respectively [29,30]. DWI has also shown promise for reflecting the pathologic grade of prostate cancer,
with lower ADC values found in higher Gleason Grade cancers; ADC decreased from 1.135 ± 0.119 to
0.976 ± 0.103 to 0.831 ± 0.087 mm2/s from patients with Gleason score 3 + 3, 3 + 4, and 4 + 3 cancers,
respectively [31]. This trend is recapitulated in the TRAMP model, with ADC significantly decreasing
from 1.5 ± 0.2 × 10−3 mm2/s in the normal mouse prostate to 1.1 ± 0.2 × 10−3 mm2/s in low-grade
cancer, and to 0.88 ± 0.16 × 10−3 mm2/s in high-grade cancer. Pathologically, there was a progression
from open glandular structures, which harbor large regions of free moving fluid in the normal prostate,
to packed sheets of dedifferentiated cells in high-grade cancer, which resulted in a significant change
in water diffusion and coincided with the measured change in ADC. Interestingly, ADC values of
low-grade TRAMP tumors demonstrated a high variance with punctuated regions of both normal
ADCs as well as regions of reduced ADC corresponding to areas of cancer with surrounding benign
prostate tissues as is typically observed in prostate cancer patients.

An important finding of this study was the significant increase in the Warburg effect in high-grade
prostate cancer. The Warburg effect, as measured by the tumor HP Lac/Pyr ratio (Figure 4c) and LDH
activity (Figure 4d), went up in low-grade prostate cancer relative to the normal prostate, although this
increase was not significant. However, there was a large and significant increase in the HP Lac/Pyr
ratio (Figure 4c) and LDH activity (Figure 4d) in high- versus low-grade disease and the normal
prostate. This finding suggested that the measurement of the HP Lac/Pyr ratio may provide a means
of discriminating high- from low-grade disease at the time of biopsy diagnosis of prostate cancer,
thereby helping to reduce over-treatment of low-risk disease but directing those with aggressive disease
to curative treatment [2,3]. The increase in HP Lac/Pyr in prostate cancer in this pre-clinical study
is consistent with prior publications investigating the steady lactate concentration in prostate cancer
patient biopsies [32], HP 13C MRSI studies of the TRAMP model [22,24], and a HP 13C MRSI study of
patient derived living prostate tissue slices [9]. The 2.4-fold increase in the HP Lac/Pyr ratio between
low- and high-grade cancer observed in this study mirrored the 2.9-fold increase in HP [1-13C] pyruvate
to HP [1-13C] lactate flux (kPL) between low- and high-grade cancer observed in a prior 3T HP 13C
MRSI study using the TRAMP model [22]. However, a comparison between normal murine prostate
and low-grade disease was not made in this prior publication and an important new finding of this
study was the lack of significant increase in the HP Lac/Pyr ratio (i.e., the Warburg effect) in low-grade
prostate cancer versus normal tissue, with significance only occurring with progression to aggressive,
high-grade disease. This finding is consistent with prior publications suggesting that the Warburg
effect does not become important in prostate cancer until late-stage/high-grade disease [33–36]. These
publications argue that early-stage/low-grade prostate cancers rely on lipids and other biologic fuels
for energy production [33–36], and that the glycolytic phenotype is only associated with the evolution
of aggressive disease [37,38].

Another important finding of this study was the importance of the hypoxic tumor
microenvironment in driving the elevated Warburg effect in high-grade prostate cancer. Tumor
perfusion based on HP 13C-urea increased slightly in low-grade cancer relative to the normal prostate,
but significantly decreased with high-grade disease. This resulted in a significantly higher level of
hypoxia in high-grade prostate cancer based on PIM staining. The oxygen-sensitive HIF1α transcription
factor has been found to be up-regulated in regions of tumor hypoxia and increases the expression of
angiogenesis factors such as VEGF to increase oxygen delivery as well as increasing aerobic glycolysis
through increasing the expression and activity of key enzymes in the glycolytic pathway, such as
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LDHA [8]. Consistent with this scenario, a significant increase was observed in the mRNA expression
of Hif1α, Vegf, and Ldha, as well as an increase in LDH activity in high- versus low-grade TRAMP
tumors, while no change was seen in the expression of these enzymes between normal and low-grade
disease. Hypoxic prostate cancers, which induce HIF1α and glycolysis most strongly, tend to be
of higher Gleason grade, are more invasive and metastatic, and less responsive to therapy than
those with normal oxygen levels [39,40]. Moreover, Ldhb significantly decreased and the Ldha/Ldhb
ratio significantly increased in high-versus low-grade prostate cancer while there was no significant
difference in either the Ldhb or Ldha/Ldhb ratio between low-grade cancer and the normal prostate.
This is consistent with a recent paper reporting that prostate cancer expressed higher levels of Ldha
and phosphorylated Ldha, and lower levels of Ldhb, than normal tissue, and that a high Ldha/Ldhb ratio
was a marker of poor clinical prognosis [41].

Additionally, high-grade disease in this murine study was associated with significantly increased
expression of the monocarboxylate transporters Mct1 and Mct4 that are involved in pyruvate and
lactate transport in and out of the tumor [8,9]. The significant increase in Mct4 observed in high-grade
TRAMP tumors resulted in increased export of lactate out of the cells, which is important for reducing
intracellular lactate levels via lactate-H+ co-export, thereby maintaining a physiologic intracellular pH
and allowing a high metabolic flux through the LDH enzymatic reaction [34,42]. There was no increase
in the expression of Mct1 and Mct4 transporters between low-grade disease and normal prostate tissue.
A more avidly Mct1 and Mct4 expressing phenotype has been correlated with a more aggressive and
therapeutically resistant prostate cancer [37,38].

Tumor excretion of lactic acid, combined with poor tumor perfusion, results in an acidic
extracellular pH in tumors compared with normal tissue [4,10]. This acidification of the tumor
microenvironment has also been shown to occur in the TRAMP model [21,43]. The resulting acidic
environment promotes cancer aggressiveness and metastasis by facilitating a degradation of the
extracellular matrix by proteinases [11,12], increasing angiogenesis through the release of VEGF [44],
and inhibiting the immune response to tumor antigens [14]. Extracellular acidification also may render
prostate tumors chemo- and radiation-resistant [14,45]. Taken together, these observations suggest
that not only increased lactic acid production, but also its efflux are important parameters associated
with aggressive prostate cancer [8,46]. Moreover, tumor-specific metabolic shifts, such as increased
production and efflux of lactate, can potentially be exploited for cancer therapy with minimal impact
on normal tissues [10].

Another important finding of this study was the demonstration of the functional importance
of increased lactate production and efflux in the progression of primary prostate cancer and its
metastases. In this study, it was demonstrated that the genetic knockdown of Ldha in prostate tumors
could be monitored via the rate of conversion of HP 13C-pyruvate to 13C-lactate, with a significant
reduction in HP Lac/Pyr in Ldha-knockdown mice versus a significant increase in control mice
occurring by the 1-week timepoint. The reduction in HP Lac/Pyr in Ldha-knockdown mice correlated
with an approximate 80% reduction in Ldha expression and LDH activity, but no changes in the
monocarboxylate transporters (Mct1 and Mct4), nor in HP 13C urea perfusion or expression of factors
impacted by the hypoxic tumor microenvironment (Hif α and Vegf ), thus demonstrating the specificity
of Ldha-knockdown. More importantly, Ldha gene knockdown had salient functional effects on
prostate tumors in this transgenic model, including significantly reduced primary tumor growth
and significantly reduced lymph node and visceral metastases. Interestingly, these preliminary
studies indicated that HP 13C biomarkers could detect early, metabolic shifts indicative of tumor
regression, before classical morphometric parameters (i.e., tumor volume & ADC) change. Others
have demonstrated previously the therapeutic effect of Ldha-knockdown in other tumor types in mice,
including renal cell cancer, hereditary leiomyomatosis [16], neuroblastoma [47], breast cancer [48,49]
and lung cancer [50]. This is the first report of such effect in prostate tumors in vivo.

Ldha expression levels have been correlated previously with metastasis and poor prognosis
in several tumor types [6]. The exact mechanisms are not fully understood, but as described
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above decreased interstitial pH in the tumor microenvironment, probably largely as a consequence
of lactate production by tumors, is thought to increase activation of extracellular proteases like
matrix metalloproteinases and cathepsins [51] and to reduce immunologic responses, in part through
up-regulation of PD-L1 [15,52,53]. The fact that the incidence of metastases is not eliminated entirely
in this study suggests either that knockdown of Ldha/LDH-5 activity was initiated in most animals
after tumors had advanced to the state where cancer cell dissemination was occurring, or that certain
tumors/tumor cells compensate for the loss of Ldha and, after a lag period, are capable of undertaking
invasion and metastasis.

One limitation of this study was that TRAMP tumors are spatially heterogeneous with respect
to hypoxia and most likely it is only hypoxic regions of the tumor microenvironment that contribute
to increased glycolysis as measured by the hyperpolarized Lac/Pyr ratio. Unfortunately, it was
not technically feasible to accurately register the different tumor regions of upregulated glycolysis
on imaging to the corresponding hypoxic tissue regions visible at PIM IHC after tumor dissection.
Fortunately, there was a large significant difference in the mean amount of PIM staining (hypoxia)
between normal murine prostate and low-grade tumors as compared to high-grade tumors in this
study (Figure 3c) thereby allowing conclusions to be drawn about the role of the hypoxic tumor
microenvironment in driving the glycolytic shift in high-grade prostate cancer. The correlation between
hypoxia and the Lac/Pyr ratio can be directly correlated in vivo by performing a combination of EPR
imaging of the trityl radical, used for hyperpolarization, to measure pO2 and hyperpolarized [1-13C]
pyruvate MRSI of the same murine tumor [54], however, this is beyond the scope of this manuscript.

Another limitation of this study, as with most pre-clinical murine studies, is how well the Warburg
effect in the TRAMP model recapitulates the human situation. Therefore, it will be necessary to establish
in patient studies the important role of the Warburg effect as a marker of prostate cancer aggressiveness
and as a therapeutic target as has been shown in this pre-clinical study. A number of factors support
the feasibility of clinically translating the findings of this pre-clinical study to accomplish these goals.
Hyperpolarized [1-13C] pyruvate is already FDA IND approved for use in prostate cancer patients [55],
and the clinical translation of HP 13C-urea and its co-polarization with [1-13C] pyruvate for combined
metabolic and perfusion imaging after a single injection of hyperpolarized probes has been NIH-funded
and is in progress. Hyperpolarized 13C-pyruvate MRSI has been added to a clinical multi-parametric
1H MRI prostate cancer staging exam, and initial prostate cancer patient studies have shown the ability
to acquire both high-spatial (0.5 cc) and temporal (2 s) resolution 3D dynamic HP 13C MRSI data
from throughout the human prostate in 47 seconds using an echo-planar spectroscopic imaging (EPSI)
sequence on a clinical 3T MRI [56]. Based in part on the results of this pre-clinical study, patient studies
have been initiated to investigate the relationship between the rate of conversion of hyperpolarized
lactate and cancer aggressiveness (NCT02526368) and response to therapy (NCT02911467). Ultimately,
hyperpolarized 13C MRSI may provide a highly personalized approach for prostate cancer therapy
by: (i) stratifying patients into those who would benefit most from tumor glycolysis inhibition; (ii)
enabling early determination of hitting the therapeutic target (Ldha inhibition/LDHA activity), and
(iii) providing a better prediction of treatment response.

5. Conclusions

Consistent with prior publications [22,24] the progression from low- to high-grade prostate cancer
in the TRAMP model resulted in a significant increase in the HP Lac/Pyr ratio (i.e., the Warburg
effect). An important new finding of this study was the lack of a significant increase in the HP Lac/Pyr
ratio (i.e., the Warburg effect) in low-grade prostate cancer versus normal tissue, suggesting that HP
Lac/Pyr may provide a sensitive marker of whether individual patients have aggressive disease at the
time of biopsy diagnosis, a critical time for making decisions about whether active surveillances are an
appropriate management approach or whether immediate aggressive treatment is required. Another
important finding of this study was the importance of the hypoxic tumor microenvironment in driving
the elevated Warburg effect in high-grade prostate cancer. More importantly, this study demonstrated
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that increased LDH activity and HP Lac/Pyr played an important role in tumor progression and
metastases in this preclinical model of prostate cancer. These preclinical findings provide motivation
for patient studies investigating drugs inhibiting LDHA activity alone or in combination with other
prostate cancer treatments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/2/257/s1,
Figure S1: Western blot of LDHA gene knockdown induced by tamoxifen administration.
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