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ABSTRACT Contamination of poultry products by
Campylobacter is often associated with farm manage-
ment practices and processing plant practices. A longi-
tudinal study was conducted on 11 pastured poultry
farms in southeastern United States from 2014 to 2017.
In this study, farm practices and processing variables
were used as predictors for a random forest (RF) model
to predict Campylobacter prevalence in pastured poultry
farms and processing environments. Individual RF mod-
els were constructed for fecal, soil and whole carcass
rinse after processing (WCR-P) samples. The perfor-
mance of models was evaluated by the area under curve
� 2021 The Authors. Published by Elsevier Inc. on behalf of Poultry
Science Association Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Received October 28, 2020.
Accepted February 26, 2021.
1Corresponding author: amishra@uga.edu

1

(AUC) from the receiver operating characteristics
curve. The AUC values were 0.902, 0.894, and 0.864 for
fecal, soil, and WCR-P models, respectively. Relative
importance plots were generated to predict the most
important variable in each RF model. Animal source of
feces was identified as the most important variable in
fecal model and the soy content of the brood feed was
the most important variable for soil model. For WCR-P
model, the average flock age showed the strongest impact
on RF model. These RF models can help pastured poul-
try growers with food safety control strategies to reduce
Campylobacter prevalence in pastured poultry farms.
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INTRODUCTION

The U.S. Centers for Disease Control and Prevention
(CDC) estimates that Campylobacter causes an esti-
mated 1.5 million illnesses each year in the United States
(CDC, 2019). Campylobacter spp. are Gram-negative
spiral, rod-shaped, nonspore forming bacteria with polar
flagella (Kaakoush et al., 2015). Major symptoms of
Campylobacter infection are gastroenteritis, diarrhea,
and sequelae such as Guillain-Barre syndrome (Sahin
et al., 2003). From 2010 to 2017, among 236 reported
foodborne Campylobacter outbreaks, 41 were associated
with poultry products (CDC, 2019). In addition, the
consumption of chicken and eggs linked to Campylobac-
ter account for most laboratory-confirmed cases of bac-
terial gastroenteritis in the United States (Arsi et al.,
2019). Poultry is identified as a major reservoir and
source of transmission of campylobacteriosis (Kaakoush
et al., 2015). After poultry products contaminated with
Campylobacter are brought to a consumer’s kitchen,
they can cross contaminate utensils and further infect
consumers (Nauta et al., 2009). In general, Campylobac-
ter contaminates poultry products before or during proc-
essing, surviving through the food supply chain to
becoming a potential health risk to humans (Newell and
Fearnley, 2003). It is important to identify the factors
leading to Campylobacter transmission on poultry farms
and processing plants. Feed, drinking water, soil, other
farm animals, biosecurity threats (wildlife species),
insects, farm equipment, employees, visitors, and farm
vehicles are possible routes of Campylobacter transmis-
sion on poultry farms (Ghareeb et al., 2019). Many con-
ventional farm-based studies have explored the sources
of flock infection, modes of transmission, and the host
and environmental factors affecting the spread of Cam-
pylobacter (as previously reviewed; Sahin et al., 2002);
however, there is limited information on Campylobacter
infection in pastured poultry farms. Identification of
potential risk factors at the farm level is vital to prevent
Campylobacter infection in these alternative poultry
management systems.
Pastured poultry is a sustainable agriculture tech-

nique where chickens have access to fresh pasture land
to graze on a daily basis while residing within a move-
able pen (Rothrock et al., 2019a). Compared with con-
ventional poultry production facilities in which tens of
thousands of birds are housed in relatively small areas,
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pastured flocks have much lower stocking densities (>1.5
ft2/bird) and have greater access to the farm environ-
ment, potentially providing a variety of benefits to the
birds, environment, and the consumers. Ponte et al.
(2008) reported that the omega-3 fatty acid content in
the pastured poultry meat is significantly higher than
conventional poultry meat. Karsten et al. (2010)
reported an increase of vitamin A, vitamin E, and n-3
fatty acid in eggs produced from pastured poultry farms.
Health benefits are a key concern for consumers who
have shown a rising interest in the pastured poultry
products, leading to an increasing demand for pastured
poultry products in the U.S. in recent years (Hilimire,
2011). The increased interest in pastured poultry prod-
ucts presents food safety challenges since guidance for
pastured poultry growers and scientific research is lim-
ited (Elkhoraibi et al., 2017). Karsten et al. (2010)
reported that food safety concerns, biosecurity, and a
lack of food safety knowledge are the three main chal-
lenges faced by pastured poultry growers. Therefore, an
increased understanding of food safety issues, and the
environmental/management variables that influence
food safety issues, is vital to the sustainability of pas-
tured poultry operations.

The environmental factors and farm management
practices may have impact on the prevalence of food-
borne pathogens in the food products. One method
that has been used in the food industry to identify
significant environmental or management variables
that are correlated to foodborne pathogen prevalence
is the use of predictive, machine-learning models.
Machine-learning is a set of methods that can auto-
matically detect patterns in data and then use the
uncovered patterns to predict outcomes in future
data sets (Murphy, 2012). Random forest (RF)
model is a commonly used machine-learning method
that has been used to predict or track pathogen prev-
alence in several food safety studies (Smith et al.,
2010; Pang et al., 2017; Golden et al., 2019a, 2019b).
The RF model is an ensemble of classification and
regression trees (Breiman, 2001). After fitting with
training data, the prediction is made by averaging
Table 1. Comparison of the 11 all-natural, antibiotic free, pas

Farm Breed No. of flocks Flock size Multiuse farm

A Freedom Ranger 10 >500 Yes
B Freedom Ranger,

Cornish Cross
5 <50 Yes

C Freedom Ranger 1 <50 No
D Freedom Ranger 1 <50 No
E Freedom Ranger,

Cornish Cross
5 50-100 Yes

H Freedom Ranger 2 >500 Yes
I Freedom/Red Ranger,

Cornish Cross,
8 100-500 Yes

J Freedom Ranger,
Cornish Cross

2 50 Yes

K Freedom Ranger 4 100-500 Yes
L Freedom Ranger 2 >500 Yes
M Cornish Cross 2 50-100 Yes
the outcome between all the trees. An advantage of
this algorithm is its ability to handle complex and
high-dimensional data (Breiman, 2001). The goal of
this study was to identify farm practices variables
associated with Campylobacter prevalence in pastured
poultry farms using RF machine-learning algorithms.
MATERIALS AND METHODS

Sample Collection

A longitudinal study was conducted on 42 flocks of
broilers across 11 pastured poultry farms in the
southeastern U.S. from March 2014 to November
2017. All 11 farms reared their broiler flocks in mov-
able pens that were moved to fresh pastured daily.
The shape, number, and use of temporary fencing
around the houses varied among the farms included
in the study. A brief description of the size and scale
of each farm, as well as other major characterization
data, is listed in Table 1. Data were collected for 40
major farm practice variables (Table 2) over a flock’s
lifecycle and all samples were evaluated for the pres-
ence of Campylobacter.
The following samples were collected from each flock

to analyze the presence of Campylobacter: 1) feces, 2)
pasture soil, 3) whole carcass rinse directly after process-
ing (WCR-P), 4) final product whole carcass rinse after
chilling and storage time (WCR-F), and 5) ceca sam-
ples collected during processing from each farm. If a
farm was multiuse and contained pastured layers, swine
or cattle (see Table 1), fecal and soil samples were col-
lected from the area where these animals resided at the
time of sampling. Fecal and soil samples were taken 3
times throughout a flock’s lifecycle: 1) within a few days
of being placed on pasture, 2) halfway through their
time on the pasture, and (iii) on the day the flock was
processed. In all, 2,305 samples consisted of 815 fecal
samples, 815 soil samples, 235 WCR-P samples, 230
WCR-F samples, and 210 ceca samples.
On each sampling day, the moveable pens were moved

before sampling, and fecal and soil samples were
tured broiler farms included in this study.

? Animal type(s) Processing

Layers, swine, cattle, sheep USDA-inspected plant
Layers, swine, goats on farm

NA on farm
NA on farm
Layers, swine, cattle, sheep on farm

Layers USDA-inspected plant
Layers, swine, goats USDA-inspected plant

Layers USDA-inspected plant

Layers, cattle, goats on farm & USDA-inspected plant
Layers, swine, cattle, sheep USDA-inspected plant
Layers, swine on farm



Table. 2. Predictors used in the fecal, soil, and processing product whole carcass rinse (WCR) random forest model.

Variable Description Levels/unit

AvgNumBirds Average number of birds that the farm handle in 1 year 3 levels: <1000, 1000-10,000, >10000
AvgNumFlocks Average number of flocks that the farm handle in 1 year 6 levels: 1, 2, 3, 4, 5, 16
YearsFarming Number of years the farm had been operating at the time of sampling 2 levels: <10, ≥10 (years)
EggSource Source of broiler eggs 6 levels: company A, B, C, D, E, F
BroodBedding Type of bedding broilers received during brooding 3 levels: pastured based brooder (PB), wood shavings (WS), saw-

dust/shredded paper (SDSP)
BroodFeed Up to top 3 sources of protein in brooding feed 6 levels: barley, wheat, oats (BWO); corn, soy, wheat (CSW); wheat,

corn (WC); wheat (W); corn, soy, oats (CSO); peas, corn, oats
(PCO)

BrGMOFree Was the brood feed GMO free? 2 levels: yes (Y), no (N)
BrSoyFree Was the brood soy free? 2 levels: yes (Y), no (N)
BrMedicated Was the brood feed medicated? 2 levels: yes (Y), no (N)
BroodCleanFrequency How often the brooding area was cleaned? 6 levels: 3Days, all in/all out (AIAO), daily, deep litter method

(DLM), mobile, weekly, yearly
AveAgeToPasture Average age broilers were put on pasture 2 levels: 3 weeks, 4 weeks
PastureHousing Type of pasture housing environment 4 levels: chicken tractor (CT), chicken tractor with fencing (CTF),

chicken tractor free ranger (CTFR), chicken tractor with fencing
(2 tractors; CTF2)

FreqHousingMove How often the pasture area was moved? 2 levels: daily, every 2 days
AlwaysNewPasture Was the pasture always moved to a brand-new pasture area? 2 levels: yes (Y), no (N)
PasturedFeed Up to top 3 sources of protein in pasture feed 7 levels: barley, wheat, oats (BWO); corn, soy, wheat (CSW); wheat,

corn (WC); wheat (W); corn, soy, oats (CSO); corn, cotton seed
mill, wheat (CMW); peas, corn, oats (PCO)

PaGMOFree Was the pasture feed GMO free? 2 levels: yes (Y), no (N)
PaSoyFree Was the pasture feed soy free? 2 levels: yes (Y), no (N)
PaMedicated Were broilers medicated while on pasture? 2 levels: yes (Y), no (N)
LayersOnFarm Were layers present on the farm? 2 levels: yes (Y), no (N)
CattleOnFarm Were cattle present on the farm? 2 levels: yes (Y), no (N)
SwinOnFarm Were swine present on the farm? 2 levels: yes (Y), no (N)
GoatsOnFarm Were goats present on the farm? 2 levels: yes (Y), no (N)
SheepOnFarm Were sheep present on the farm? 2 levels: yes (Y), no (N)
WaterSource Water source for broilers during grow-out 3 levels: public, rain, well
FreqBirdHandling How often chickens were handled on pasture? 2 levels: daily, only if needed (OIN)
AnyABXUse Were antibiotics ever used on the broilers? 2 levels: yes (Y), no (N)
LengthFeedRestrixProcess Length of feed restriction before processing 5 levels: 8, 12, 16, 18, 24 (hours)
DayOfYear Day of the year samples were collected on Numeric (days)
FlockAgeWeek Age of flock at time of sampling Numeric (weeks)
Breed Breed of broilers used 3 levels: freedom ranger (FR), Cornish cross (CC), red ranger (RR)
Flocksize Number of birds in the sampled flock 3 levels: 0-100, 100-500, >500
AnimalSource Type of the animals 4 levels: broiler, layer, swine, cattle
ProcessingTypea Where the broilers were processed? 2 levels: farm, plant
SkinOnOffa Skin on or off processing facility 2 levels: on, off
ScalderTempCab Temperature of water (�C) used during scalding of birds during

processing
7 levels: 55, 60, 63, 65, 71, 82, none

RinseWaterSourceab Source of water used for carcass rinsing during process 2 levels: public, well
RinseWaterChlorab Was the rinse water chlorinated? 2 levels: yes (Y), no (N)
ChillingMethoda Type of chilling method used for carcasses after processing 2 levels: water, air
TransportTimeab Length of time to transport broilers to processors (if necessary) 4 levels: 0.5, 3, 3.5, 5 (hours)
StorageTempCab Temperature that carcasses were stored before reception by

customer
2 levels: �20, 4 (�C)

StorageTimeDab Amount of time carcasses were stored before reception by customer Numeric (days)

aVariables were used in the WCR-P model.
abVariables were used in the WCR-F model.
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collected from the areas where the flock was just moved
from. The sampling site was divided into five sections,
where five subsamples were collected and pooled from
each section. On each sampling site, subsamples were
pooled for the high variability expected from each sub-
sample and for the possibility that there would be low
numbers of Campylobacter (Semenov et al., 2008; Ber-
gholz et al., 2011). Fecal samples were collected by sam-
pling fresh fecal droppings on the sampling site. Soil
samples were collected by scooping topsoil (approxi-
mately 0-7 cm from the surface) into sterile bags. Sterile
scoops were used for each sample, and scoops and gloves
were changed after each sample. All pooled samples
were at least 25 g. Samples were transferred to a labora-
tory on ice for processing.
Sample Preparation

Upon arrival in the laboratory, samples were prepared
as previously described by Rothrock and Locatelli
(2019). Briefly, 3 g from each subsample were combined
in a filtered stomacher bag (Seward Laboratory Sys-
tems, Inc., Davie, FL) and diluted 1:3 with 10 mM phos-
phate buffered saline (PBS) and homogenized for 1 min.
Next, 100 mL of homogenized sample was plated onto
Campy-Cefex agar (Neogen, Lansing MI) and incubated
at 42 § 1°C in microaerophilic conditions (85% N2, 10%
CO2, 5% O2) for 36 to 48 h (Stern et al., 1992). Putative
Campylobacter colonies were enumerated for each plate,
and up to 5 suspected colonies were transferred to Bru-
cella agar (Neogen, Lansing MI) supplemented with



4 XU ET AL.
10% lysed horse blood (Lampire Biological Laboratories,
Pipersville PA) for confirmation and incubated. For
model development purposes, samples were classified as
positive if countable colonies were found during Campy-
Cefex plating.
Model Development

Random forest models were developed for fecal, soil
and WCR-P sample data to predict the presence or
absence of Campylobacter based on the predictors pre-
sented in Table 2. As the data for WCR-F and ceca sam-
ples were extremely imbalanced, random forest models
were not developed. For the WCR-P model, predictors
specified for processing samples were included where
nonprocessing predictors were used only for fecal and
soil models. Before model fitting, each data set was split
into training and testing sets. The training and testing
sets contained 80% and 20% of the data, respectively.
Random forest models were trained with the training set
and the test set was served as an independent data set to
evaluate the performance of the training model.
Table 3. Effect of sample type on prevalence of Campylobacter
spp. in pastured poultry samples.

Sample type No. of samples No. (%) of positive samples3

Fecal 815 498 (61.1) a
Soil 815 172 (21.1) b
WCR-P1 235 37 (15.7) b
WCR-F2 230 5 (2.2) c
Ceca 210 198 (94.3) d
Total 2305 910 (39.5)

1Whole carcass rinse after processing (WCR-P).
2Final product whole carcass rinse after chilling and storage (WCR-P).
3Different letters represent statistically significant different values

when comparing sample types (P < 0.05 as determined by the Fisher’s
exact test).
Statistical Analysis

All statistical analyses were performed in R (Version
3.4.0; R Foundation for Statistical Computing, Vienna,
Austria). The Chi-square test and Fisher’s exact test
were used to compare the prevalence of Campylobacter
across different sample types. Results with P value less
than 0.05 were considered statistically significant.

The RF model is an ensemble consisting of a collection
of classification trees where each tree is independent
identically distributed random vectors and these classifi-
cation trees vote for the most popular class (Breiman,
2001). The classification trees are built based on boot-
strap sampling method using a training set which is con-
structed for drawing observations from the whole data
set one at a time and returning them after they have
been chosen (Efron, 1979). At each split, the training set
is a random subset of all variables, which is a successful
approach for assembling unstable leaners (Breiman,
1996; Hastie et al., 2001). With the combination of bag-
ging (bootstrap aggregation) and random variable selec-
tion for tree building, each tree in the RF model is
unpruned, low-bias tree resulting in low correlation of
the individual trees (Diaz-Uriarte and Alvarez de
Andres, 2006). However, RF model based on a classifica-
tion and regression tree (Breiman, 1984) is biased when
selecting the important variables, and it favors continu-
ous variables and variables with many categories (Strobl
et al., 2007). Strobl et al. (2008) provided ‘cforest’ func-
tion to address the issue, which is based on unbiased
conditional inference trees by substituting bootstrap
sampling with sampling without replacement (Hothorn
et al., 2006; Strobl et al., 2007).

The party and caret package were used for model train-
ing and analysis (Kuhn, 2008; Hothorn et al., 2010). All
models were built using “cforest” function with
“replace=FALSE” and default option “controls= cfores-
t_unbiased().” To choose the suitable value for mtry and
ntree, RF models were trained using various mtry and ntree
values. The values with highest receiver operating charac-
teristic (ROC) statistic were chosen and the chosen values
were implemented in the final model. Variable importance
was determined using the mean decrease in accuracy. Var-
iables were ranked by relative importance from low to
high where the variable with highest value represents the
most important variable. Partial dependence plots (PDP)
were built for the 2 most important variables in each
model using pdp package (Greenwell, 2017).
To address the imbalance of negative and positive

observations of soil and WCR-P samples, the synthetic
minority over-sampling technique (SMOTE) was used
(Chawla et al., 2002). The SMOTE method applies a
mix of over-sampling minority class and under-sampling
majority class to make a balanced training set. After
model construction, test set was used to validate the per-
formance of each model. Models were evaluated using
area under the ROC curves (AUC; Bradley, 1997), sensi-
tivity and specificity.
RESULTS

Of the 2,305 total samples collected, 910 (39.5%) were
Campylobacter spp. positive (Table 3). For all the
samples collected, the five sample types showed signifi-
cantly different Campylobacter prevalence (x2 = 728.06;
df= 4; P < 0.0001). To compare the difference between
every 2 groups, Fisher’s exact test was performed. Cam-
pylobacter prevalence was significantly higher in fecal
samples (61.1%), compared to the soil (21.1%, P <
0.0001), WCR-P (15.6%, P < 0.0001), and WCR-F
(2.2%, P < 0.0001) samples, but the highest Campylo-
bacter prevalence was found in the ceca samples (94.3%,
P < 0.0001). The only pair-wise comparison without a
significant difference in Campylobacter prevalence was
between soil and WCR-P samples (P = 0.0779).
Random forest models were constructed for fecal, soil,

and WCR-P samples. For the fecal model, the relative
importance plot containing the top 10 most important
predictor variables is illustrated in Figure 1. The model
predicted that source of animal feces was the most
important variable in predicting Campylobacter preva-
lence in pastured poultry farms. The mean decrease



Figure 1. Relative importance plot for fecal models.

Figure 2. Partial dependency plots for the two most important
predicting variables in fecal model. Animal source (A) was the most
important variable, which represented the types of samples based on
animal source, and Average Number of Flocks (B) was the second
important variable, which indicated the average number of flocks the
farms handle each year.

CAMPYLOBACTER IN PASTURED POULTRY FARMS 5
accuracy (MDA) value of animal source was 0.096, com-
pared to 0.025 and 0.019 for average number of flocks
and average number of birds a farm handles every year,
respectively. No other predictor variables were found to
have a MDA value over 0.02. Partial dependency plots
(PDPs) were built for animal feces source and average
number of flocks (Figure 2). As shown in Figure 2A,
fecal samples collected from broiler chickens appeared to
have the highest probability of Campylobacter isolation.
Fecal samples collected from cattle and swine had the
lowest and the second lowest probability of Campylobac-
ter isolation, respectively. Though there was some vari-
ance within Figure 2B, the model suggested an
increasing trend of isolating Campylobacter as the aver-
age number of flocks increased.

For the soil RF model, the relative importance plot is
shown in Figure 3. The soy content (soy-containing ver-
sus soy-free) of the brood feed was ranked as the most
important variable to predict Campylobacter prevalence
of soil samples in pastured poultry farm with a MDA
value of 0.093. The second most important indicator was
types of pasture housing used when rearing the chickens
with a MDA value of 0.058. The PDP plot of brood feed
soy content suggested that brood feed without soybeans
had a higher probability of isolating Campylobacter in
soil samples than feed with soybeans (Figure 4A). The
model predicted that Campylobacter prevalence was
higher when a mobile chicken tractor with fencing was
used than other types of pasture housing (Figure 4B).

The relative importance plot for WCR-Pmodel showed
that flock age (weeks) was the most important variable in
predicting Campylobacter prevalence in processing car-
casses samples. The MDA value of flock age was 0.053 fol-
lowed by day of the year and average number of flocks as
the second and third important predictors with MDA
values of 0.047 and 0.045, respectively (Figure 5). Com-
pared to fecal and soil RF models, the MDA values for
WCR-P model were lower. As shown in Figure 6A, the
model predicted Campylobacter prevalence was higher
when flock age was less than 10 weeks and a drop of Cam-
pylobacter isolation was observed after 10 weeks. Simi-
larly, the probability of Campylobacter isolation was
higher during the Spring and Summer months
(<210 days into the calendar year) and a drop was
observed around the late Fall/Winter months.



Figure 3. Relative importance plot for soil models.

Figure 4. Partial dependency plots for the two most important
predicting variables in soil model. Brood Soy Free (A) was the most
important variable, which represented whether the brood feed is
soy free or not, and Pasture Housing (B) was the second important
variable. Abbreviations: CT, chicken tractor; CTF, chicken tractor
with fencing; CTFR, chicken tractor free ranger; CTF2, chicken tractor
with fencing (2 tractors).
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For all 3 models, the performance was evaluated on a
test set separated from the original data set. The test set
was not used in training the model but aimed to verify
model outcomes. Confusion matrices were generated for
the 3 models and were used to demonstrate the ability of
models’ prediction and observed results (Table 4). Sensi-
tivity is using the correctly predicted positive results
divided by the actual positive results. Similarly, specific-
ity represents correctly predicted negatives divided by
the true positives. In predicting pathogen prevalence,
false negatives cost more than false positives. Thus, sensi-
tivity is of great importance for the models. If the sensitiv-
ity of a model is close to one, it means the model has low
false negative ratio which indicates good predicting abil-
ity of a model. The fecal model showed a sensitivity of
0.8692 and specificity of 0.7705. It suggested that the
fecal model correctly predicted 93 positive results out of
107 actual positives whereas 47 negative results were cor-
rectly predicted out of 61 true negatives. To further pres-
ent these results, ROC curves and area under the curve
(AUC) were used (Figure 7A-C). An AUC value close to
one indicated a good performance of a model. The soil
model had a sensitivity of 0.7407 and specificity of
0.8784. Its AUC value was 0.894 (Table 4). For WCR-P
model, it obtained a sensitivity of 0.7778 and specificity
of 0.8529. The AUC value for WCR-P model is 0.864.
Overall, the three models received acceptable sensitivity
and specificity values that were above 0.7. In the mean-
time, the models also achieved AUC values above 0.85.
DISCUSSION

One of the key aspects in reducing Campylobacter
infection of broiler chickens is to limit transmission
pathways. Flies, water source, feces, wild and domestic
animal activities on or near the farm, feed, and employee
boots have been identified as possible pathways for
Campylobacter transmission to broilers in conventional
farms in the Netherlands, United Kingdom and United
States (Humphrey et al., 1993; Pearson et al., 1993;
Jacobs-Reitsma et al., 1995; Gregory et al., 1997;
Shreeve et al., 2000; Hald et al., 2004). Moreover, bird-
to-bird infection within flocks is another potential path
of Campylobacter transmission. Shreeve et al. (2000)
reported that once Campylobacter colonization was first



Figure 5. Relative importance plot for WCR-P models.

Figure 6. Partial dependency plots for the two most important
predicting variables in WCR-P model. Flock Age Weeks (A) was the
most important variable, which represented the age of a flock at the
time of sampling and Day of Year (B) was the second important vari-
able, which means the day of year when samples were collected on.
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detected in one of the flocks, nearly all flocks tested posi-
tive for Campylobacter one to eight days later. Similarly,
Evans and Sayers (2000) reported that it only took three
weeks to spread from 40% of the flocks to over 90%.
These findings point out the concerns for alternative sys-
tems such as pastured poultry farms that are character-
ized by the exposure to the natural farm environment.
Some studies have analyzed the relationship between
environmental samples and carcass rinse samples from
broiler chicken flocks on conventional farms (Berghaus
et al., 2013; Trimble et al., 2013; Schroeder et al., 2014).
More research that relate environmental and carcass
rinse samples with pastured poultry farm practices are
needed. This study utilized the RF algorithm, a machine
learning method used to detect the potential patterns
between environmental and carcass rinse samples and
pastured poultry farm practices. The results from this
study could offer guidelines to pastured poultry growers
from both statistical and practical standpoint for their
farm operations.

The fecal RF model predicted feces source (broilers,
layers, swine, and cattle) as the most important variable
in predicting Campylobacter prevalence in pastured
poultry farms. Broilers have the highest probability for
carrying Campylobacter whereas swine and cattle sam-
ples were least likely to have Campylobacter
(Figure 2A). Out of the 630 fecal samples taken from
broilers, 460 (73%) were Campylobacter positive. For 50
swine and 45 cattle fecal samples collected, 6 and 0 posi-
tive samples were isolated, respectively. This was not
surprising, since Rothrock et al. (2019b) previously
showed that Campylobacter was part of the core micro-
biome of the pastured poultry gastrointestinal tract.
These results indicate that Campylobacter infection of
broilers are less likely to be due to other agricultural
animals on farm. This is in agreement with another
study Jacobs-Reitsma et al. (1995), which reported that
Campylobacter serotypes from layers, swine, sheep, and
cattle were different from the ones isolated from broilers.
Similarly, another study that investigated ten broiler
farms in United Kingdom showed that fecal samples
from dogs, sheep, horses, and mammals were Campylo-
bacter negative (Bull et al., 2006), indicating a lack of
transmission from these animals to broilers. However,
Gregory et al. (1997) reported that broiler houses with
cattle nearby all tested positive for Campylobacter. This



Figure 7. Receiver operating characteristic (ROC) curve for A
(Fecal model), B (Soil model), C (WCR-P model).
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suggests that cattle are the reservoirs that maintain the
organism on the farm. Similar results were presented by
Zweifel et al. (2008), who reported that identical Cam-
pylobacter genotypes were isolated from broilers as well
as other farm animals (swine, cattle, and layers),
indicating their role as pathogen reservoirs. The contra-
diction of these results can be due to different farm prac-
tices implemented at each farm. For example, poor
control of personnel movement between infected and
noninfected areas could lead to cross-contamination
between animals. These findings indicate that on a com-
plicated farm environment, a well-designed biosecurity
protocol is necessary. The average number of flocks han-
dled on farm was identified as the second highest impor-
tant predicting variable for the fecal model. In
Figure 2B, average number of flocks ranged from 1 to
16, all showed a high probability of Campylobacter isola-
tion. This trend is in agreement with another study
(Newell and Fearnley, 2003) which reported that once
flocks were infected, Campylobacter spread to other
flocks rapidly usually within a week.
The soy content of the brood feed was identified as the

most important variable in detecting Campylobacter for
the soil RF model. The soy-free brood feed showed
higher Campylobacter prevalence compared to brood
feed with soybeans (Figure 4A). This suggests that soy-
bean, as one of the main sources of plant protein, can
lower Campylobacter contamination of pasture soils.
The removal of soy from pastured poultry diets has been
previously shown to reduce Campylobacter abundance
in fecal and WCR samples, and it was hypothesized that
Campylobacter were able to metabolize soy components
and hence the removal of this nutrient source in soy-free
feed led to a decrease in Campylobacter (Lourenco et al.,
2019). If soy-free feed decreased Campylobacter loads in
pastured broiler gastrointestinal tracts, then it is possi-
ble that Campylobacter is passed through in the feces to
the soil, resulting in the higher Campylobacter preva-
lence in the pasture soils of broilers fed a soy-free diet
during the brood phase. However, soybean-based diets
did not show a significant difference compared to other
protein source diets in the occurrence of Campylobacter
in conventionally-reared broiler chickens (Visscher et
al., 2017). Other foodborne pathogen data from this
same study has shown brood feed composition as a
major management variable. Golden et al. (2019b) stud-
ied Listeria spp. prevalence on these pastured poultry
farms using farm management practices as predicting
variables and found brood feed composition to be impor-
tant. The diet consisted of corn, soy, and wheat showed
high probability of isolating Listeria spp. Similarly,
Hwang et al. (2020) studied Salmonella prevalence on
these pastured poultry farms, and they also found pas-
ture feed and brood feed important variables in predict-
ing Salmonella prevalence. These findings, in
conjunction with the findings from this current work,
highlight the importance of feed composition during the
brood phase in predicting foodborne pathogen preva-
lence throughout the preharvest and postharvest stages
of pastured poultry management. Pasture housing was
the second most important predictor in detecting Cam-
pylobacter in the soil model. Four types of pasture hous-
ings, chicken tractor, no ranging (CT), single chicken
tractor with fencing (CTF), chicken tractor free range
(no fence; CTFR), multiple chicken tractors within



Table 4. Predictive performance of random forest models and the confu-
sion matrix of the models.

Models Predictions
Actual

Sensitivity Specificity AUCa

Positive Negative

Fecal Positive 93 14 0.8692 0.7705 0.902
Negative 14 47

Soil Positive 20 17 0.7407 0.8784 0.894
Negative 7 124

WCR-P Positive 7 5 0.7778 0.8529 0.864
Negative 2 29

aAUC is the area under receiver operating characteristic (ROC) curve.
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same fencing (CTF2), were used among the 11 farms
investigated. CTF and CTFR presented the highest and
second highest probability of isolating Campylobacter.
The different housing systems might have an impact on
isolating Campylobacter. However, it was difficult to
control the factors that might affect Campylobacter
prevalence given the observational design used in this
study. Experiments that control housing systems would
need to be performed to better explain and understand
the relationships.

Whole carcass rinse samples collected during process-
ing (postchill, prepackaging, and storage) (WCR-P) were
found to have a Campylobacter prevalence of 37%,
whereas Campylobacter prevalence of whole carcass rinse
sample final product (WCR-F) was 2.2%. Effective safety
practices can prevent Campylobacter from spreading dur-
ing processing. For WCR-P RF model, flock age (weeks)
at sampling and day of the year at sampling were pre-
dicted as the top 2 most important variables in predicting
Campylobacter prevalence. As shown in Figure 6A and B,
the models indicated that probability of Campylobacter
isolation was higher in WCR-P samples in broilers proc-
essed at an earlier age (8-9 weeks) and then decreased as
broiler chickens grow older (10-12 weeks). However, the
risk of Campylobacter contamination of broiler carcasses
increased as the age of broilers increased in a European
Union-wide study of 561 slaughterhouses (EFSA, 2010),
so these differences may be more related to the breed of
chicken (fast-growing Cornish Cross versus slow-growing
Freedom Ranger) than the age of the flock.
CONCLUSION

In conclusion, 3 random forest models were generated
to predict Campylobacter prevalence in fecal, soil, and
WCR-P samples collected from 11 southeastern United
States pastured poultry farms. Our model identified the
type of feces from farm animals as the most important
predictors in predicting fecal Campylobacter prevalence.
Additionally, soy-containing brood feed was associated
with higher probability of isolating Campylobacter in
soil samples. As predicted by the WCR-P model, flock
age was the top variable that affected Campylobacter
prevalence in WCR-P samples. This study showed the
use of RF model in predicting bacteria prevalence and
the results should assist in identifying factors that are
associated with risks of isolating Campylobacter. The
generated models will help provide pastured poultry
growers and processors with recommendations in imple-
menting farm practices when trying to control or reduce
Campylobacter.
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