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Abstract

Khellin and visnagin are two furanochromones that can be frequently found in ethnomedical formulations in Asia and
the Middle East. Both compounds possess anti-inflammatory and analgesic properties, therefore modern medicine
uses these compounds or structurally related derivatives for treatment of vitiligo, bronchial asthma and renal colics.
Despite their frequent usage, the potential toxic properties of visnagin and khellin are not well characterized up-to-
now. Many natural compounds modulate the expression and activity of cytochrome P450 1A1 (CYP1A1), which is
well-known to bioactivate pro-carcinogens. The expression of this enzyme is controlled by the aryl hydrocarbon
receptor (AHR), a ligand-activated transcription factor and regulator of drug metabolism. Here, we investigated the
influence of both furanochromones on AHR signaling in human HepG2 hepatocarcinoma cells and primary human
hepatocytes. Both compounds transactivated xenobiotic response element (XRE)-driven reporter gene activity in a
dose-dependent manner and induced CYP1A1 transcription in HepG2 cells and primary hepatocytes. The latter was
abolished in presence of a specific AHR antagonist. CYP1A enzyme activity assays done in HepG2 cells and primary
hepatocytes revealed an inhibition of enzyme activity by both furanochromones, which may become relevant
regarding the metabolism of xenobiotics and co-administered therapeutic drugs. The observed induction of several
other members of the AHR gene battery, whose gene products are involved in regulation of cell growth,
differentiation and migration, indicates that a further toxicological characterization of visnagin and khelllin is urgently
required in order to minimize potential drug-drug interactions and other toxic side-effects that may occur during
therapeutic usage of these furanochromones.
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Introduction

The aryl hydrocarbon receptor (AHR) is a ligand-dependent
transcription factor that is activated by dioxins, polycyclic
aromatic hydrocarbons (PAHs) and related environmental
pollutants [1,2]. Gene disruption studies in mice have identified
the AHR as a crucial mediator of PAH carcinogenicity [3] and
dioxin toxicity, including immune- and hepatotoxic effects [4,5].
In the absence of a ligand, the AHR is trapped in a cytosolic
multiprotein complex consisting of heat shock protein 90, AHR
interacting protein, and co-chaperone p23 [2]. In addition, an
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association with the soluble tyrosine kinase c-src is discussed
[6]. Upon ligand-binding, this complex dissociates and the AHR
shuttles into the nucleus, dimerizes with its partner molecule
AHR nuclear translocator (ARNT) and binds to xenobiotic
responsive elements (XRE) in the promoter region of target
genes to stimulate their expression [2]. The AHR gene battery
encodes for drug metabolizing enzymes as well as for proteins
involved in cell growth and differentiation. The probably best
examined target molecules of AHR signaling are cytochrome
P450 (CYP) family 1 enzymes, which are involved in the
oxidative metabolism of PAHs and other polyaromates,
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including steroid hormones and therapeutic drugs [7]. Beside
direct induction of XRE-dependent gene expression, the AHR-
driven activation of the c-src kinase initiates an alternative
route of AHR signaling, sequentially comprising the
phosphorylation of the EGF receptor, stimulation of
downstream MAPKs and transcriptional induction of another
set of target genes [8].

Several studies provided evidence that the AHR is not only
activated by anthropogenic chemicals, but also by natural and
endogenous ligands [1,2]. For instance, 6-formylindolo[3,2b]
carbazole, a tryptophan photoproduct, which is intracellularly
formed upon ultraviolet (UV) B irradiation, was identified as a
potent AHR agonist and crucial mediator of the UVB response
in human keratinocytes [9]. In addition, numerous plant
polyphenols and alkaloids were identified to stimulate or
repress AHR signaling and downstream CYP1 enzyme activity
[1,2]. Besides influencing the metabolic activation of PAHSs,
aflatoxins, and related procarcinogens, the modulation of CYP1
activity by food constituents, herbal remedies or lifestyle-
derived factors can directly affect the metabolic fate and
therapeutic efficiency of co-administered medications. For
instance, exposure of rats to the strong AHR agonist and
CYP1A inducer rutaecarpine [10] was shown to significantly
alter the pharmacokinetics of drugs, such as acetaminophen
and theophylline [11,12].

Khellin and the structurally related furanochromone visnagin
are the major active principles found in Ammi visnaga, a
widespread flowering plant whose dried fruits have been
traditionally used in Asia and the Middle East for treatment of
coronary diseases, bronchial asthma, renal colics and muscle
spasms [13,14]. Both compounds exhibit vasodilatory activities
due to their calcium channel blocking properties [15,16] and act
in an anti-inflammatory manner by inhibiting AP-1 and NF-kB
signaling [17]. Khellin has been extensively used by the
pharmaceutical industry as basic raw material for the
development of drugs such as the anti-asthmatic agent sodium
cromoglycate or the widely used anti-arrhythmic drug
amiodarone [18]. Recent studies identified derivatives of khellin
and visnagin as suitable agents to treat different types of
tumors, epileptic seizures, kidney stones and inflammatory
diseases [19-22]. Due to its photosensitizing properties and
lesser phototoxic side-effects compared to psoralens, khellin is
also used in the photochemotherapy (khellin treatment plus
ultraviolet A irradiation; KUVA) of vitiligo, a pigmentation
disorder of the skin [23,24].

Because (1) khellin and visnagin probably fulfill the structural
prerequisites to bind to the AHR [25], (2) structurally related
furocoumarins (8-methoxypsoralen, angelicin) are known to
stimulate AHR-dependent CYP1A1 expression in rat
hepatocytes [26], and (3) UVB-induced skin pigmentation is
partially mediated by AHR [27,28], we here investigated if the
two furanochromones activate AHR signaling in human primary
hepatocytes and hepatocarcinoma cells.
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Materials and Methods

Ethics Statement

Our laboratory obtained the approval from ethics committee
(The Ethics Committee of University Hospital, Olomouc and the
Faculty of Medicine Palacky University in Olomouc), reference
number 119/07 for handling the liver tissue for hepatocytes
isolation. The liver tissue samples were procured from The
Centre of Transplantation (http://www.fnol.cz/kliniky-ustavy-
oddeleni.asp#seznam). We are associated with the University
Hospital and the Faculty of Medicine Palacky University in
Olomouc.

Chemicals

Visnagin (purity: 97%) was purchased from Acros Organics
(Geel, Belgium),  khellin  (purity: 98%) and  3-
methylcholanthrene  (3MC) from Sigma-Aldrich  (Munich,
Germany). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was
purchased from Ultra Scientific (Kingstown, RI, USA). MNF
was kindly donated by Gabriele Vielhaber (Symrise GmbH &
Co. KG, Holzminden, Germany). All other chemicals were of
the highest quality commercially available.

Cell Culture

a) Primary Human Hepatocytes. Human liver tissue used
in this study was obtained from two sources: (i) from multiorgan
donors LH40 (male; 57 years), LH42 (female; 60 years); tissue
acquisition protocol was in accordance with the requirements
issued by local ethical commission in the Czech Republic; (ii)
long-term human hepatocytes in monolayer Batch HEP220586
(male; 82 years), HEP220624 (male; 80 years) (Biopredic
International, Rennes, France). The research was not
conducted outside of my country of residence. Cells were
cultured in serum-free medium. Hepatocytes were treated for
24 h or 48 h with visnagin or khellin, 3MC (1 yM) or TCDD (5
nM) and/or vehicle (DMSO; 0.1% v/v). Cultures were
maintained at 37 °C and 5% CO, in a humidified incubator.

b) HepG2 Cells. Human Caucasian hepatocellular
carcinoma cells HepG2 (ECACC No. 85011430) were cultured
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% of fetal calf serum, 100 U/mL streptomycin, 100
pug/mL penicillin, 4 mM L-glutamine, 1% non-essential amino
acids, and 1 mM sodium pyruvate. Cells were maintained at
37°C and 5% CO, in a humidified incubator.

Reporter Gene Assay

Experiments were performed in stably transfected gene
reporter cell line AZ-AHR, which was derived from HepG2 cells
transfected with a construct containing several XRE 5'-
upstream of luciferase reporter gene [29]. Following the plating,
cells were stabilized for 16 h and then treated for 24 h with
visnagin/khellin (0.001-20 pM), 3MC (5 pM) and/or vehicle
(DMSO; 0.1% vl/v). After treatment, cells were lysed and
luciferase activity was measured using an Infinite M200
machine (Tecan, Grodig, Austria).
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RNA Isolation, Reverse Transcription and PCR

a) Primary Human Hepatocytes. Total RNA was isolated
from primary hepatocytes in the laboratory of R.V and Z.D.
using TRI Reagent® (Molecular Research Center, Cincinnati,
OH, USA). cDNA was synthesized from 1000 ng of total RNA
using M-MLV Reverse Transcriptase (Finnzymes, Espoo,
Finland) at 42 °C for 60 min in the presence of random
hexamers (Takara, Shiga, Japan). gqRT-PCR was carried out
using LightCycler FastStart DNA Master™YS SYBR Green |
(Roche Diagnostic Corporation, Prague, Czech Republic) on a
Light Cycler 480 Il apparatus (Roche Diagnostic Corporation).
CYP1A1 and GAPDH mRNA expression was determined as
described previously [30]. Measurements were performed in
triplicates. Gene expression was normalized to GAPDH as a
housekeeping gene.

b) HepG2 Cells. Total RNA was isolated from HepG2 cells
in the laboratory of T.H.S. using the peqGOLD total RNA kit
(Peglab, Erlangen, Germany). For each sample 0.5ug of total
RNA was reverse ftranscribed using MMLV reverse
transcriptase (Promega, Madison, WI) in a total volume of 20ul.
3ul of cDNA of a 1:3 dilution were used for gqRT-PCR in a
Corbett-Rotor Gene 300 light cycler (Qiagen, Hilden, Germany)
with QuantiFast SYBR Green (Qiagen). All samples were
measured in triplicate. Gene expression was normalized to -
actin as a housekeeping gene. The oligonucleotides for
amplification were described previously: B-actin, CYP1A1,
CYP1B1, and AHRR [31], plasminogen activator inhibitor-2
(PAI-2) [32], and vascular endothelial growth factor (VEGF)
[33].

SDS-PAGE and Western Blot Analysis

Total protein extracts for each sample were prepared from 1
well of 6-well plate dish. Cells were washed twice with ice-cold
PBS and scraped into 1 ml of PBS. The suspension was
centrifuged (2,300x g/2 min/4°C) and the pellet was re-
suspended in 150 pl of ice-cold lysis buffer (150 mM NacCl; 10
mM Tris pH 7.2; 0.1% (w/v) SDS; anti-protease cocktail, 1%
(v/v) Triton X-100; anti-phosphatase cocktail, 1% (v/v) sodium
deoxycholate; 5 mM EDTA). The mixture was vortexed and
incubated for 10 min on ice and then centrifuged (15,700x g/13
min/4°C). Supernatant was collected and the protein content
was determined by the Bradford reagent. SDS—-PAGE gels
(8%) were run on a BioRad apparatus according to the general
procedure followed by the protein transfer onto PVDF
membrane. The membrane was saturated with 5% non-fat
dried milk for 1 h at room temperature. Blots were probed with
primary antibodies against CYP1A1 (goat polyclonal, sc-9828,
G-18, diluted 1:500 — for detection in human hepatocytes;
rabbit polyclonal, sc-20772, H-70, diluted 1:500 — for detection
in HepG2 cells), CYP1B1 (mouse monoclonal, sc-374228, G-4,
1:1000), actin (goat polyclonal; sc-1616, 1-19, diluted 1:2000),
all purchased from Santa Cruz Biotechnology (Santa Cruz, CA,
USA) or GAPDH (rabbit monoclonal, 2118, 14C10, diluted
1:1000) purchased from Cell Signaling Technology, overnight
at 4°C. Chemiluminescence detection was performed using
horseradish  peroxidase-conjugated secondary antibodies
(Santa Cruz Biotechnology) and Western blotting Luminol kit
(Santa Cruz Biotechnology). Densitometric analyses were
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carried out using the AlphaEaseFC Software (Alpha Innotech,
San Leandro, CA).

CYP1A Enzyme Activity Assay

7-Ethoxyresorufin-O-deethylation  (EROD) activity was
determined in intact HepG2 cells or hepatocytes in 96-well
plate format. The cellular monolayers were washed twice with
PBS and then they were incubated with 100 pl of the PBS
containing 8 pM 7-ethoxyresorufin and 10 pyM dicumarol to
prevent the further metabolism of resorufin. After 30 min of
incubation at 37°C, 75 ul was transferred to black 96-well plate
together with 125 yl of methanol. The fluorescence of resorufin
was measured at 530 nm excitation and 590 nm emission
wavelengths using an Infinite M200 machine (Tecan). The
results were normalized on cell viability determined by MTT
assay in order to exclude cytotoxicity.

Statistical Analyses

Results were expressed as mean + standard deviation.
Paired Student’s t-test was applied to all analyses, p values <
0.05 were considered as significant.

Results and Discussion

In this study, we asked if an exposure of human liver cells to
khellin and the closely related compound visnagin has an
impact on the activation of the AHR and its downstream
targets. Although, both furanochromones are often used in
alternative medicine, especially the potential toxic effects
provoked by khellin are of interest, since it is frequently used
for photochemotherapy of cutaneous pigmentation disorders.

A 24 h treatment of AZ-AHR reporter cells, a HepG2 cell line
harboring a stably transfected XRE-driven reporter gene
construct [29], with increasing concentrations of khellin and
visnagin (0.001 uM to 20 pyM) resulted in a dose-dependent
increase of reporter gene activity (Figure 1). A maximum 24-
fold (for visnagin) and 83-fold (for khellin) induction rate was
observed in cells treated with 20 uM of the respective test
compound. Noteworthy, a first statistical significant increase in
luciferase activity was already observed after administration of
1 nM khellin and 10nM visnagin, respectively. Treatment of the
AZ-AHR cells with 5 yM of the potent AHR agonist 3MC
(positive control) led to a higher, roughly 160-fold induction rate
of XRE-driven promoter activity (Figure 1). These data point to
the idea that both furanochromones are moderate activators of
hepatic AHR signaling. To further confirm this notion, we
analyzed the time-dependent effect of khellin (10 yM) and
visnagin (10 uM) exposure on mRNA expression of CYP1A1 in
HepG2 cells. As shown in Figure 2A, a slight induction of
CYP1A1 expression was observed after 8 h of treatment,
whereas the peak expression was reached additional 8 h later.
At this time point, visnagin caused an approximately 160-fold
induction of CYP1A1 transcription, whereas khellin enhanced
the expression rate roughly 90-fold. This was surprising, since
in the reporter gene assays, khellin turned out to be the more
potent activator of the XRE-driven reporter gene construct.
Noteworthy, we and others have earlier described similar
discrepancies between the results obtained from XRE-driven
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Figure 1. Visnagin and khellin stimulate XRE-driven luciferase activity in AZ-AHR cells. Stably transfected AZ-AHR cells
were treated for 24 h with visnagin (VIS; 0.001 pM-20 puM), khellin (KHEL, 0.001 uyM-20 uM), 5 yM 3MC and/or vehicle (DMSO;
0.1% v/v). Analyses were performed in four independent experiments and are expressed as fold induction over untreated cells. * -
Value is significantly different from DMSO-treated cells (p < 0.05).

doi: 10.1371/journal.pone.0074917.g001

reporter gene assays and other indicator tests for AHR
activation, such as gel retardation assays [34], EROD assays
[10], and gene expression analyses [35].

To prove a direct involvement of the AHR in the observed
transcriptional changes, we introduced the specific AHR
antagonist  3’-methoxy-4'-nitroflavone (MNF) [36] to our
expression analyses (Figure 2B). For this purpose, HepG2
cells were pre-treated for 1 h with MNF (or solvent) and
subsequently were co-exposed for 16 h to 10 uM of either
visnagin or khellin. Whereas MNF exposure alone did not
significantly alter basal CYP1A1 expression, the visnagin- and
khellin-mediated induction of CYP1A1 mRNA was clearly
abolished in the co-exposure scenario (Figure 2B). Therefore, it
is highly likely that the two furanochromones bind to the AHR
and modulate downstream gene expression. Since the
induction of mRNA is often correlated with the induction of
protein, we performed western blotting analysis for CYP1A1.
As a positive control we used 1 yM 3MC and 5 nM TCDD. We
observed massive induction of CYP1A1 protein by TCDD but
almost unimportant induction by 1 yM 3MC after 48 hrs (Figure
2C). However, both furanochromones induced CYP1A1 protein
to level exceeding DMSO- as well as 3MC-treated cells (Figure
2C). To test if the enhanced CYP1A1 gene expression was
translated into corresponding enzyme activities, we assayed
the CYP1A1/1A2-mediated 7-ethoxyresorufin-O-dealkylase
(EROD) activity in HepG2 cells treated with increasing
concentrations of visnagin or khellin (Figure 2D). Treatment of
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the cells for 16 h and 48 h with 1 yM 3MC resulted in a 4.3-
and 5.7-fold increase of EROD activity. Exposure to 5 nM
TCDD increased CYP1A enzyme activity 7- (16 h) and 23.5-
fold (48 h), respectively. In contrast to these high-affinity AHR
ligands, neither khellin nor visnagin treatment led to a
significant induction of CYP1A enzyme activity after 16 h. After
48 h, we observed a slight but significant enhancement of
EROD activity, which, at least for visnagin, displayed a reverse
dose-response, pointing to a possible inhibition of CYP1A
enzyme activities. To verify this, we pretreated HepG2 cells
with 5 nM TCDD for 48 h and consequently treated the cells
with the substrate mixture containing 7-ethoxy-O-resorufin with
or without visnagin or khellin. As shown in Figure 2E, the
TCDD-induced catalytic activity was decreased in a dose-
dependent manner by both compounds. Even though this
observation may theoretically also reflect an interference of
visnagin/khellin with the cellular uptake of 7-ethoxy-O-resorufin,
the most likely explanation is a visnagin/khellin-mediated
inhibition of CYP1A catalytic activity. This finding is in
accordance with earlier studies on S9-treated Salmonella
typhimurium TA98 cultures, showing that khellin exposure
reduced the metabolic activation of various pro-mutagenic
PAHs [37] and 2-amino-3-methylimidazo(4,5-f)-quinoline, which
is mainly activated via CYP1A-mediated N-hydroxylation [38].
In combination with our results, exposure to visnagin and
khellin would probably rather inhibit metabolic activation of pro-
carcinogens than inducing it. The other way round, the
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Figure 2. Effect of visnagin and khellin exposure on CYP1A1 expression and activity in HepG2 cells. A) HepG2 cells were
treated with 10 yM visnagin, 10 yM khellin, and/or DMSO for 4 h, 8 h, 16 h, and 24 h. The results from PCR are shown as fold of
DMSO-treated control cells. The data are mean from three independent experiments and were normalized to beta-actin
transcription. * - value is significantly different from DMSO-treated cells (p < 0.05).

B) HepG2 cells were pre-treated with 20 yM MNF for 1 h and then exposed to 10 pM visnagin or 10 uM khellin for additional 16 h.
The results from PCR are shown as fold of DMSO-treated control cells. The data are mean from three independent experiments and
were normalized to beta-actin transcription. * - value is significantly different from DMSO-treated cells (p < 0.05). # - value is
significantly reduced in comparison to cells treated with VIS and KHEL, respectively; (p < 0.05).

C) HepG2 cells were treated with visnagin (VIS; 1 uyM-20 uM), khellin (KHEL; 1 uM-20 uM), 1 uM 3MC, 5 nM TCDD, and/or vehicle
(DMSO; 0.1% v/v) for 48 h. Thereafter, western blotting analyses for detection of CYP1A1 and actin were performed as described in
Materials and Methods section. The representative western blot analysis of two independent experiments (passages) is presented.
D) HepG2 cells were treated with visnagin (VIS; 1 yM-20 uM), khellin (KHEL; 1 pM-20 uM), 1 pM 3MC, 5 nM TCDD, and/or vehicle
(DMSO; 0.1% v/v) for either 16 h (upper panel) or 48 h (lower panel). EROD activity was determined as described in Materials and
Method section. Analyses were performed in three independent experiments and are shown as fold induction over untreated cells. *
- value is significantly different from DMSO-treated cells (p < 0.05).

E) HepG2 cells were treated with TCDD (5 nM) for 48 h. Thereafter, substrate mixture was supplemented with increasing doses of
visnagin (VIS 1 nM -20 pM) or khellin (KHEL; 1 nM -20 yM) and EROD activity was determined as described in Materials and
Methods section. Data are mean from three independent experiments and are expressed as percentage (%) of TCDD-mediated
induction (i.e. induction by TCDD = 100%). * - value is significantly different from TCDD-treated cells (p < 0.005).

doi: 10.1371/journal.pone.0074917.g002
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Figure 3. Visnagin and khellin modulate the expression of several AHR target genes in HepG2 cells. HepG2 cells were pre-
treated for 1 h with 20 yM MNF or 0.1% (v/v) DMSO and were subsequently exposed to 10 uM visnagin (VIS) or 10 pM khellin
(KHEL). After 16 h, RNA was isolated and reverse transcribed and the expression of CYP1B1, AhRR, PAI-2 and VEGF was
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VIS and KHEL, respectively; (p < 0.05).
doi: 10.1371/journal.pone.0074917.g003

inhibition of CYP1A enzyme activities may lead to alterations in
the pharmacokinetics of drugs, such as the leukotriene
receptor antagonist verlukast [39], the antipsychotic drug
clozapine [40], and the calcium channel blocker verapamil [41].
In addition, visnagin- and khellin administration did not only
modulate CYP1A1 expression but also modulated the
transcription of CYP1B1 in an AHR-dependent manner. As
shown in Figure 3, visnagin and khellin treatment elevated
CYP1B1 gene expression, whereas MNF successfully
counteracted this induction. CYP1B1 is involved in steroid
breakdown [42] and of crucial relevance regarding the
carcinogenicity of certain PAHs, especially 7,12-
dimethylbenz(a) anthracene [43,44]. Moreover, we observed
increased level of CYP1B1 protein in the presence of both
furanochromones as well (Figure S1).

Beside their effect on the expression of the prototype target
genes CYP1A1 and CYP1B1, we investigated if khellin and
visnagin can influence the transcription of other AHR target
genes (Figure 3). To this aim we pretreated HepG2 cells for 1 h
with 20 yM MNF (or solvent) and subsequently exposed them
for 16 h to 10 puM visnagin or 10 uM khellin, respectively.
Likewise CYP1, gene expression of the AHRR is also regulated
via functional XRE located in its enhancer/promoter sequence
[45,46]. As expected, treatment of HepG2 cells with visnagin
and khellin resulted in an increased expression of AHRR,
which was also significantly attenuated by MNF pre-treatment.
The AHRR protein is a negative feedback inhibitor of AHR
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signaling that also dimerizes with ARNT and, due to the lack of
a C-terminal transactivation domain, terminates XRE-
dependent transcription [47]. Recently, a study on primary
human mammary epithelial cells and human lung cancer cells
provided evidence that the AHRR is not just a negative
regulator of AHR, but also a critical regulator of cell growth and
apoptosis [48]. PAI-2 is an important factor influencing the
growth and differentiation of cells by regulating proteolysis of
the extracellular matrix [49], and PAI-2 was previously shown
to be up-regulated in an AHR-dependent manner [50]. VEGF
expression is induced during hypoxia to promote proliferation
and migration of endothelial cells and thus is an important
trigger for vasculogenesis and angiogenesis during embryonic
development, wound healing and tumor growth [51,52].
Exposure of MCF10A cells to dioxin was shown to result in an
increased expression of PAI-2 and VEGF, which was blunted in
presence of either MNF or PP2, a src kinase inhibitor,
indicating that both genes are regulated through the c-src-
dependent, non-genomic AHR signaling pathway [53]. As
shown in Figure 3, treatment of HepG2 cells with 10 uM
visnagin or khellin also enhanced PAI-2 transcription in an
AHR-dependent manner, as indicated by the samples co-
treated with MNF. However, only visnagin significantly induced
VEGF transcription in the tested concentration. This induction
was again blocked by MNF co-exposure. These results
strongly indicate that the two furanochromones stimulate both
XRE-dependent as well as XRE-independent, non-genomic
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Table 1. Influence of visnagin and khellin treatment on
CYP1A1 mRNA expression in human primary hepatocytes.

CYP1A1 mRNA fold induction

LH40 LH42  Hep220586 Hep220624
uT 1.0 1.0 1.0 1.0

VIS 1M - 77 - 10.8

VIS 10 pM 63.3 120 208 28.9

VIS 20 M 43.9 11.1 - 36.1

KHEL 1 uM - 75 - 8.8

KHEL 10 uM 95.7 344 300 276

KHEL 20 pM 60.6 5.0 - 326

3MC 1 uM 62.8 227 2065 711

TCDD 5 nM 2345 385

Human hepatocytes were incubated with visnagin (VIS; 1 yM-20 puM) or khellin
(KHEL; 1 pM-20 pM), 1 pM 3MC, 5 nM TCDD, and/or vehicle (DMSO; 0.1% v/v)
for 24 h. The data are mean from duplicate measurements and are expressed as
fold induction over DMSO-treated cells (UT). The copy numbers were normalized
to GAPDH mRNA expression.

doi: 10.1371/journal.pone.0074917.t001

AHR signaling. This in turn points to the idea that visnagin and
khellin may affect cellular functions and pathways beyond
CYP-mediated metabolism, and thus may contribute to
pathophysiological processes in human hepatic cells.

To ensure that the AHR-activating properties identified so far
were not restricted to the used hepatocarcinoma cell line, we
exposed primary human hepatocytes for 24 h to visnagin and
khellin and subsequently investigated CYP1A1 mRNA as well
as protein expression. As expected, the AHR agonists used as
positive controls, 3MC (1 pM) and TCDD (5 nM), significantly
induced CYP1A1 mRNA expression (Table 1). The induction
varied greatly among the hepatocyte cultures from different
donors, pointing to the presence of interindividual differences in
CYP1A1 responsiveness, probably due to age- and gender-
related factors [54]. However, this was probably not our case
since when we compared basal CYP1A1 mRNA level among
hepatocyte cultures in DMSO-treated samples (Figure S2) with
gender and age of donors, no correlation was observed.
Nevertheless, interindividual differences became also visible
after exposure of the primary hepatocytes to visnagin and
khellin (1 pM, 10 uM, and 20 uM). Whereas we observed a
clear induction of CYP1A1 transcription in any of the four
different hepatocyte cultures, the amplitude of the response
varied dramatically from donor to donor (Table 1). Therefore,
we decided to further investigate the effect of khellin/visnagin
exposure on CYP1A1 expression in primary hepatocytes on
protein level. As shown in Figure 4, 10 yM and 20 uM of both
furanochromones led to a roughly 3- to 6-fold increase in
CYP1A1 protein expression after 48 h, which turned out to be
statistically significant for all tested concentrations (except the
samples treated with 20 pM khellin). In its band intensity, the
furanochromone-induced up-regulation was comparable to that
reached upon exposure to 1 yM 3MC (Figure 4).

The observed increase in CYP1A1 protein expression upon
khellin/visnagin exposure raised the idea of elevated catalytic
CYP1A activities. Thus, we performed EROD assays of two
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primary hepatocyte cultures from different donors (LH45,
Hep220670). However, in contrast to the applied control
substances (3MC and TCDD), which induced EROD activity in
both cultures, we only observed a very weak increase in
CYP1A enzyme activity upon exposure to 1 uM, 10 uM or 20
UM of either khellin or visnagin (Table S1). Since we observed
a significant induction in CYP1A1 protein expression in primary
hepatocytes from four different donors, it is highly likely that the
tested furanochromones also exhibited CYP1A inhibitory
properties, as previously observed in the respective HepG2
experiments (Figure 2E).

In aggregate, we have found that the two furanochromones
khellin and visnagin are potent activators of AHR-dependent
signaling processes in human primary hepatocytes as well as
in a human hepatocarcinoma cell line. Simultaneously, both
test compounds are also efficient inhibitors of CYP1A-driven
catalyzes, indicating that these compounds may interfere with
the metabolic fate of PAHSs, drugs, and steroid hormones. The
quantitative expression analyses performed in HepG2 cells
further indicated that visnagin and khellin modulate the
expression of genes whose encoded products (VEGF, PAI-2,
AHRR) are involved in regulation of cell growth, differentiation,
migration, and apoptosis. At least for khellin, the doses applied
in this study are pretty close to those found in human
individuals. For instance, it was reported that 2 h to 5 h after
ingestion of a single dose of 100 mg khellin, an amount
commonly applied during KUVA therapy, peak levels of 4.9 uM
to 8.4 uyM were reached in the serum of vitiligo patients [55].
Since these levels were achieved after oral uptake, and khellin
is rapidly bioavailable, it is tempting to speculate that the liver is
initially exposed to even higher khellin concentrations. Thus,
the effects observed in our study may indeed occur within the
human body. Although the serum levels of khellin reached
upon usage of Ammi visnaga extracts as herbal remedy are
quite unknown, the fact that the complete bioavailability of
khellin is achieved faster when supplied as component of the
whole plant extract than as pure formulation [56], indicates that
such applications may also cause significant levels of bioactive
khellin in the blood. Accordingly, it cannot be excluded that the
high levels of khellin, which are probably present in liver, may
be causative for the hepatotoxicity observed in vitiligo patients
under systemic KUVA therapy, as indicated by elevated liver
transaminases in 7% to 25% of the recipients [55,57].
However, if activation of AHR signaling is involved in khellin-
induced hepatotoxicity is not known up-to-now. An interesting
issue to elucidate in future studies is to clarify the AHR-
activating potential of khellin in melanocytes. Since the AHR
was previously shown to mediate UVB-induced skin
pigmentation, either by stimulating melanogenesis [27] or
melanocyte proliferation [28], khellin-mediated AHR activation
may, at least in part, contribute to the re-pigmentation of vitiligo
skin under KUVA therapy.

In summary, we have identified khellin and visnagin, two
furanochromones  probably relevant regarding human
exposure, as activators of the AHR in human primary
hepatocytes and HepG2 hepatocarcinoma cells. Both
compounds increased the expression of several AHR target
genes, but simultaneously acted as potent inhibitors of CYP1A
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Figure 4. Effect of visnagin and khellin exposure on CYP1A1 protein expression in human primary hepatocytes. Human
hepatocytes were treated with visnagin (VIS; 10 yM and 20 uM), khellin (KHEL; 10 uM and 20 yM), 1 yM 3MC, and/or vehicle
(DMSO; 0.1% v/v) for 48 h. The shown western blot panels were obtained using protein lysate from the primary hepatocyte culture
LH40. The densitometric analysis presents the results from western blot experiments performed with protein lysates form four
different hepatocyte donors (LH42, HEP220624, HEP220586, and LH40; IDV = integrated density volume); (p < 0.05).

doi: 10.1371/journal.pone.0074917.g004

monooxygenases. Therefore, we conclude that, especially with
regard to the potential health risk for individuals under KUVA
therapy, both the putative adverse effects as well as possible
drug-drug interactions of khellin and structurally related
chemicals have to be carefully elucidated in future toxicological
studies to minimize unpredicted side-effects.
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Supporting Information

Figure S1. The effect of visnagin and khellin exposure on
CYP1B1 protein in HepG2 cells. HepG2 were treated with
visnagin (VIS; 20 yM), khellin (KHEL; 20 pM), 5 yM 3MC
and/or vehicle (DMSO; 0.1% v/v) for 16 h. Thereafter, western
blotting analyses for detection of CYP1B1 and GAPDH were
performed as described in Materials and Methods section The
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representative western blot analysis of two independent
experiments (passages) is presented.
(TIF)

Figure S2. Basal level of CYP1A1 mRNA among
hepatocyte cultures. DMSO-treated human hepatocytes
samples (UT) were subjected to PCR analysis as described in
Materials and Methods section. The data are mean from
triplicate measurements and are expressed as fold induction
over DMSO-treated cells (UT) from culture with lowest CYP1A1
basal expression (LH40). The copy numbers were normalized
to GAPDH mRNA expression.

(TIF)

Table S1. Effect of visnagin and khellin exposure on
EROD activity in primary hepatocytes. Two different cultures
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