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Modern broiler chickens are incredibly efficient, but they accumulate more adipose
tissue than is physiologically necessary due to inadvertent consequences of selection
for rapid growth. Accumulation of excess adipose tissue wastes feed in birds raised
for market, and it compromises well-being in broiler-breeders. Studies driven by the
obesity epidemic in humans demonstrate that the fatty acid profile of the diet influences
adipose tissue growth and metabolism in ways that can be manipulated to reduce
fat accretion. Omega-3 polyunsaturated fatty acids (n-3 PUFA) can inhibit adipocyte
differentiation, induce fatty acid oxidation, and enhance energy expenditure, all of which
can counteract the accretion of excess adipose tissue. This mini-review summarizes
efforts to counteract the tendency for fat accretion in broilers by enriching the diet in n-3
PUFA.

Keywords: adipose development, adiposity, broiler chickens, DHA, EPA, hen diet, omega-3 polyunsaturated fatty
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INTRODUCTION

Poultry meat is a major source of protein for much of the world. Due to population growth,
rising incomes, and concerns about both health and sustainability, global demand is expected to
continue to grow around the globe. Current projections are that poultry will account for 41% of all
protein consumption from meat by 2030 (OECD and FAO, 2021). Broiler chickens are produced
for meat, and genetic selection has produced remarkable advances in growth of broilers over the
past several decades. For example, a 35 days broiler weighed approximately 1.4 kg in 1985 and
more than 2.4 kg in 2010, largely due to increase in muscle mass (Siegel, 2014). Inadvertently,
selection of broilers for rapid growth also increased their tendency to accumulate excess adipose
tissue (Zuidhof et al., 2014). Adipose tissue in poultry is not commercially valuable, and it effectively
wastes feed by allocating it away from muscle. Physiologically, the need for adipose tissue as an
energy reservoir is minimal in market birds that have almost constant access to feed. In broiler-
breeders, excess fat accretion also compromises fertility and welfare. The tendency to deposit excess
adipose has in part been suppressed in commercial lines of broilers through refined approaches to
selection (Siegel, 2014; Zuidhof et al., 2014). However, even a modest misallocation of feed, the most
expensive component of production, significantly increases costs given the scale of commercial
broiler production. The default approach to preventing fat accretion is feed restriction, but this has
a negative impact on weight gain and meat yield and is also a welfare concern (Jackson et al., 1982;
Lindholm et al., 2018).
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Adipose Tissue Basics in Broilers
Chickens store energy as lipids in subcutaneous depots found
near the legs and neck, and in a visceral depot in the abdomen.
Subcutaneous fat is the first depot to develop and becomes visible
in the embryo by embryonic day 12 (E12) (Speake et al., 1993).
Adipocytes develop from a mesenchymal stem cell pool that
gives rise to preadipocytes, a cell type that is committed to an
adipocyte fate. Preadipocytes then differentiate and acquire a
mature, lipid-storing adipocyte phenotype through a series of
orchestrated changes in gene expression that are similar to those
described for mammals (Rosen and MacDougald, 2006). In the
embryo, development of subcutaneous fat coincides with a sharp
increase in extraction of fatty acids from the yolk (Speake et al.,
1998). Subcutaneous adipocytes grow rapidly as these fatty acids
are taken up and stored as triacylglycerol until E19, when they
are mobilized by lipolysis to provide the energy needed at hatch
(Speake et al., 1993). Abdominal fat, which becomes the main site
of triglyceride storage in the mature bird, develops after hatch
and becomes clearly visible around 7 days of age. Adipose depots
grow rapidly in broiler chicks through increases in adipocyte
number (hyperplasia), as preadipocytes proliferate and undergo
differentiation, and size (hypertrophy) as mature fat cells take
up and store fatty acids (Bai et al., 2015). Both processes are
very active during the first several weeks of life, after which
hypertrophy becomes the dominant mechanism of fat deposition
(Cartwright, 1991). Fatty acids that are taken up from the
circulation and stored in broiler adipocytes come primarily from
the liver, the main site of de novo lipogenesis in avians (Leveille
et al., 1975). Fatty acids synthesized by the liver from glucose
and acetate are packaged into VLDL molecules, which ferry them
to adipocytes for uptake and storage. Hepatic synthesis of lipids
plays a major role in adipose deposition in broilers. Divergent
selection on serum VLDL level has been used to produce lines
of broilers that differ significantly in fatness, illustrating the key
role of the liver (Leclercq et al., 1980; Whitehead and Griffin,
1984; Baéza and Le Bihan-Duval, 2013; Resnyk et al., 2013).
In addition, intrinsic differences in adipose development also
contribute to excessive fat accretion in broilers. For example,
significant increases in both adipocyte number and size appear
as early as 2 weeks of age in broiler lines that have higher fat mass
as they mature (Hermier et al., 1989).

Dietary Fatty Acids and Adipose Growth
Paradoxically, certain types of dietary fatty acids have been
shown to inhibit accumulation of adipose tissue in a variety
of species. Polyunsaturated fatty acids (PUFAs) are classified as
n-3 or n-6 based on the position of the first double bond in
relation to the methyl end of the molecule. Linoleic acid (LA;
18:2 n-6) and alpha linolenic acid (ALA; 18:3 n-3) are the main
dietary n-6 and n-3 fatty acids, respectively. These fatty acids
are required for the formation of cell membranes but cannot be
synthesized endogenously and therefore must be provided in the
diet (Smith and Mukhopadhyay, 2012). Linoleic acid is enriched
in a variety of common plant oils, such as those derived from
corn, soybean, and safflower. Alpha linolenic acid, which is less
abundant than LA, is usually obtained from flaxseed, rapeseed,

and walnuts. When taken into the cell, ALA and LA can be
used in formation of cell membranes, oxidized for energy, or
used to synthesize longer and more highly unsaturated PUFA
through a series of sequential elongation and desaturation steps
(Jakobsson et al., 2006). Some of these longer chain species have
unique bioactive properties through their ability to bind and
activate lipid-responsive transcription factors, such as members
of the PPAR family of nuclear receptors. In addition, the 20
carbon products of LA (arachidonic acid; ARA, 20:4 n-6) and
ALA (eicosapentaenoic acid, EPA; 20:5 n-3) are used as substrates
to produce eicosanoids, a broad family of lipid mediators that
interact with various cell signaling pathways. The seemingly
modest structural difference between LA and ALA has marked
effects on the biochemical properties of these fatty acids and their
metabolites. For example, eicosanoids produced from ARA are
primarily proinflammatory, while those synthesized from EPA
tend to be anti-inflammatory (Calder, 2017). The same enzymes
catalyze elongation and desaturation of n-3 and n-6 PUFA. As a
result, the relative synthesis of longer chain n-3 and n-6 species is
determined by the ratio of n-3/n-6 in the diet.

Extensive in vivo and in vitro studies indicate that n-3 and
n-6 PUFA differentially regulate adiposity in multiple species.
In particular, diets enriched with n-3 PUFA are associated with
reduced fat accretion (Rokling-Andersen et al., 2009; Torres-
Castillo et al., 2018; Ballester et al., 2020; Chen et al., 2020; Riera-
Heredia et al., 2020). At the cellular level, n-3 PUFA have been
shown to suppress adipogenesis, attenuate lipid accumulation in
adipocytes, and promote an oxidative adipocyte phenotype (Kim
et al., 2006; Manickam et al., 2010; An et al., 2012; Fleckenstein-
Elsen et al., 2016). Conversely, n-6 PUFAs tend to be pro-
adipogenic (Gaillard et al., 1989; Negrel et al., 1989; Massiera
et al., 2003). The anti-obesogenic effects of n-3 PUFA are most
strongly associated with actions of EPA and docosahexaenoic
acid (DHA, 22:6 n-3), the characteristic fatty acids of marine oils
(Flachs et al., 2009). These two fatty acids, which are synthesized
in algae and consumed by fish, influence a range of pathways
that regulate adipose growth and adipocyte metabolism. Each
fatty acid can bind and activate PPARA, a nuclear receptor that
transcriptionally increases fatty acid oxidation (Diep et al., 2000;
Zúñiga et al., 2011). In addition, EPA and DHA activate signaling
through AMPK and promote mitochondrial biogenesis, both of
which augment fatty acid oxidation (Siriwardhana et al., 2012).
They also increase synthesis of the insulin-sensitizing adipokine
adiponectin, which further activates AMPK and amplifies energy
expenditure in adipocytes (Itoh et al., 2007; Song et al., 2017).
EPA and DHA are also used to synthesize several classes of
lipid mediators, including eicosanoids and resolvins as well
as other novel metabolites that suppress inflammation and
limit metabolic stress in adipose tissue (Kuda et al., 2018).
These actions indirectly oppose fat accretion by preventing
inflammatory cascades that disrupt the efficient metabolism
of glucose and fatty acids in adipocytes. Finally, EPA and
DHA promote the browning of white adipocytes, which further
enhances oxidative metabolism in adipose tissue and prevents
fat accretion (Fleckenstein-Elsen et al., 2016). Browning is the
process by which white adipocytes acquire the highly oxidative
phenotype associated with mitochondria-rich brown fat cells.
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Browning includes induction of uncoupling protein 1 (UCP1),
the characteristic protein of brown adipocytes, which uncouples
mitochondrial respiration from ATP synthesis. These actions of
EPA and DHA may not be relevant to broilers, as they are thought
to lack brown adipocytes due to loss of the UCP1 gene from
avian genomes (Mezentseva et al., 2008). However, a recent study
demonstrates the existence of brown-like fat cells in broiler chicks
(Sotome et al., 2021). Collectively, ample evidence from multiple
species suggests that dietary n-3 PUFA, particularly EPA and
DHA, may be a tool for reducing fat accretion in broilers.

Reducing Fat Accretion in Broilers With
n-3 Polyunsaturated Fatty Acids
Broiler diets are typically formulated with 2–5% added fat to
support the intense energetic demands of rapid growth. Fat is
often supplied using corn or soybean oil, both of which are readily
available, cost-effective and enriched in LA. Combined with the
use of corn and soybean meals as the diet base, this results in
commercial diets that are heavily skewed toward high n-6/n-3
PUFA. In this context, commercial broiler diets are comparable to
the modern human diet, in which high n-6/n-3 ratios have been
associated with increased prevalence of obesity (Chilton et al.,
2017). Considering the beneficial effects on fat accretion in other
species, several groups have tested the ability to limit fat accretion
in broilers by replacing a portion of LA-rich oils or saturated fat
in the diet with sources enriched in n-3 PUFA. These have used
a variety of experimental designs, including variation in age at
which experimental diets were introduced, different amounts of
added fat, and varying duration of feeding (Table 1). Nonetheless,
they provide evidence that n-3 PUFA are also a promising tool to
reduce fat accretion in broilers.

Fish and algal oils are the most direct way to increase dietary
delivery of EPA and DHA to broilers. However, they are relatively
expensive and more prone to lipid peroxidation than sources of
ALA. Newman et al. (2002) replaced tallow (a source of saturated
fat) with either fish oil or sunflower oil (as an n-6 PUFA control)
in the diets of broiler chicks beginning at 3 weeks of age. After
5 weeks of feeding, fish oil significantly reduced abdominal fat
pad weight and increased the breast muscle: abdominal fat ratio
in comparison to tallow controls. However, comparable effects
were seen with the sunflower oil diet (Newman et al., 2002).
Unlike most vertebrates, many types of algae can efficiently
synthesize long-chain n-3 PUFA and are thus rich sources of
EPA and DHA. Microalgae are microscopic algae species of
commercial interest as renewable sources of biofuel production
and animal feeds (Khan et al., 2018). Long et al. (2018) used
a source of dehydrated microalgal biomass to efficiently deliver
DHA in broiler diets. The biomass consisted of 64% fat made up
primarily of palmitate (60%) and DHA (29%). Microalgae were
added to the diet and 1 and 2% by weight, with the balance of
fat (up to 3% total) provided by soybean oil, and chicks were
fed from 1 to 42 days. Both the 1 and 2% microalgae diets
significantly reduced adiposity at 42 days. In addition, both diets
significantly improved feed efficiency and increased weight gain,
and improved antioxidant status, resulting in broader effects on
performance than just reduced fatness. These results demonstrate

that replacing even part of an n-6 PUFA source in the broiler diet
with a DHA-rich alternative has beneficial effects on fat accretion.

Flaxseed and other oils rich in ALA provide the substrate for
EPA and DHA synthesis, but the efficiency of ALA conversion to
longer chain n-3 PUFA is thought to be very low in vertebrates
due to catalytic properties of the elongase enzymes in the PUFA
synthesis pathway (Arterburn et al., 2006; Brenna et al., 2009;
Gregory et al., 2011). However, the chicken elongase enzymes
(Elongation of Very Long Chain Fatty Acids-Like 2 and 5
(ELOVL2 and ELOVL5) in this pathway have enhanced ability
to synthesize DHA from ALA (Zuidhof et al., 2009; Gregory
et al., 2013). ELOVL5 is highly expressed in broiler adipose tissue,
including in the embryo (Mihelic et al., 2020). Unlike in most
mammals, supplementing broiler diets with ALA significantly
enriches tissues in EPA and DHA (Poureslami et al., 2010;
Kartikasari et al., 2012). Accordingly, several studies have been
reported that linseed oil inclusion in broiler diet suppressed
abdominal fat deposition and enhanced growth performance
compared with saturated fat sources, such as tallow (Crespo
and Esteve-Garcia, 2001, 2002; Ferrini et al., 2010; González-
Ortiz et al., 2013) or n-6 PUFA sources such as sunflower oil
(Crespo and Esteve-Garcia, 2002; Ibrahim et al., 2018). For
example, supplementing broiler diets with flaxseed oil (10%)
reduced abdominal fat by 30% compared to equivalent amounts
of saturated or monounsaturated fatty acids (Ferrini et al., 2008).
Both fish and flaxseed oils have also been shown to reduce
adipocyte size in broiler chicks, suggesting that they act relatively
early on adipose development (Torchon et al., 2017). The relative
effects of fish oil and flaxseed oil as replacements for sunflower
oil have also been compared. Broilers were fed diets in which
all or part of sunflower oil (4%) was replaced by either flaxseed
or fish oil (Ibrahim et al., 2018). Each diet significantly reduced
abdominal fat percentage compared to sunflower controls, while
feed efficiency, gain, and antioxidant status were significantly
improved. The experimental diets also improved muscle tissue
weight (breast and thigh) and decreased breast intramuscular fat
(IMF) content. The diets that replaced sunflower with flaxseed
oil had very low levels of EPA and DHA, as did the sunflower
control. However, fatty acid analyses of breast muscle further
support the ability for chickens to efficiently synthesize these fatty
acids from ALA. Tissue levels of EPA and DHA were significantly
increased in all experimental diets, except for the lowest level (5:1,
sunflower: flaxseed) of ALA inclusion.

Potential to Reduce Fat Accretion
Through n-3 Polyunsaturated Fatty Acids
in the Hen Diet
Given the scale of broiler production, replacing standard fat
sources with more expensive ones, such as flaxseed or fish oil,
would impose a significant cost to the industry. Developmental
programming through the diet of the broiler-breeder hen
is a potential alternative means to reduce fat accretion in
broilers. Developmental programming refers to the ability of
embryonic exposures to exert persistent effects on the physiology
of offspring after birth. This concept forms the basis of the
Barker hypothesis, which was proposed in 1992 to explain the
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TABLE 1 | Studies that investigated different dietary sources of n-3 PUFA and fat deposition in broiler chickens.

References n-3 PUFA
source

Experimental diet Animal (age) Feeding period Relevant phenotypes
measured

Significant effects

Crespo and
Esteve-Garcia,
2001

Linseed oil (6 or 10%)
• Tallow (T)
• Olive oil (OO)
• Sunflower oil (SO)
• Linseed oil (LO)

Broiler chickens
(21 days)

22 days/29 days • Growth performance
• Abdominal fat pad

• ↑ feed efficiency
• ↓ abdominal fat

Crespo and
Esteve-Garcia,
2002

Linseed oil (10%)
• Tallow (SFA)
• Sunflower oil (SO)
• Linseed oil (LO)

Broiler chickens
(27 days)

27 days • Abdominal fat mass • ↓ abdominal and body fat
deposition in LO compared with
SFA or SO

Ferrini et al.,
2008

Linseed oil (10%)
• Tallow (T)
• Sunflower oil rich in oleic acid

(SOO)
• SO rich in linoleic acid (SOL)
• Linseed oil (LO)
• Mix of fats (M: 55% T + 35%

LO + 10% SOL)

Female broiler
chickens
(1 day)

42 days • Abdominal fat mass • ↓ abdominal fat% (reduced by
30%) in LO compared to
saturated diet

Ferrini et al.,
2010

Linseed oil (10%)
• Basal diet (BS) containing 0.5%

sunflower oil
• Tallow diet (TA)
• Linseed diet (LO)

Female broiler
chickens
(1 day)

36 days • Growth performance
• Abdominal fat mass

• ↑ BWG
• ↓ abdominal fat deposition

González-Ortiz
et al., 2013

FO and LO
mixture

(10%)
• Tallow diet (S)
• A blend of fish oil and linseed oil

(N3 diet)

Female broiler
chickens
(14 days)

37 days • Abdominal fat mass
• Adipocyte size

• ↓ abdominal fat%
• ↓ adipocyte size

Torchon et al.,
2017

Fish oil
Flaxseed oil

(8%)
• Lard (saturated)
• Fish oil (FO)
• Flaxseed oil
• Canola oil

Broiler chickens
(7 days)

24 days • Growth performance
• Abdominal fat mass
• Adipocyte size

• ↓ adipocyte size
• ↑ plasma non-esterified fatty acid

levels (lipolysis)

Ibrahim et al.,
2018

Fish oil
Linseed oil

(4–4.5%)
• Sunflower (C)
• Fish oil (FO)
• C1:FO1
• C3:FO1
• Linseed oil (LO)
• C1:LO1
• C3:LO1

Broiler chickens
(1 day)

42 days • Growth performance
• Abdominal fat mass

• ↑ BW, BWG/↓ FCR
• ↓ abdominal fat%
• ↓ TG and total cholesterol/↑

HDL-C/↓ LDL-C and VLDL

Long et al.,
2018

Microalgae
(MA)

(3%)
• Soybean oil (SO)
• MA 1: SO 2
• MA 2: SO 1

Male broiler
chickens
(1 day)

42 days • Growth performance
• Abdominal fat mass

• ↑ BWG/↓ FCR
• ↑ liver %, ↓ abdominal fat %
• ↑ serum glucose/↓ cholesterol
• ↑ superoxide dismutase, ↑

antioxidant capacity

influence of factors during fetal development on the risk of
diseases as adults (Barker, 1992). Programming occurs in part
through epigenetic mechanisms, in which pre- and perinatal
factors modify the genome through methylation, chromatin
acetylation, and other non-sequence-based changes. These
modifications persist through cell divisions and can influence
gene expression and subsequently phenotypes throughout the
life of the organism as well as across multiple generations.
The concept of developmental programming has been applied
to a plethora of embryonic exposures, but it is rooted in the
impact of the maternal diet on offspring (Barker and Osmond,
1986). Studies in mammals indicate that energy metabolism and
adiposity are especially sensitive to developmental programming

by the maternal diet (Holness et al., 2000; George et al., 2012;
Du et al., 2013; Lukaszewski et al., 2013; Ong and Guest,
2018). For example, energy deficit in the maternal diet during
pregnancy increases adiposity in offspring after birth (Howie
et al., 2012). A growing body of evidence from other species
suggests that n-3 PUFA can act very early in life to influence
adiposity and metabolism through developmental programming.
For example, higher maternal blood levels of n-3 vs. n-6 PUFA
during pregnancy have been associated with reduced body
fat and increased leanness in children (Donahue et al., 2011;
Vidakovic et al., 2016a,b). Experimental studies demonstrate that
the relative abundance of n-6 vs. n-3 fatty acids in the perinatal
period influences adipogenesis and fat accretion. Mice born from
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dams with low n-6/n-3 ratios due to genetic manipulation had
half the body fat, increased energy expenditure and fatty acid
oxidation, and more but smaller adipocytes as adults compared
to mice born to wild type dams (Rudolph et al., 2018).

Avians are ideally suited for developmental programming
by fatty acids due to the relationship between the hen diet
and the yolk, and the role of yolk fatty acids in supporting
the developing embryo. Approximately 60% of the yolk’s dry
mass consists of lipids that are transported to the egg from
the hen’s liver (Speake et al., 1998). This lipid supply includes
triglycerides that provide the embryo with fatty acids needed for
energy, and phospholipids that serve as building blocks for cell
membranes. Virtually all of the triglyceride and phospholipid
pools in the yolk are utilized by the time of hatch (Noble
and Moore, 1964). Saturated and monounsaturated fatty acids
delivered to the yolk can be synthesized in the liver through de
novo lipogenesis from carbohydrate, but the PUFA components
come directly from the diet. Therefore, the n-3 and n-6 profile
of the yolk, and subsequently of the tissues of the developing
embryo, is determined almost exclusively by the diet of the hen
(Cherian and Sim, 1991, 1993; Cherian et al., 1997). This appears
to be particularly true for n-3 PUFA, which are preferentially
incorporated into phospholipids of the developing embryo
(Speake et al., 1998). Fish oil is the most direct means to enrich
eggs and developing embryos in EPA and DHA, as the hen liver
directly incorporates these species into phospholipids that are
packaged for delivery to the yolk. However, oils such as flaxseed
can have similar effects because of the unique properties of PUFA
synthesis enzymes in chicken (Cherian et al., 1997; Gregory et al.,
2013). The hen liver elongates and desaturates a portion of dietary
ALA before packaging for delivery to the yolk. During embryonic
development, both the yolk sac and the tissues of the embryo
convert additional ALA to EPA and DHA, amplifying the effects
of the hen diet (Noble, 1987; Noble and Cocchi, 1990). Therefore,
oils that are more affordable and more stable than fish oil
could feasibly be used for dietary developmental programming in
production. Several studies have utilized the relationship between
fatty acids in the hen diet and those of the embryo to demonstrate
the potential for developmental programming by n-3 PUFA in
chickens. For example, enriching the hen diet in different sources
of n-3 PUFA has been shown to influence immunocompetence,
synthesis of inflammatory mediators, bone mineralization, and
antioxidant status in offspring (Hall et al., 2007; Bautista-Ortega
et al., 2009; Bullock et al., 2014; Akbari Moghaddam Kakhki et al.,
2020). Readers are referred to a recent review by Thanabalan and
Kiarie (2021) for more details.

The ability to developmentally program reduced fat accretion
through n-3 PUFA in the hen diet has been demonstrated in
broilers. Beckford et al. (2017) fed broiler-breeder hen diets with
fat provided from either corn or fish oil (2.3%) for 4 weeks.
Chicks hatched from both sets of hens were fed commercial
starter diets after hatch, with no modification to the fat source.
Those produced from hens fed fish oil had significantly less fat
accretion at 7 and 14 days, with no impact on growth or lean
tissue mass. Reduced fat accretion was associated with smaller
but more abundant adipocytes, consistent with inhibition of late
stage of adipogenesis. Transcriptomic and proteomic analyses

of adipose tissue indicated that the hen fish oil diet inhibited
pathways associated with triacylglycerol synthesis, adipogenesis,
mobilization of stored fatty acids from lipid droplets, and fatty
acid utilization, all of which likely contributed to reduced adipose
mass. This study provides compelling evidence that the broiler
hen diet is a potential avenue through which to reduce fat
accretion in broilers through developmental programming by n-
3 PUFA.

It is important to acknowledge the potential challenges that
would result from increasing the relative content of LC n-3 PUFA
in production diets. In addition to a higher cost, oils rich in
long-chain PUFA species are more prone to oxidation due to
increased chain length and numbers of double bonds in their
fatty acids. Supplementation with additional antioxidants, such
as vitamin E, is often used to suppress oxidation, which can
impair taste and meat quality. Alternative sources of LC n-3
PUFA that are naturally enriched in antioxidants may be able
to offset this concern. For example, microalgae, a viable and
effective alternative to fish oil as a source of EPA and DHA, have
been shown to contain antioxidants that markedly reduce lipid
peroxidation in broiler tissues (Tao et al., 2018).

SUMMARY

Collectively, these studies demonstrate the ability to reduce
the deposition of adipose tissue in broilers by enriching the
diet in n-3 PUFA. In particular, the potential to limit fat
accretion through developmental programming shows promise
for efficiently limiting fat deposition through the diet of the
hen. Strategies to continue to improve the utilization of feed for
broiler production will be increasingly important as the global
population continues to grow and seek affordable sources of
complete protein.
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