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As research into tumor-immune interactions progresses, immunotherapy is becoming
the most promising treatment against cancers. The tumor microenvironment (TME)
plays the key role influencing the efficacy of anti-tumor immunotherapy, in which
tumor-associated macrophages (TAMs) are the most important component. Although
evidences have emerged revealing that competing endogenous RNAs (ceRNAs)
were involved in infiltration, differentiation and function of immune cells by regulating
interactions among different varieties of RNAs, limited comprehensive investigation
focused on the regulatory mechanism between ceRNA networks and TAMs. In this
study, we aimed to utilize bioinformatic approaches to explore how TAMs potentially
influence the prognosis and immunotherapy of lung adenocarcinoma (LUAD) patients.
Firstly, according to TAM signature genes, we constructed a TAM prognostic risk model
by the least absolute shrinkage and selection operator (LASSO) cox regression in
LUAD patients. Then, differential gene expression was analyzed between high- and
low-risk patients. Weighted gene correlation network analysis (WGCNA) was utilized
to identify relevant gene modules correlated with clinical characteristics and prognostic
risk score. Moreover, ceRNA networks were built up based on predicting regulatory
pairs in differentially expressed genes. Ultimately, by synthesizing information of protein-
protein interactions (PPI) analysis and survival analysis, we have successfully identified a
core regulatory axis: LINC00324/miR-9-5p (miR-33b-5p)/GAB3 (IKZF1) which may play
a pivotal role in regulating TAM risk and prognosis in LUAD patients. The present study
contributes to a better understanding of TAMs associated immunosuppression in the
TME and provides novel targets and regulatory pathway for anti-tumor immunotherapy.

Keywords: tumor-associated macrophages, lung adenocarcinoma, LASSO cox regression, WGCNA, competing
endogenous RNA
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INTRODUCTION

As reported in World Cancer Report 2020, lung cancer continues
to be the most common cancer type and the leading cause of
cancer death worldwide, accounting for about 18% of all cancer
deaths. Non-small-cell lung cancer represents 80–85% of lung
cancers, and can be subdivided into adenocarcinoma, squamous-
cell carcinoma, and large-cell carcinoma, etc (Reck and Rabe,
2017; Siegel et al., 2020). Among them, lung adenocarcinoma
(LUAD) is more aggressive and possesses more morphological
heterogeneity than other types of lung cancer (Zhang et al., 2018).

In spite of advances in chemotherapy, radiotherapy, and
targeted therapy in the last decade, prognosis of patients with
advanced lung cancer is still very poor, with a 5-year survival
rate of 10–20% (Allemani et al., 2015). As research progresses,
immunotherapy is becoming the most promising treatment
against cancers, and has gradually revolutionized cancer
treatment (Herbst et al., 2018). Although several tumor types
including LUAD reveal effective response to immunotherapy
especially immune checkpoint blockade, it remains a large
portion of patients failed to benefit from the treatment (Chen and
Mellman, 2017; Hirsch et al., 2017).

Recent studies have demonstrated that the tumor
microenvironment (TME) plays the key role influencing
the efficacy of anti-tumor immunotherapy, in which tumor-
associated macrophages (TAMs) are the most important
component (Bohn et al., 2018; Xia et al., 2020). TAMs
are abundant in multiple cancers compared to adjacent
tissues, supporting oncogenesis, vascularization in spite
of immunosurveillance (Yang and Zhang, 2017). This
raises the intriguing possibility that targeting TAMs may
be an effective therapeutic strategy for intractable LUAD
(Cassetta and Pollard, 2018). Actually, considering the
extremely complicated microenvironment, TAMs appear to
be highly heterogeneous in solid tumors. Meanwhile, TAM-
associated molecular markers appear to show controversial
prognostic value in pan-cancer patients (Pollard, 2004;
Lu-Emerson et al., 2013; Ojalvo et al., 2018; Wang et al.,
2018; Cao et al., 2019; Li et al., 2019; Liu et al., 2019;
Dai et al., 2020). Collective evidence had previously
demonstrated that TAMs were characterized mostly by M2-
like markers and were correlated with poor prognosis in
numerous malignancies, including lung cancer. Therefore, we
assumed that identification of M2-like TAMs risk was more
meaningful because they are primarily responsible for the
prognosis of patients.

Accumulating evidences have emerged revealing competing
endogenous RNAs (ceRNAs) play an essential role in regulating
interactions among different varieties of RNAs and were
involved in progression and immune infiltration in multiple
kinds of tumors (Zhang K. et al., 2020). However, there is
limited comprehensive investigation focusing on the regulatory
mechanism between ceRNA networks and TAM associated
signature genes, and the deep prognostic value is not yet
fully explored. In this study, we aimed to utilize bioinformatic
approaches analyzing public datasets to explore how TAMs
potentially influence the prognosis of LUAD patients and

tried to provide novel targets and directions for anti-tumor
immunotherapy, especially for targeting the TAMs.

MATERIALS AND METHODS

Study Design
The workflow of the manuscript is shown in Figure 1. Public
datasets TCGA-LUAD and an external GEO validation cohort,
containing sequencing data of LUAD tumor tissues, were
analyzed in this study. As for TCGA-training cohort, utilizing
TAMs associated genes, we firstly constructed a TAMs prognostic
risk model by LASSO cox regression. Samples were divided into
high- and low-risk groups according to their calculated risk
scores. Then differentially expressed genes between two groups
were identified for following comprehensive analysis. WGCNA
was utilized to identify relevant gene modules correlated with
clinical characters and prognostic risk score and ceRNA networks
were then built up in concerned WGCNA modules. At last, by
synthesizing information of PPI analysis and survival analysis, we
tried to identify a core regulatory axis in ceRNA networks which
may play a key role in TAMs associated immunosuppression and
prognostic value in LUAD patients.

Public Data Used in This Study
The TCGA-LUAD data, containing expression value of lncRNAs,
miRNAs, and mRNA as well as clinical information were
retrieved from the TCGA data portal1. Besides, another external
validation set GSE72094, defined as GEO-validation cohort was
obtained from the GEO website2. After removing patients who
have ever been affected by other malignant tumors or with
incomplete lncRNAs, miRNAs, and mRNAs data, 804 LUAD
patients were screened for inclusion in this study. Expression
value of genes was then standardized for subsequent analysis.

Construction of TAMs Related
Prognostic Risk Model
According to comprehensively reported TAMs related gene
signature: CD68, CD11b, CD163, CD206, IL10, CD39, MMP14,
CXCL8, CCL17, CD274, TGFB1, ARG1, and IDO1, a TAMs
related prognostic risk model was built up by the least absolute
shrinkage and selection operator (LASSO) cox regression (Duan
et al., 2016). Package “glmnet” in R software (version 3.3.2) was
utilized to achieve this result. Optimized lambda was determined
when the cross-validation error reach to the smallest and non-
zero coefficients were selected. Subsequently, a risk score was
built according to the expression value and module coefficient of
each gene (Lossos et al., 2004; Chen et al., 2007; Hu et al., 2019):

Risk score =
k∑

i=1

βiSi

where k, βi, and Si represent the number of signature genes,
the coefficient index, and the gene expression level, respectively.

1https://tcga-data.nci.nih.gov/tcga/
2https://www.ncbi.nlm.nih.gov/geo/
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Subsequently, a risk score was built according to the expression
value and module coefficient of each gene and therefore patients
were assigned into high-risk group and low-risk group based
on the risk score. At last, Kaplan-Meier survival analysis were
performed to validate prognostic value of the risk model.

Survival Analysis
The univariate Cox regression model was applied to analyze
the relationship between the overall survival (OS) of LUAD
patients and gene expression. p-value < 0.05 was considered
to be significant. Then, the selected genes were visualized with
the Kaplan-Meier survival curve. Time-dependent ROC analyses
were conducted by “timeROC” R package to estimate the
accuracy of the predicted survival probability.

Identification of Differentially Expressed
Genes
Random variance model (RVM) t-test was applied to filter the
differentially expressed genes among groups. After the significant
analysis and FDR analysis, we selected the differentially
expressed genes according to the criterion: FDR < 0.05
and absolute FC > 1.2. Then, the relative abundances of
differentially expressed lncRNAs (DElncRNAs), differentially
expressed miRNAs (DEmiRNAs) and differentially expressed
mRNAs (DEmRNAs) were illustrated in heatmaps by R
package “gplots.”

Weighted Gene Correlation Network
Analysis
In order to analyze potential interconnections between DEGs,
Weighted gene correlation network analysis (WGCNA) analysis
was employed to identify modules containing genes with
similar expression patterns via the package “WGCNA” in R
software (Langfelder and Horvath, 2008). Firstly, cluster analysis
was performed to remove outliers based on differential gene
expression of samples. Next, to balance the relationship between
scale independence and mean connectivity, a suitable soft-
threshold power β was determined. Then Topological Overlap
Matrix (TOM) was constructed based on β value, deriving
the intergenic divergence coefficients. Cluster Dendrogram
and Eigengene Adjacency Heatmap were drew to show gene
clustering and module relationship. To determine the most
important module for further analysis, eigengene for each
module was calculated. Then eigengenes were employed to
compute module-trait associations with risk score, TNM stage,
age, gender, race, and RFS, etc. Finally, concerned modules were
identified by considering genes numbers and association between
modules and clinical features.

Gene Ontology and KEGG Pathway
Enrichment Analysis
Gene ontology (GO) analysis was applied to analyze the main
function of genes according to the Gene Ontology database3,
which can organize genes into hierarchical categories and

3http://www.geneontology.org

uncover the gene regulatory network on the basis of biological
process and molecular function. The Kyoto Encyclopedia of
Genes and Genomes (KEGG)4 (Kanehisa et al., 2010) was
used to analyze the potential regulatory pathways of DEG
and genes involved in concerned WGCNA modules. The
functional annotations were performed by “clusterProfiler”
package in R software.

Construction of ceRNA Networks
To predict the possible target mRNAs and lncRNAs of
DEmiRNAs, several target gene prediction websites were
utilized. Firstly, by searching miRanda5, Targetscan6 (Lewis
et al., 2005), and miRWalk7 databases, we got intersection of
predicted miRNA-mRNA pairs with possible binding relation.
Similarly, miRNA-lncRNA pairs were predicted by employing
PITA8 and miRanda databases. Then, miRNA-mRNA/miRNA-
lncRNA pairs with negatively correlation were finally determined
in concerned WGCNA modules separately. Ultimately, the
ceRNA networks were constructed by integrating the miRNA–
lncRNA-mRNA interactions by Cytoscape 3.4.0 software
(Lotia et al., 2013).

Protein-Protein Interactions (PPI)
Networks Analysis
The protein-protein interactions (PPI) between mRNAs in
ceRNA networks were constructed by Search Tool for the
Retrieval of Interacting Genes (STRING) database9 (Szklarczyk
et al., 2011). Interactions with confidence score ≥0.4 were
demonstrated in the networks.

Quantification of Genes by Quantitative
Real-Time PCR
A total of 20 surgical resection of tumor tissues from LUAD
patients were obtained from the Thoracic Surgery department of
the First Affiliated Hospital of Zhengzhou University. Informed
consents were signed by patients before surgeries, and this
research was approved by the Institutional Ethical Committee
of the First Affiliated Hospital of Zhengzhou University. Total
RNA was extracted from tumor tissues with TRIzol reagent
(Invitrogen, United States). The purity and concentration of
RNA were quantified by NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific, United States). For mRNA and
lncRNA detection, 1 mg total RNA was used to synthesize
the first strand cDNA using PrimeScript RT reagent Kit With
gDNA Eraser (TaKaRa, Japan). For miRNA detection, cDNA
was synthesized with miRNA First Strand cDNA Synthesis
(Tailing Reaction) (Sangon, China). qRT-PCR were carried out
using SYBR Premix Ex Taq II (TaKaRa, Japan) in CXF96
System (BioRad, United States). GAPDH and U6 were used as

4http://www.kegg.jp/
5http://www.microrna.org/
6http://www.targetscan.org/
7http://129.206.7.150/
8https://genie.weizmann.ac.il/pubs/mir07/mir07_exe.html
9http://string-db.org/
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endogenous control. The primers used in this study were listed in
Supplementary Table 5.

RESULTS

Information of Samples and TAMs
Biomarkers Enrolled in This Study
The flowchart in Figure 1 demonstrates the overall design and
process about this study. To begin with, we have screened
suitable samples for analysis by removing patients who have
ever been affected by other malignant tumors and only samples
with expression data of lncRNA, miRNA and mRNA could
be enrolled. Firstly, we randomly assigned 406 samples from
TCGA-LUAD into two groups, 203 in TCGA-training cohort,
and 203 in TCGA-validation cohort. Besides, another external
validation set GSE72094, containing 398 LUAD samples, was
defined as GEO-validation cohort. In total, 804 LUAD patients
were screened for inclusion in this study. As for TAM biomarkers,

13 candidate genes which have been comprehensively reported
associated with phenotype or function of TAMs were enrolled in
analysis, including CD68, CD11b, CD163, CD206, IL10, CD39,
MMP14, CXCL8, CCL17, CD274, TGFB1, ARG1, and IDO1,
and the details about these TAM-related genes were showed in
Supplementary Table 1.

Construction of a Prognostic Risk Model
Based on TAM Signature Genes
In order to comprehensively assess the relationship between
TAM-related genes and the prognosis of LUAD patients, a
LASSO cox regression model was used in TCGA-Training
cohort to calculate the most valuable prognostic genes. The
optimized lambda determined in Figure 2A was utilized to
select features with non-zero coefficients, and the LASSO
coefficient profiles of TAM-associated genes are shown in
Figure 2B. Based on the LASSO regression model and the
prognosis of patients, 8 potential predictors were screened
in the TCGA-Training cohort: CD68, ITGAM, MRC1, IL10,

FIGURE 1 | Flowchart of this work.
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FIGURE 2 | Construction of TAM risk model in TCGA-training cohort. (A) Optimized lambda determined in the LASSO regression model. A vertical line is drawn at
the value chosen by 10-fold cross-validation. (B) The LASSO coefficient spectrum of the 13 TAM-related genes. (C) Expression heatmap of identified 8 genes and
corresponding risk score as well as survival status of patients in TCGA-training cohort. (D) KM survival curve for high- and low-risk group patients in TCGA-training
cohort.

CD274, ENTPD1, CCL17, and MMP14. Subsequently, a risk
score was built according to the expression value and module
coefficient of each gene: Risk Score = (−0.085962 × CD68
expression) + (−0.065982 × ITGAM expression) +
(−0.018361 × MRC1 expression) + (−0.019623 × IL10
expression) + (0.132375 × CD274 expression) +

(−0.620876 × ENTPD1 expression) + (−0.080381 × CCL17
expression) + (0.295009 × MMP14 expression). Then, risk
score for each patient in TCGA-Training cohort was calculated
using this formula, and therefore patients were assigned into
high-risk group and low-risk group according to the median of
the risk score (Figure 2C). Univariate and multivariate analyses
suggested that TAMs risk score in this study was an independent

prognostic factor of LUAD patients (Supplementary Table 6).
Kaplan-Meier survival analyses showed that the prognosis of
patients in the high-risk group was significantly poor than
that in the low-risk group (Figure 2D), indicating that the risk
model we constructed had a predictive role in the prognosis
of LUAD patients.

TAM Risk Model Displays a Consistent
Predictive Capacity in Validation Cohort
To further evaluate the prognostic value of the risk model
constructed above, similarly, the risk score formula was employed
to calculate risk score for patients in TCGA-validation and
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GEO-validation cohort. As a result, the distribution of patients
with risk score as well as prognostic status was presented in
Figures 3A,B, respectively. In addition, Kaplan-Meier survival
analyses in Figures 3C,D demonstrated that patients with higher
risk score in these two validation sets tend to possess a worse
prognosis which was consistent with the results in TCGA-
training set. Moreover, time-dependent receiver operating
characteristic curve (ROC) was plotted for predictive capacity of
the risk model in Figure 3E. From the figure we can see that the
area under curve (AUC) for TCGA-training, TCGA-validation
and GEO-validation was 70.7, 65.2, and 71.6% respectively. The
results suggest that the risk model we constructed based on TAM
signature genes reveals a good prognostic value.

Analysis of Differentially Expressed
Genes Based on Risk Score
So far, we have successfully constructed a prognostic risk model
in LUAD patients based on the expression of TAM-related
genes. Afterward, in order to get a deeper insight into the
specific molecular mechanisms that induce differences in survival
prognosis between high- and low-risk samples, comprehensive

analysis about differentially expressed genes between these two
groups will be conducted in the following sections.

Firstly, differential gene expression analysis was performed
between high- and low-risk groups in TCGA-training cohort.
Genes with FDR < 0.05 and absolute FC > 1.2 were considered
to be significantly changed in expression. Based on this criterion,
as a result, we have identified 381 DElncRNAs, 29 DEmiRNAs,
and 1976 DEmRNAs between the two groups. Compared to
the low-risk group, 81 lncRNAs, 8 miRNAs and 620 mRNAs
were upregulated, whereas 300 lncRNAs, 21 miRNAs and
1356 mRNAs were downregulated in the high-risk group. The
relative abundances of these genes were illustrated in heatmaps
by clustering analysis (Figures 4A–C). As mRNA encoded
proteins usually perform major biological functions, biological
process and pathway enrichment analysis of DEmRNAs were
conducted according to Gene Ontology and KEGG databases.
As depicted in Figure 4D, enrichment results showed that
upregulated DEmRNAs in high-risk group were primarily
involved in GO biological processes (GO-BP), such as “cell
division,” “cell proliferation,” “DNA replication” and “DNA
repair.” Meanwhile, KEGG pathways analysis also showed that
upregulated DEmRNAs were primarily involved in “cell cycle,”

FIGURE 3 | Validation of TAM risk model in validation cohorts. Expression heatmap as well as survival status of patients in TCGA- or GEO-validation cohort are
showed in (A,B). KM survival curve for high- and low-risk group patients in TCGA- or GEO-validation cohort are showed in (C,D). (E) Time-dependent ROC curve of
risk score in three cohorts.
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FIGURE 4 | Differential gene expression analysis and function annotation. Heatmaps demonstrate expression of DElncRNAs (A), DEmRNAs (B), and DEmiRNAs (C).
The top 25 enriched GO biological processes (D) and KEGG pathways (E) of the significantly upregulated genes. The top 25 enriched GO biological processes (F)
and KEGG pathways (G) of the significantly downregulated genes.

“DNA replication” and “metabolic pathways” which were related
to tumor development and progression (Figure 4E). On the
contrary, regarding to downregulated DEmRNAs in the high-
risk group, it is noteworthy that downregulated genes were
mainly enriched in “immune response,” “phagocytosis,” and
“cytokine-cytokine receptor interaction” (Figures 4F,G). These
results collectively demonstrate that DEmRNAs between high-
and low-risk groups play a key role in tumor development
and immunosuppression which is exactly consistent with the
immunosuppression of TAMs in the TME.

Weighted Gene Correlation Network
Analysis Reveals Potential
Interconnections Between Differentially
Expressed Genes
In the following part, in order to analyze the potential
interconnections between DEGs, WGCNA analysis was

employed to identify modules containing genes with similar
expression patterns. Firstly, cluster analysis was performed to
remove outliers based on differential gene expression of samples
(Supplementary Figure 1). Next, the expression profiles of 381
DElncRNAs and 1976 DEmRNAs were obtained for constructing
the co-expression network via the package “WGCNA” in R
software. To balance the relationship between scale independence
and mean connectivity, a suitable soft-threshold power β

should be determined for following construction of WGCNA
network. We analyzed the network topology with soft-threshold
power from 1 to 20 and finally confirmed β values of 9 in
lncRNAs/mRNAs co-expression network analysis (Figure 5A).
Then we constructed Topological Overlap Matrix (TOM) based
on β value, deriving the intergenic divergence coefficients.
From the Cluster Dendrogram in Figure 5B, we could find
that genes with similar expression patterns were grouped into
modules with specific color. Correlation between modules were
showed in Eigengene Adjacency Heatmap (Figure 5C), and
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FIGURE 5 | WGCNA analysis identifying concerned modules. (A) Determination of soft-threshold power in the lncRNAs/mRNAs WGCNA. Left: Analysis of scale
independence for various soft-thresholding powers. Right: Analysis of the mean connectivity for various soft-thresholding powers. (B) Cluster dendrogram was
generated by hierarchical clustering based on dissimilarity measure of genes. The branches correspond to modules of highly interconnected groups of genes.
(C) Heatmap plot of the adjacencies in the hub gene network, red represents positive correlation with high adjacency, while blue color represents negative correlation
with low adjacency. (D) Matrix of module-trait relationships and p-values for selected traits. Each row corresponds to a module eigengene, and each column
corresponds to a clinical character, each module contains a corresponding correlation value R and p-value. (E) Module specificity GO enrichment analysis of 4
concerned modules. (F) Module specificity KEGG pathway enrichment analysis of 4 concerned modules.

there were no modules with too much similarity needed to
be merged. Ultimately, a total of 12 modules were generated
in the lncRNAs/mRNAs co-expression network, clustering in
size from 36 to 341 genes (Supplementary Table 2). The gray
module represented a gene set containing genes not suitable
for assigning to any other modules. Having assigned DEGs into
different color modules, we then want to explore the correlation
between modules and clinical characteristics and phenotypes
of samples. As shown in Figure 5D, several modules correlated
with clinical characteristics, such as age, gender, race, and
TNM stage as well as TAM-related risk score. Modules that
are positively related to TAM risk score, such as blue module
and green modules, tend to be positively related to tumor
pathology stage as well. On the contrary, modules negatively
associated with TAM risk score, such as turquoise and yellow
modules, are more likely related to an earlier pathology stage.

These results are accordant with previously reported influence
of TAMs on tumor progression. In order to choose suitable
modules for following construction of ceRNA networks, we
preferred to choose WGCNA modules which contained more
lncRNAs/mRNAs co-expression pairs and correlated with
clinical features. According to this criterion, the four interested
modules that contained the highest number of genes were
turquoise, blue, brown, and yellow module (containing 341, 264,
161, and 126 genes respectively). Meanwhile, these concerned
modules revealed correlations with clinical stage and TAM
risk score. Details about these four modules were enclosed
in Supplementary Table 3. Moreover, module specificity GO
enrichment analysis and module specificity KEGG pathway
enrichment analysis were performed in Figures 5E,F. Of
note, turquoise module had a significant correlation with
immunosuppression while blue module tended to be associated
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with tumor development. Overall, employing weighted gene
correlation network analysis, we have identified four concerned
modules containing co-expressed genes which may play an
important role in immunosuppression and tumor development.

Construction of ceRNA Networks for
Concerned WGCNA Modules
Accumulating evidences have emerged revealing that ceRNA
theory plays an essential role in explaining interactions among
different varieties of RNAs. Briefly, lncRNAs can share miRNA
response elements to affect miRNA affinity with target mRNAs,
thus regulating gene expression at the transcriptional level.
Considering the concerned modules in WGCNA mainly
contained lncRNAs and mRNAs with positively correlation,
according to the ceRNA theory, there should present miRNAs
negatively correlated with lncRNAs and mRNAs, and then
collectively forms a ceRNA network. Firstly, by searching

DEmiRNAs in miRanda, Targetscan and miRWalk databases,
we got predicted miRNA-mRNA pairs with possible binding
relation. Similarly, miRNA-lncRNA pairs were predicted by
employing miRanda and PITA databases. Then, according to the
predicted miRNA-mRNA/miRNA-lncRNA pairs and expression
pattern of genes in clinical samples, miRNA-mRNA/miRNA-
lncRNA pairs with negatively correlation were finally determined
in concerned WGCNA modules separately. Ultimately, ceRNA
networks for concerned modules were constructed by integrating
the miRNA-lncRNA-mRNA interactions by Cytoscape software
(Figure 6). The ceRNA network for turquoise module and blue
module involved the most abundant regulatory relationships.
There were 30/11 lncRNAs, 7/16 miRNAs, and 39/77 mRNAs
in ceRNA network for turquoise module and blue module,
respectively. As mentioned before, turquoise module contained
genes appear to be associated with immune response and
all of these lncRNAs and mRNAs were downregulated in
high TAM risk group. Meanwhile, blue module contained

FIGURE 6 | ceRNA networks for concerned WGCNA modules. ceRNA networks were built up for turquoise module (A), blue module (B), brown module (C), and
yellow module (D), respectively. Triangle represents lncRNAs, square represents miRNAs and round represents mRNAs. Blue color indicates downregulated genes,
while red color indicates upregulated genes.
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genes, upregulated in the high-risk group, were related to
tumor development. Therefore, ceRNA networks in these two
concerned modules may play a key role in TAMs risk and LUAD
prognosis which deserves further analysis.

Identifying Core Regulatory Axis in
ceRNA Network by Synthesizing
Information of PPI Analysis and Survival
Analysis
In order to explore intrinsic relationships between proteins
encoded by mRNAs in ceRNA networks, PPI networks were
constructed by employing STRING database. We identified hub
genes among these DEmRNAs involved in ceRNA networks
(Figures 7A,B). Hub genes with top node degree in turquoise
module were IKZF1, LCK, CD28, STAT5A, FOXP3, TLR7, PAX5,

IL7R, RUNX3, and IKZF3. As for blue module, CCNA2, CHEK1,
CDC6, CDCA8, NCAPG, CENPF, NUSAP1, CENPA, MCM10,
and HJURP may act as hub genes in the ceRNA network. In
the meanwhile, Kaplan-Meier survival analysis was performed
for all of the genes involved in ceRNA networks to identify key
prognostic genes. As a result, we finally identified 127 genes
with prognostic value from the ceRNA networks, including 34
lncRNAs, 7 miRNAs, and 86 mRNAs. Survival analysis results
as well as ceRNA regulatory relationships in Turquoise and Blue
modules could be find in Supplementary Table 4. According
to the intersection of survival analysis results and ceRNA
regulatory relationship, we tried to identify ceRNA regulatory
axis containing genes with the best prognostic value. Ultimately,
by synthesizing information of PPI analysis and survival
analysis, we have successfully identified a core regulatory axis:
LINC00324/miR-9-5p (miR-33b-5p)/GAB3 (IKZF1) (Figure 7C)

FIGURE 7 | PPI analysis and core regulatory axis in ceRNA network. (A) mRNAs involved in ceRNA for turquoise module were utilized to construct a PPI network.
(B) mRNAs involved in ceRNA for blue module were utilized to construct a PPI network. (C) Core regulatory axis identified in this study. Triangle represents lncRNAs,
square represents miRNAs and round represents mRNAs.
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which may play a pivotal role in regulating TAM risk and the
prognosis in LUAD patients.

External Validation of the Core
Regulatory Axis in GEO Dataset and
Clinical Samples
In order to validate the prognostic value and expression
significance of key genes involved in the regulatory axis we
identified above, survival analysis and expression analysis were
also performed in an external GEO database (Samples were
divided into two groups according to the median of expression of
genes). As shown in Figures 8A,B, all of LINC00324 (HR = 0.418,
p < 0.01), GAB3 (HR = 0.518, p < 0.01), and IKZF1 (HR = 0.605,
p < 0.01) could predict a good prognosis in GEO LUAD
patients, which were coincident with the result in TCGA database
(HR = 0.521, p < 0.05 for LINC00324; HR = 0.487, p < 0.05
for GAB3; HR = 0.594, p < 0.05 for IKZF1). Due to the
lack of miRNAs data in GEO database, miR-9-5p only showed
prognostic significance in TCGA dataset (HR = 1.584, p < 0.05).
Then expression difference analysis was carried out in GEO
dataset. According to TAM risk model employed before, patients

were divided into high- and low-risk group, as expected, all of
these three genes were more highly expressed in low-risk group
(p < 0.01), which indicating their potential role in anti-tumor
immunity as mentioned before (Figure 8C).

In addition, small size validation with clinical samples was
also employed to verify these results. According to gene relative
expression results achieved by qRT-PCR and OS of LUAD
patients, we analyzed expression correlations between genes
and prognostic value of the core regulatory ceRNA axis. As
Figure 9A presented, there existed a clear regulatory correlation
between genes involved in the ceRNA axis. There were positive
correlations between LINC00324 and GAB3/IKZF1 (r = 0.6289,
p = 0.003/r = 0.5559, p = 0.0109). As for LINC00324 and miR-9-
5p/miR-33b-5p, they possessed negative expression correlations
(r = −0.4583, p = 0.0421/r = −0.5333, p = 0.0154). Similarly,
miR-9-5p and GAB3 (r = −0.559, p = 0.0104) or miR-33b-
5p and IKZF1 (r = −0.4981, p = 0.0254) also possessed
negative expressions which suggested their potential regulatory
relationships. Moreover, from survival analysis in Figures 9B–F,
results suggested that high expression of LINC00324, GAB3,
and IKZF1 predicted a good prognosis (p = 0.0147, 0.0048,
and 0.0117, respectively) while miR-9-5p and miR-33b-5p

FIGURE 8 | Validation of the core regulatory axis. Survival analysis of LINC00324, GAB3, IKZF1 and miR-9-5p in TCGA database (A) or GEO database (B).
(C) Expression validation of LINC00324, GAB3, and IKZF1 between high- and low-risk groups in GEO cohort.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 March 2021 | Volume 9 | Article 629941

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-629941 February 24, 2021 Time: 17:7 # 12

Zhang et al. TAM-Associated ceRNA Network in LUAD

FIGURE 9 | Correlation and survival analysis of the core regulatory axis in clinical samples. (A) Correlations between LINC00324, miR-9-5p, miR-33b-5p, GAB3, and
IKZF1. Results were analyzed according to gene relative expression achieved by qRT-PCR and correlations were tested using Pearson correlation coefficient.
Kaplan-Meier analyses of overall survival in LUAD patients with low (n = 10) and high (n = 10) LINC00324 (B), miR-9-5p (C), miR-33b-5p (D), GAB3 (E), and IKZF1
(F) expression.

appeared to predict a poor prognosis (p = 0.0739 and 0.0048,
respectively), which were consistent with results analyzed from
public datasets above.

Taken together, these findings demonstrated that the
prognostic value and expression significance of key genes in core
regulatory axis could be validated in external datasets.

DISCUSSION

Lung cancer is the most common type of cancer and remains
the predominant cause of cancer deaths worldwide. LUAD
is the most common histological subtype of lung cancer,
with an average 5-year survival rate of 15% (Allemani
et al., 2015). LUAD usually exhibits more morphological
heterogeneity and relatively poor prognosis warranting the
need for better treatment strategies (Zhang et al., 2018). In
recent years, as research progresses, emerging evidences show
that immunotherapy is becoming a promising treatment
against LUAD. Although tumor immunotherapy, especially
immune checkpoint blockade, has gradually revolutionized
cancer treatment, there still remains a large portion of patients
failed to benefit from the treatment (Horvath et al., 2020;
Huang M.Y. et al., 2020). One of the key reasons for that was
the obstruction of the TME which consisted of complicated
cellular and molecular components (Chae et al., 2018;

Seidel et al., 2018; Yang et al., 2019b; Lei et al., 2020). Recent
evidences reveal that TAMs are the most abundant infiltrating
immunosuppressive cells in the TME, playing a key role
influencing efficacy of anti-tumor immunotherapy (Pérez-Ruiz
et al., 2020). Therefore, understanding specific molecular
mechanisms by which TAMs affect tumor immunotherapy
is of great value for developing ideal treatment strategies
for LUAD patients.

However, TAMs are highly plastic and heterogeneous in solid
tumor (Ngiow and Young, 2020). Generally, Th1 cytokines such
as lipopolysaccharide (LPS), interferon-γ (IFN-γ), and tumor
necrosis factor-α induce macrophages into a M1-like phenotype,
playing a role in antitumor inflammation. On the contrary,
TAMs (M2-like) polarized by IL-4 and IL-13 play the opposite
immunosuppression and pro-tumor function in the TME (Bohn
et al., 2018). To our knowledge, there exists massive biomarkers
of TAMs which represent function or phenotype of macrophage
infiltrated in the tumors. Meanwhile, TAM-associated molecular
markers appear to be showed a controversial prognostic value in
pan-cancer patients for the expression of some markers are not
absolutely specific (Zhao et al., 2019). Therefore, considering the
heterogeneous phenotypes of TAMs, there are certain limitations
making a distinction between M1-like and M2-like macrophages
or predicting prognosis of patients by single molecular marker.

To this end, we aimed to comprehensively investigate broadly
reported TAM signature genes to construct a precise prognostic
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risk model and further explore the underlying mechanism by
which TAMs influence immunotherapy and tumor progression.

TAM-associated genes enrolled in this study were broadly
reported as follows: The pan-macrophage marker CD68 is now
generally utilized to identify TAMs in pathological specimen and
has been reported associated with controversial prognostic value
in patients with cancers including breast and ovarian cancer
(Wang et al., 2018); CD163 as well as CD206 tend to be associated
with worse clinical outcome and have been defined as M2-
related markers combined with myeloid marker CD11b in most
researches (Lu-Emerson et al., 2013; Xu et al., 2020); Cytokines
and chemokines, including IL-10, TGFB1, CXCL8, and CCL17,
play the immunosuppressive roles in the TME via recruiting
regulatory T cells and myeloid-derived suppressor cells, serving
as functional biomarker of TAMs (Cassetta and Pollard, 2018;
Yang et al., 2019a); Metabolic enzymes, such as ARG1, IDO1,
and ENTPD1, play key roles in regulating immune balance via
various metabolic signaling pathways (Takenaka et al., 2019;
Vitale et al., 2019); MMP14, a matrix metalloproteinase, has also
been reported to induce TAM immunosuppression and could
predict the prognosis of cancers (Alonso-Herranz et al., 2020);
CD274, also known as PD-L1, contributing to the well-known
PD-1/PD-L1 immune checkpoint theory, was involved in TAM
immunosuppression (Noguchi et al., 2017).

The LASSO regression model is a frequently used
statistical method for multicollinearity problems and has
been demonstrated to be suitable for high dimensional data
regression analysis. In this study, according to 13 TAM-related
biomarkers described above, we constructed a TAM prognostic
risk model containing 8 genes with the most prognostic valuable
by LASSO cox regression in LUAD patients. Therefore, every
patient would be assigned a risk score based on expression of 8
TAM-related genes according to the formula obtained from the
risk model. As validated in TCGA- and GEO-validation cohort,
the TAM prognostic risk model revealed an ideal prognostic
value and it would be possible for us to distinguish between high
and low prognostic risk for patients based on risk scores.

Afterward, in order to get a deeper insight into the specific
molecular mechanisms inducing different survival prognosis
between high and low-risk samples, comprehensive analysis
about differentially expressed genes between these two groups
was crucially needed. As a result, there revealed 381 DElncRNAs,
29 DEmiRNAs, and 1976 DEmRNAs between high- and low-
risk groups. GO and KEGG pathway enrichment analysis were
generally used to annotate gene sets and provide hints about
functions and pathways participated by concerned genes.

Enrichment results showed that upregulated DEmRNAs in
high-risk group were primarily involved in GO biological
processes, such as “cell division,” “cell proliferation,” “DNA
replication,” “DNA repair,” and KEGG pathways, such as “cell
cycle,” “DNA replication” and “metabolic pathways.” It suggests
that there exist more genes related to tumor development and
progression in TAMs high-risk patients. In the meantime, it
was noteworthy that downregulated genes in high-risk group
were mainly enriched in “immune response,” “phagocytosis,”
and “cytokine-cytokine receptor interaction.” These results
suggest that differentially expressed genes between high-risk and

low-risk groups played an imperative role in tumor development
and immunosuppression which is exactly consistent with the
immunosuppression of TAMs in the TME and this also illustrates
the validity of our risk model.

Next, in order to further narrow the focus on specific genes,
we employed WGCNA, ceRNA and PPI network analysis with
these dysregulated genes. WGCNA is commonly used to enrich
genes with similar expression patterns into modules associated
with clinical characters. In this study, we identified two interested
modules containing a large number of DEGs associated with
risk score and TNM stage. Of note, GO and KEGG analysis
showed that turquoise module had a significant correlation
with immunosuppression while blue module tended to be
associated with tumor development, which was consistent with
their upregulated or downregulated patterns. As reported before,
ceRNAs played an essential role in regulating interactions among
different varieties of RNAs and were involved in progression and
immune infiltration in multiple kinds of tumors (Zhang K. et al.,
2020). We constructed ceRNA networks in concerned WGCNA
modules through predictive algorithm. Prediction of complexes
in PPI networks is significant for understanding the principles of
cellular organization and function. In this study, we performed
PPI analysis in order to explore intrinsic relationships between
mRNAs and identify hub genes which may play important role
in prognosis in ceRNA networks. By synthesizing information of
PPI analysis and survival analysis, we have eventually identified a
core regulatory axis: LINC00324/miR-9-5p (miR-33b-5p)/GAB3
(IKZF1) which may play a pivotal role in regulating TAM risk and
the prognosis in LUAD patients.

In reviewing the literature, genes in the core regulatory
axis function through different approaches influencing tumor
progression and the immune microenvironment.

Gab3 is a kind of adaptor proteins expressed mainly in
hematopoietic cells, such as lymphocytes and bone marrow-
derived macrophages, functioning as scaffolding and docking
molecules. The role of Gab3 in immune cells is incompletely
understood. Relationship between Gab3 and macrophages
was firstly reported in 2002. Rohrschneider et al., reported
that Gab3 was tyrosine phosphorylated after macrophage
colony stimulating factor receptor stimulation and then
accelerated macrophage morphological differentiation (Liu
and Rohrschneider, 2002; Wolf et al., 2002). However, further
analysis demonstrated that hematopoiesis in mice lacking
Gab3 was not impaired and macrophages developed in normal
numbers exhibited normal function (Seiffert et al., 2003). Colucci
recently indicated that Gab3 may promote expansion and
function of NK cells through MAPK-ERK pathway (Colucci,
2019). Sliz et al. (2019) also found that knockout of Gab3 induced
defective uNK cell expansion, suggesting that Gab3 was a key
component required for cytokine-mediated NK cells priming
and expansion that is essential for antitumor responses. Gab3
plays a controversial role in immune system. Cheng et al. (2018)
indicated that Gab3 expression was upregulated by IFN and Gab3
demonstrated antiviral effects through enhancing IFN response
and innate immune activation. However, Wang et al. (2019)
illustrated the importance of Gab2/3 in controlling macrophages
and CD8+ T cells activation and suppressing chronic colitis.
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Besides, several researches recently suggested that Gabs acted as
tumor-promoting molecule in colorectal, glioma, and ovarian
cancer (Jia et al., 2017; Xiang et al., 2017; Berkel and Cacan,
2020). IKZF1, same as Gab3, plays a controversial role in immune
system. Ikaros is a member of the kruppel family of zinc
finger DNA-binding proteins encoded by IKZF1, functioning
as a master regulator of hematopoiesis and the immune
system. As reported, Ikaros was widely expressed in tumors
but performed anti-tumor or pro-tumor function in different
researches (Dhanyamraju et al., 2020). As for immune cells,
Dumortier et al. (2003) reported that Ikaros positively regulates
early neutrophil differentiation. While, Singhal et al. (2016)
demonstrated that Ikaros affected anti-tumor response through
inhibiting APC-like neutrophils. As for macrophage, Cho et al.
(2008) demonstrated that Ikaros acted as a negative regulator on
LPS/IFN-γ-induced iNOS expression in macrophages. Moreover,
Oh et al. (2018) described unexpected dual repressor and
activator functions for Ikaros in the LPS response of murine
macrophages. Of note, Chen et al. (2018) reported that IKZF1
overexpression promoted immune infiltration in several tumor
types, and enhanced the efficacy of anti-PD1 and anti-CTLA4
treatment. Besides, non-coding RNAs in our study, including
LINC00324 (Ni et al., 2019; Zhang M. et al., 2020), miR-9-5p
(Ma et al., 2020; Wang et al., 2020), and miR-33b-5p (Huang G.
et al., 2020; Ni et al., 2020), were also reported in literatures to be
associated with the prognosis of various cancer types.

In our study, upregulation of LINC00324, GAB3 as well as
IKZF1 in TAM low-risk group could predict a better prognosis,
suggesting the potential anti-tumor immunology role in the
TME. However, miR-9-5p and miR-33b-5p present as pro-
tumor molecules whose immunosuppression may be achieved
through regulating expression of mRNAs they targeted. To our
knowledge, although there have been lots of valuable researches
about these genes, how do they influence the prognosis of
LUAD patients through TAMs has not been reported to date.
In our study, core regulatory axis obtained from TAM risk
model showed an ideal prognostic value, suggesting that these
genes could influence the prognosis of LUAD through regulating
polarization or infiltration of TAMs.

Several limitations need to be acknowledged regarding the
present study. Firstly, findings and results in this study were
indirect because we explored how TAMs potentially influenced
the prognosis of LUAD patients mainly through utilizing
bioinformatic approaches analyzing public datasets with TAMs
biomarkers. In addition, in the validation part, the small
size of clinical samples limited our validation power of the
prognostic value and correlation between genes involved in
the core regulatory axis. Therefore, these preliminary findings
and specific deep mechanism of this axis deserve further direct
experimental studies.

CONCLUSION

In conclusion, we utilized bioinformatic approaches analyzing
public datasets to explore how TAMs potentially influence the
prognosis of LUAD patients. Eventually, we have identified
a core regulatory axis: LINC00324/miR-9-5p (miR-33b-
5p)/GAB3 (IKZF1) which may play a pivotal role in regulating
TAM risk and prognosis in LUAD patients. Although the
current study is mainly based on public data analysis
through bioinformatic approaches, findings in this work
contribute to a better understanding of TAM-associated
immunosuppression in the TME and provide novel targets
and regulatory pathways for anti-tumor immunotherapy. In
the future, we will employ more convincing experimental
researches to confirm this core regulatory ceRNA axis in
further studies.
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