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Although fluoride (F) is well-known to prevent dental caries, changes in cell processes in
different tissues have been associated with its excessive exposure. Thus, this study aimed
to evaluate the effects of F exposure on biochemical, proteomic, and genotoxic
parameters of submandibular glands. Twenty one old rats (n � 30) were allocated into
three groups: 60 days administration of drinking water containing 10mgF/L, 50mgF/L, or
only deionized water (control). The submandibular glands were collected for oxidative
biochemistry, protein expression profile, and genotoxic potential analyses. The results
showed that both F concentrations increased the levels of thiobarbituric acid–reactive
substances (TBARS) and reduced glutathione (GSH) and changed the proteomic profile,
mainly regarding the cytoskeleton and cellular activity. Only the exposure to 50 mgF/L
induced significant changes in DNA integrity. These findings reinforce the importance of
continuous monitoring of F concentration in drinking water and the need for strategies to
minimize F intake from other sources to obtain maximum preventive/therapeutic effects
and avoid potential adverse effects.
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INTRODUCTION

Fluoride (F)-based strategies are well-known as effective, safe, and mainly responsible for the
reduction of dental caries incidence, which has improved oral health and quality of life (Buzalaf et al.,
2011). Whether present at low concentrations in the oral cavity, this ion inhibits tooth
demineralization and enhances remineralization (Buzalaf et al., 2011; O’Mullane et al., 2016);
thus, F is regularly added to the public water supply in several countries and some dental products to
increase its systemic exposure (Buzalaf and Levy, 2011).
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There is no evidence that fluoridation of drinking water at
recommended concentrations causes systemic damage in humans
(McDonagh et al., 2000). Despite the unquestionable benefits of F
for caries control, evidence suggests that excessive exposure can
affect human tissues in several ways, which depend on exposure
time, concentration, and cell type (Iano et al., 2014). Metabolic,
structural, and functional changes due to chronic exposure to
high F levels have been observed in the liver, mitochondria,
kidneys, small intestine, endothelial, neuronal, and gonadal
cells; in addition, the development of the nervous system and
reproductive skills have been jeopardized (Barbier et al., 2010;
Iano et al., 2014; Dionizio et al., 2018; Pereira et al., 2018; Zuo
et al., 2018; Araujo et al., 2019; Dionizio et al., 2020).

In this context, the literature claims that F can impair the
metabolism of salivary glands, which are secretory organs that
play a key role in the oral environment balance (Yamaguti et al.,
2013). The parotids, submandibular, and sublingual glands are
responsible for producing 90% of the total saliva, while the
remaining 10% is produced by minor glands dispersed in the
oral mucosa (Fernandes et al., 2015; de Paula et al., 2017). Saliva
releases electrolytes, antibacterial compounds, and several
enzymes that maintain oral homeostasis, lubricate the mucosa,
and protect teeth surfaces (de Paula et al., 2017). The
submandibular glands are composed of a mixed population of
acini with mucous and serous functions (Amano et al., 2012;
Fernandes et al., 2015; Kondo et al., 2015); thus, these glands
secrete a unique fluid in the oral cavity that potentially has a
specific function. Under unstimulated conditions, submandibular
glands produce the major part (71%) of daily saliva (Armstrong
and Turturro, 2013); in addition, proteolytic enzymes with
antimicrobial functions such as lysozyme are also mainly
produced by these glands (Noble, 2000).

Considering the importance of submandibular glands and the
influence of F exposure on several tissues, this study aimed to
evaluate the effect of this ion on biochemical, proteomic, and
genotoxic parameters of submandibular glands.

MATERIALS AND METHODS

Animals and Experimental Protocol
The experimental protocol of this study was submitted to and
approved by the Ethics Committee on the Use of Animals
(CEUA) of the Federal University of Pará, under the protocol
number 9469260117. Thirty male Swiss albino mice, 21 days old,
were randomly divided into three groups of 10 animals each. The
mice were housed in collective polypropylene cages containing
five animals each, with water and food ad libitum, maintained in a
light/dark cycle of 12 h (lights on at 7 a.m.).

The protocol of F exposure was based on the administration
through the drinking water for 60 consecutive days, at 10 and
50 mgF/L (as sodium fluoride, Sigma-Aldrich, United States),
while the control group received pure deionized water. This
protocol mimics long-term F intake by humans at
concentrations that correspond to approximately 1–2 and
5–10 mgF/L (Dunipace et al., 1995; Dionizio et al., 2018;
Miranda et al., 2018). Such concentrations lead to plasma F

levels in rodents similar to those found in humans who
consume artificially fluoridated water or live in endemic areas
of fluorosis, considering the difference of metabolism between
both species (5–10-fold higher in rodents than in humans)
(Dunipace et al., 1995).

Collection of Submandibular Glands
After the experimental period (60 days), the animals were
anesthetized with ketamine hydrochloride (90 mg/kg) and
xylazine hydrochloride (10 mg/kg), being subsequently
euthanized by cervical dislocation. Then the pair of
submandibular glands was collected, washed with saline
solution, and frozen in liquid nitrogen, followed by storage at
−80°C until biochemical, proteomic, and genotoxic analyses
(Figure 1).

Assessment of Fluoride Levels
Approximately 0.2 g of glandular tissue was homogenized in
0.5 ml ultrapure water and had the CO2 removed by the
addition of hexamethyldisiloxane (HMDS). Then, the F
measurements in the tissue were performed, as described by
Taves (1968) and modified by Whitford (1996), using an
F-specific electrode (Orion, model 9409) and a reference
calomel electrode (Accumet, # 13-620-79), both coupled to a
potentiometer (Orion model EA 940). The standard solutions
used in the calibration curve (0.0048–0.19 μgF) were prepared in
triplicate and used in the same way as the samples.

In addition, non-diffused standards were prepared to have
exactly the same concentrations of F as the diffused standards.
The readings (mV) were converted to µg F using an Excel
(Microsoft) spreadsheet. A standard curve was adopted with a
coefficient correlation of r ≥ 0.99. The results were expressed in
µg F/ml.

Oxidative Biochemistry Analyses
Each sample was thawed and resuspended in Tris-HCl (20 mM,
pH 7.4 at 4 °C) for sonic homogenization (approximate
concentration of 1 g/ml). The supernatants were stored in an
ultra-freezer until analysis.

Determination of Total Antioxidant Capacity (TEAC)
The method proposed by Miller et al. (1993), and modified by Re
et al. (1999), was adopted, which consists in a colorimetric
technique based on the reaction between 2,2-azino-bis(3-
ethylbenzothiazoline)-6-sulfonic acid (ABTS) with potassium
persulfate, producing the ABTS+ radical, being subsequently
incubated with the sample or the Trolox standard. A total of
30 µl of supernatant of the submandibular glands or standard
were incubated with 2,970 µl of ABTS for 5 min, and the
absorbance was read at 734 nm. The results were expressed
in μmol/g and then expressed as % of the control group, after
extrapolation with the standard curve.

Reduced Glutathione (GSH) levels
The determination of GSH concentrations was performed
according to Ellman (1959). This technique is based on GSH’s
ability to reduce 5,5-dithiobis-2-nitrobenzoic acid (DTNB)
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(Sigma-Aldrich) to 5-thio-2-nitrobenzoic acid (TNB), which is
quantified by spectrophotometry at a wavelength of 412 nm.
First, an aliquot of 20 μl was removed from each of the
submandibular glands and placed in a test tube containing
3 ml of PBS/EDTA buffer and 20 μl of distilled water for the
first sample reading (T0), then 100 µl DTNB (0.47 mmol) was
incubated for 3 min to perform another reading (T1). The
difference in absorbances (T1–T0) is proportional to the
concentration of GSH, which was expressed in μM/g and then
converted to % of the control group.

Determination of Superoxide Dismutase (SOD) Activity
This assay was performed according to McCord and Fridowich
(1969). An aliquot of 50 µl of the submandibular glands was
added to a solution composed of cytochrome C (0.075 mM),
hypoxanthine (1.5 mM; Sigma-Aldrich, United States), and
xanthine oxidase (56 mM; Sigma-Aldrich, United States). The
resulting solution was incubated at 37°C, protected from light,
and after 15 min, a single reading was performed at 550 nm. This
activity was measured using UV spectrophotometry at a
wavelength at 550 nm wavelength (Miranda et al., 2018). The
activity of the SOD enzyme was expressed in nmol/mg and then
converted to % of the control group.

Analysis of Thiobarbituric Acid-Reactive Substances
(TBARS)
The determination of lipid peroxidation was performed by the
method adapted by Percário (1994). An aliquot of 50 µl of the
submandibular glands was added to 500 µl of thiobarbituric acid
solution (10 nM) and then heated in a water bath at 94 °C for
60 min. Then, the samples were left at room temperature for
10 min, and 2 ml of 1-butyl alcohol was added, vigorously
homogenized in a vortex, and centrifuged at 2,500 rpm for
10 min. After centrifugation, 1 ml of the supernatant was
collected for spectrophotometric reading at 535 nm. The MDA
standard was used for the standard curve; the results were
expressed in nmol/g and then converted into % of the
control group.

Proteomic Analysis
The samples of submandibular glands were initially cryofractured
with liquid nitrogen and then, two samples from the same group
were pooled and all the experiment was proceeded in biological
triplicate. The detailed protocol is described in previous
publications from our group (Bittencourt et al., 2019; Alves
Oliveira et al., 2020; Dionizio et al., 2020; Leão et al., 2020;
Lopes et al., 2020; Ferreira et al., 2021).

FIGURE 1 |Methodological steps of animal experimentation, sample collection, and analyses. Male Swiss albino mice (21 days old) received drinking water at two
concentrations of F (10 or 50 mgF/L) while the control group received only deionized water, for ad libitum consumption. After 60 days of exposure, the animals were
euthanized and the pair of submandibular glands was collected for the following analyses: quantification of the fluoride levels in the glandular tissue (A); evaluation of
oxidative biochemistry (B), based on the Trolox equivalent antioxidant capacity (TEAC), activity of the superoxide dismutase enzyme (SOD), reduced glutathione
(GSH) levels, and thiobarbituric acid–reactive substances (TBARS) levels; proteomic analysis (C); and evaluation of genotoxicity based on the Comet assay (D).
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The first step consisted of protein extraction by lysis buffer
containing 7M urea, 2M thiourea, and 40mM dithiothreitol
(DTT) in a 50mM ammonium bicarbonate solution (AmBic)
under constant stirring at 4 °C for 2 h. Then, the samples were
centrifuged (20,817 g, 30min, 4 °C) and the supernatant was
collected, and the protein content was determined by Bradford’s
method (Bradford, 1976). We used 50 µg of protein and then filled it
upwithAmBic until 50 µl. Then, in the second step, the samples were
incubatedwith RapiGEST (Waters Co., UnitedKingdom), reduced in
5mM DTT (Bio-Rad, United States), alkylated in 10mM
iodoacetamide (Bio-Rad, United States), and digested by trypsin
(Pierce®, Thermo Fisher, United States). Next, the digestion was
stopped using 5% trifluoroacetic acid and incubated under 37°C for
90min; in the end, samples were centrifuged (20,817 g, 30min, 6°C),
the supernatant was collected for desalting throughC18 spin columns
(Pierce®, Thermo Fisher, United States), and subsequently
concentrated by a vacuum concentrator (Eppendorf, Germany).

To perform themass spectrometry readings (nanoAcquity UPLC-
Xevo QTofMS system;Waters Co., United Kingdom), subsequently,
the samples were resuspended in 108 μl of 3% acetonitrile and 0.1%
formic acid and 12 μl of internal standard. The peptides identification
and statistical analyses were performed by ProteinLynx Global
SERVER (PLGS) software, after downloading and comparing the
Mus musculus proteome from the UniProt database.

Bioinformatic Analyses
The proteins were identified according to their respective UniProt
Accession ID, and the functional analyses were performed by
Cytoscape 3.7.1 software. The biological processes were listed
according to the Gene Ontology annotations provided by
ClueGO plugin in Cytoscape (Bindea et al., 2009).

For an over-representation analysis (ORA), the fold change values
were converted to log2ratio using theWPS spreadsheets editor. Then,
cutoff values were applied for screening proteins with an expression
value of 50% above or below in the exposed condition compared to
the control. The analysis was performed considering only proteins
with log2ratio values≤ −0.58 or≥0.58. The values−1were assigned to
proteins detected only in the control group and 1 to those presented
exclusively in the exposed sample.

Using the R program and the Gene Set Enrichment Analysis
(EGSEA) package (Alhamdoosh et al., 2017) and the list of Entrez
IDs and their respective log2ratio values as input, an ORA
analysis was performed. A database with UniProt information
on proteins and biological processes was used, made available by
the Bader lab. The p-value ≤0.05 was considered significantly
altered. Then, to perform the network analysis from the list of
proteins with significant statistical changes, networks and clusters
were built to visualize their interconnections. The selection
process was based on the relationship between the different
proteins and their interactions with the others that were found
altered, establishing a cut of at least 10 interactions.

The Cytoscape 3.7.1 program (Shannon et al., 2003), the
Enrichment map (Merico et al., 2010), and the AutoAnnotate
(Kucera et al., 2016) app were used. The online tool
NetworkAnalyst was used to analyze the interaction between
the sorted proteins (Xia et al., 2014). These were ranked based on
their degree values and are therefore the most relevant proteins.

Genotoxic Evaluation
A DNA damage assay was analyzed using the single-cell gel
electrophoresis (SCGE) alkaline comet assay following the method
described by Singh and Stephens (1997). Glandular tissuewas dissected
from the control and exposed animals (10 and 50mgF/L). The tissues
were prepared to isolate the cells by slicing into small pieces and
incubated with type IV collagenase diluted in DMEM cell culture
medium (Dulbecco’s modified Eagle’s medium) at 37°C for 90min.
Then, the samples were filtered to remove debris and centrifuged for
5min at 2000 rpm. The pool of cells formed was resuspended with
150 µl of Dulbecco’s modified Eagle’s medium. An aliquot (20 µl) was
homogenized with a low melting point agarose (120 µl) and added to
the glass slides previously pretreated with normal 1.5% melting point
agarose. Coverslips were added in each slide and stored at 4 °C for
20min. Following that, the coverslipswere removed and the slideswere
incubated in a lysis solution (2.5M NaCl, 0.1M EDTA, 0.01M Tris,
and 1% Triton X-100) overnight at 4 °C. Longer lysis incubation
provides not only an increase of the sensitivity of the test based on
effective disruption of cellular membrane but also the cytoplasm,
nuclear envelope, scaffold, and histone proteins around the DNA
(Karbaschi et al., 2019; Olive et al., 2002). After incubation, the slides
were placed in an electrophoresis vessel with electrophoresis solution
(300mMNaOH, 1mM EDTA; pH 13) for 20min for the unwinding
of the DNA. The electrophoresis was performed at 300mA and 30V
(1V/cm) for 20min. The slides were then neutralized with 0.4M Tris
buffer (pH 7.5) and fixed in 100% ethanol. Slides were stained with
DAPI/antifade (Enzo Life Sciences, NY, United States) and images
were captured through afluorescencemicroscope (LeicaMicrosystems,
Wetzlar, Germany, with 400x magnification) connected to a CCD
camera (from an English charge-coupled device). Fifty nucleoids from
two different slides per animal were analyzed using Komet Assay
software®.

Cells in which DNA was damaged demonstrated increased
chromosomal migration (Speit and Hartmann, 1999); as a result,
the parameter used for determining DNA damage was the
percentage of DNA in the tail comet.

Statistical Analyses
The normality was initially tested by the Kolmogorov–Smirnov
method. Data of F concentration, oxidative biochemistry, and
genotoxic evaluation were analyzed using one-way analysis of
variance (ANOVA), followed by Tukey’s post hoc test,
considering a significant value of p < 0.05. Proteomics data
analysis was performed using the ProteinLynx Global SERVER
software (PLGS, v 2.2.5, Waters), and the significance of the
relative expression ratios was calculated using a t test (p < 0,05).

RESULTS

There was a Significant Increase in F levels
in the Submandibular Gland Only in the
Group that Received 50mgF/L Drinking
Water
Fluoride levels present in the submandibular gland of the group
that received the highest exposure dose were significantly higher
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than the levels of the control group (control: 0.05 ± 0.01 µg/ml;
50 mgF/L: 0.19 ± 0.12 µg/ml; p � 0.0062). No significant
difference was observed when the 10 mg F/L group (0.05 ±
0.03 µg/ml) was compared with the control group (p > 0.05)
(Figure 2).

Fluoride Exposure Modulated the Oxidative
Biochemistry Profile of Submandibular
Glands of Mice
The antioxidant capacity shown by GSH levels was significantly
increased in both groups exposed to F (p � 0.0123) compared to
the control group. No significant difference was observed in
TEAC levels and SOD activity (p > 0.05). On the other hand,
there was a minimal difference between both exposed groups
compared to the control (p < 0.0001; Figure 3).

Long-Term Exposure to F Modulated the
Global Proteomic Profile of Submandibular
Glands of Mice
The number of proteins identified with significant differences in
expression, or exclusively expressed, considering comparisons
between 10mgF/L vs. control, 50 mgF/L vs. control, and 10mgF/
L vs. 50 mgF/L, is presented in Table 1. The complete proteomic
data of this study are available on the Supplementary Tables S1–S3.

The bioinformatic analysis of biological processes, based on
gene ontologies, showed that the group exposed to 10 mgF/L had
18 biological processes modulated (Figure 4), in which the five
most changed were intermediate filament cytoskeleton
organization (16%), ion transmembrane transporter activity,

FIGURE 2 | Fluoride levels in the submandibular gland of mice. One-way
ANOVA with Tukey’s posttest, p < 0.05. Lowercase letters indicate significant
differences among the groups.

FIGURE 3 | Evaluation of oxidative biochemistry. Analysis of oxidative biochemistry in the submandibular glands of mice that received drinking water containing 0,
10, and 50 mgF/L, during 60 days. The graphs represent, as a relative percentage of the control group, the mean and the standard deviations of the following oxidative
parameters: (A) TEAC levels; (B)GSH levels; (C) SOD activity; and (D) TBARS concentration. One-way ANOVA and Tukey’s post hoc test, p < 0.05. Different lowercase
letters indicate significant differences among the groups.
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phosphorylative mechanism (15%), actin-myosin filament sliding
(7%), regulation of blood volume by renin-angiotensin (6%), and
flavonoid glucuronidation (6%).

The group exposed to 50 mgF/L also showed 16 functional
categories affected (Figure 5). The five most affected were:
structural constituent of cytoskeleton (27%), intermediate
filament organization (9%), sodium:potassium–exchanging
ATPase activity (8%), mitochondrial ATP synthesis–coupled
proton transport (8%), and flavonoid glucuronidation (6%).

The comparison group at 50 mgF/L vs. 10mgF/L showed 20
functional categories affected (Figure 6). The five most affected were
oxidoreductase activity, acting on the aldehyde or oxo group of
donors, NAD or NADP as acceptor (17%), intermediate filament
organization (11%), mitochondrial ATP synthesis–coupled proton
transport (7%), sodium:potassium–exchanging ATPase activity
(7%), and peroxiredoxin activity (6%).

Based on the analysis of the proteomic profile, we
compiled the data to evaluate protein–protein interactions

with the circosplot tool. It is possible to observe 81 proteins
with a greater number of interactions with others in each
group. Moreover, these proteins are associated with 6 major
biological processes as mitochondrial activity, cell cycle,
cytoskeleton, response to stimuli, and stress response and
intracellular response (Supplementary Table S4; Figure 7).
The quantitative description is available in Table 2.

The Exposure to the Highest F
Concentration Led to Genotoxic Effects on
Submandibular Gland of Mice
The genotoxic analysis showed a significant difference in
the DNA damage (% DNA in the tail) between the
50 mgF/L (7.997 ± 1.505%) and the control group
(4.530 ± 2.737%; p � 0.0233). The 10 mgF/L group did not
differ from the control and 50 mgF/L groups (p > 0.05)
(Figure 8).

TABLE 1 | Number of proteins with different status of regulation in submandibular glands of mice exposed to fluoride (F).

Comparison Upregulated Downregulated Exclusive in the first
group

Exclusive in the second
group

10 mgF/L vs. control 248 30 291 244
50 mgF/L vs. control 68 146 212 290
50 mgF/L vs. 10 mgF/L 15 346 316 202

FIGURE 4 | Functional protein distribution in groups 10 mgF/L vs. control group. Functional distribution of proteins identified with differences in expression in
submandibular gland of mice chronically exposed (60 days) to drinking water containing 10 mgF/L vs. control group (deionized water). Protein categories were based on
Gene Ontology (GO) for biological processes. The access number of the proteins was provided by the UniProt database. The GO was evaluated according to the
Cytoscape ® 3.7.1 software, using the ClueGo

®
plugin, adopting the significant terms (kappa score � 0.4) and distribution according to the percentage of the

number of genes.
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DISCUSSION

To the best of our knowledge, this is the first study that
simultaneously investigated the biochemical, proteomic, and
genotoxic parameters of rat’s submandibular glands after long-
term exposure to two relevant F concentrations. These
concentrations mimic plasma F levels observed in humans that
regularly consume fluoridated water or live in areas of endemic
fluorosis (Angmar-Månsson andWhitford, 1984; Dunipace et al.,
1995; Dionizio et al., 2018) and have been often used in other
studies (Carvalho et al., 2009; Melo et al., 2017). It is worth
mentioning that the World Health Organization (WHO)
established 0.5 to 1.0 mgF/L as the ideal concentration range
for drinking water (World Health, 2017). This study indicated
that submandibular glands are important targets for F since
biochemical modulations that lead to oxidative imbalance
(with increased lipid peroxidation), changes in the proteomic
profile of the glandular tissue, and genotoxic effects were
observed in a dose-dependent trend. Moreover, several
potential biomarkers were identified in the proteomic analysis
as well as other impairments triggered by F.

Incorporation into mineralized tissues and, to a lesser extent,
accumulation in soft tissues are the major consequences of
excessive F intake since this highly reactive electronegative
element associates with positively charged ions in particular
aluminum, calcium, and iron (Sauerheber, 2013; Miranda

et al., 2018). Therefore, F can interfere in the expression of
proteins related to cellular activity as observed in the
proteomic analysis (Figures 4–6). Alterations in the proteins
responsible for the maintenance of the electrochemical gradient
across the plasma membrane (at the expense of ATP) and
transportation of other important ions and metabolites related
to ionic homeostasis and cell signaling were altered.

In this sense, the inactivity of proteins that regulate sodium
and potassium gradients is associated with several
pathophysiological disorders, such as asthma, allergies,
metabolic disorders, cancer, cardiovascular diseases,
neurodevelopmental, neuropsychiatric, and neurodegenerative
diseases (Waugh, 2019). Several studies have shown that
depending on the dose, cell type, and tissue, F can inhibit
enzymes such as enolase, pyruvate kinase, lactate
dehydrogenase, and potassium-activated adenosine
triphosphatase (Strunecka et al., 2007) and can stimulate
adenylate cyclase, alanine transaminase, lactate dehydrogenase,
and glycogen phosphorylase. Therefore, F can alter energy
metabolism, induce oxidative stress, inflammation, and
immunoexcitotoxicity, albeit the respective mechanisms are
still unclear (Araujo et al., 2019; Strunecka and Strunecky, 2019).

Oxidative biochemistry is closely related to the cellular
proteostasis network since stress conditions influence the
behavior of proteins (Reichmann et al., 2018). Despite
proteomic changes in tissues such as the kidneys, liver, and

FIGURE 5 | Functional distribution of proteins in the 50 mgF/L vs. control groups. Functional distribution of proteins identified with expression difference in
submandibular gland of mice chronically exposed (60 days) to drinking water containing 50 mgF/L vs. control group (deionized water). Protein categories based on Gene
Ontology (GO) selected for biological processes. The accession number of the proteins was provided by the UniProt data bank. The GOwas evaluated according to the
Cytoscape® 3.7.1 software, using the ClueGo® plugin, adopting the significant terms (kappa score � 0.4) and distribution according to the percentage of the
number of genes.
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intestine being widely reported in the literature (Xu et al., 2005;
Kobayashi et al., 2009; Dionizio et al., 2018; Pereira et al., 2018;
Khan et al., 2019; Dionizio et al., 2020), the results of this study
demonstrated that F altered the expression of several glandular
proteins.

The oxidative stress observed in submandibular glands
suggests that F may trigger cell damage mechanisms as a
result of an imbalanced release of antioxidant and prooxidant
compounds. These results were confirmed by the biochemical
analyses, which showed an increase in lipid peroxidation through
the TBARS method and genotoxicity (Figure 3). Exposure to F
increases the generation of superoxide (O2

-) and other reactive
oxygen species (ROS), which leads to oxidative imbalance,
mitochondrial dysfunction, and DNA damage. This sequence
of events can cause cell death, as previously demonstrated in
studies, with peripheral blood and cerebellum (Miranda et al.,
2018; Lopes et al., 2020).

The imbalance between ROS and the antioxidant system
characterizes the so-called oxidative impairment, which is an
important factor in the toxicity mechanism that affects cell
integrity (Halliwell, 2007). One of the toxicity mechanisms is
related to the interaction between F and enzymes that can
inhibit antioxidant activities (SOD, GSH, and CAT levels)
(Ma et al., 2017). Organisms usually have several
mechanisms for protection against ROS such as the
endogenous antioxidant molecules GSH and SOD (Halliwell,
2007). Moreover, the results from the enzymatic assays in this
study demonstrated that chronic exposure to F increased GSH
levels, which suggests that F triggered protective mechanisms to

protect the integrity of cellular biomolecules (Figure 3). The
increase in antioxidant enzymes has been observed in rat liver
mitochondria after exposure to 15 mgF/L for 60 days (Araujo
et al., 2019).

The TBARS measurement is a very relevant technique to
assess oxidative damage in lipids and quantify the by-products
of tissue lipid peroxidation (Liu et al., 1997). The increase in the
TBARS increases the peroxidation of polyunsaturated fatty acids
of cell membranes, which in turn indicates the presence of
oxidative stress (Gutiérrez-Salinas et al., 2013). The animals
chronically exposed to F in this study showed higher TBARS
levels than the control, which indicates lipid peroxidation and
potential damage to the cell membrane; thus, the F dose–response
trend is suggested.

The bioinformatics analysis showed positive regulation of
stress response proteins (so-called heat shock proteins—HSP)
such as HSP 70 kDa 1-like (P16627), HSP 70 kDa 1A
(Q61696), and HSP-related 70 kDa 2 (P17156) after
exposure to 10 mgF/L (Supplementary Table S4). These
chaperones proteins play a key role in the synthesis,
assembly, folding, protein degradation, and cell survival
under adverse environmental conditions (Gupta et al.,
2007). Stressful situations such as oxidative or osmotic
stress increase HSP levels, which support the synthesis and
maturation of proteins to replace those affected by the
metabolic alteration (Bukau and Horwich, 1998). The
results of this study suggest that positive regulation of HSP
may occur due to a response to oxidative biochemistry
modulation.

FIGURE 6 | Functional distribution of proteins in the 50 mgF/L vs. 10 mgF/L. Functional distribution of proteins identified with expression difference in the
submandibular gland of mice chronically exposed (60 days) to drinking water containing 50 mgF/L vs. 10 mgF/L. Protein categories based on Gene Ontology (GO)
selected for biological processes. The accession number of the proteins was provided by the UniProt data bank. The GO was evaluated according to the Cytoscape ®

3.7.1 software, using the ClueGo ® plugin, adopting the significant terms (kappa score � 0.4) and distribution according to the percentage of the number of genes.
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The proteomic profile revealed changes in the modulation
of protein functional groups mainly related to the cellular
cytoskeleton such as “structural constituent of cytoskeleton”
and “intermediate filament cytoskeleton organization” as
well as to muscle contraction such as “actin-myosin
filament sliding.” Figures 4–6 objectively indicate the
main protein changes that can compromise
submandibular glands, while Figure 7 categorizes them
according to function in the over-representation analysis

(ORA). This technique is widely used to assess the role of
gene sets, transcripts, proteins, or metabolites; in addition, it
also determines whether known biological functions or
processes are over-represented among a group of
identified analytes (Tavazoie et al., 1999; Goeman and
Bühlmann, 2007; Khatri et al., 2012; Jeuken and Käll, 2018).

The cellular cytoskeleton is mainly composed of
microfilaments, intermediate filaments, and microtubules.
Alpha- and beta-tubulin dimers form the microtubules related

FIGURE 7 | Enrichment analysis. Over-represented proteins in the submandibular gland of exposed mice for 60 days at two different concentrations of F, following
the edge to center, for the comparisons: 50 mgF/L vs. 10 mgF/L, 50 mgF/L vs. control, and 10 mgF/L vs. control. Protein categories based on Gene Ontology (GO)
selected for biological processes. The color indicates the differential expression of each protein, which is represented with its access code. Red indicates upregulation
and blue, downregulation. The tone varies according to the intensity of the adjustment.

TABLE 2 | Number of negatively regulated and positively regulated proteins in the submandibular glands, for the comparisons: 10 mgF/L vs. control, 50 mgF/L vs. control,
and 50 mgF/L vs. 10 mgF/L, according to the ORA analysis in the protein criterion with the largest protein interaction network.

Category 10 mgF/L vs. control 50 mgF/L vs. control 50 mgF/L vs. 10 mgF/L

Down Up Total Down Up Total Down Up Total

Mitochondria activity - 5 5 2 4 6 10 1 11
Cell cycle 9 34 43 29 13 42 51 7 58
Cytoskeleton 12 39 51 33 17 50 54 8 62
Response to stimuli 8 33 41 24 14 38 45 8 53
Stress response 7 16 23 15 6 21 26 4 30
Intracellular response 7 25 32 17 8 25 34 22 36

DOWN, downregulated; UP, upregulated.
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to specific proteins and regulate certain signaling pathways
mediated by the G protein. Previous studies indicate that F
alters the structure, metabolism, and dynamics of the
microtubular system (Wang et al., 1990;Kovács et al., 2008;
Monteiro et al., 2011). In this study, the beta-tubulin protein-3
(Q9ERD7), beta-4 (Q9D6F9), beta-4B (P68372), beta-2B
(Q9CWF2), beta-5 (P99024) beta-2A (Q7TMM9), beta-6
(Q922F4), alpha-1a (P68369), and alpha-4a (P68368) were
downregulated after exposure to the 50 mgF/L group
(Supplementary Table S4).

Myosin converts chemical energy into mechanical work
through cyclic interaction with actin filaments and generates
strength and movement during muscle contraction. These
proteins are found between the basal laminas of acini and
ducts of myoepithelial cells, which are located in the terminal
portion of salivary glands (Redman, 1994). These cells help to
expel glandular secretory products into the excretory duct system.
Studies have shown that F degenerates the structure and
functions of the actin and myosin filaments in the skeletal
muscle (Shashi, 1989, 1992; Park et al., 1999). Negative
expressions of the proteins myosin-7 (Q91Z83), myosin-1
(Q5SX40), myosin-3 (P13541), myosin-4 (Q5SX39), and
myosin-6 (Q02566) after exposure to both 10 mgF/L and 50
mgF/L were observed in this study, which indicates that F affects a
wide range of cellular events related to motility and potential
adverse consequences for submandibular gland contraction
may occur.

The chromatin structure is the main modulator of all DNA-
based processes such as genetic transcription, replication, and
DNA repair. The basic unit of chromatin (nucleosome) is
composed of DNA and histone proteins. Both Histone H2A.Z
(P0C0S6) and Histone H2AX (P27661) play important roles in
the regulation of chromatin structure, genetic transcription, DNA

replication and repair, and maintenance of genome integrity
(Talbert and Henikoff, 2017; Wang et al., 2018; Long et al., 2020).

The transitional endoplasmic reticulum ATPase protein
(Q01853) is associated with nuclear envelope reconstruction,
transcriptional control, cell cycle regulation, and DNA damage
response (Rabinovich et al., 2002; Lilley and Ploegh, 2005; Meyer,
2012; Erzurumlu et al., 2013). In this study, these proteins were
positively regulated after exposure to 10 mgF/L, which suggests
an attempt to cell repair; however, these proteins were negatively
regulated when exposed to 50 mgF/L, which indicates a potential
loss of function (Supplementary Table S4).

Oxidative changes can modulate protein expression and damage
nucleic acids, which induce DNA strand fragmentation (Mendes
Arent et al., 2014). It is known that F-induced genetic damage can be
triggered by oxidative biochemicalmechanisms (Ribeiro et al., 2017);
therefore, this study aimed to investigate potential damages to the
nuclear components based on the biochemical and proteomic
changes triggered by fluoride exposure. The results showed that
DNA strand break only after exposure to 50 mgF/L, which was also
observed in hepatocytes of rats exposed to 50mgF/L for 120 days
(Song et al., 2015) and both hepatocytes and oral cells of rats exposed
to 150mgNaF/L for 4 weeks (He and Chen, 2006). The percentage
of DNA in the comet tail (12.37 ± 2.68) caused by the prolonged F
exposure used by Song et al. (2015) is in accordance with the results
of the present study; however, the increased F concentration
combined with short exposure used by He and Chen (2006)
induced about 50% of damage in both cell types.

These findings corroborate with the present proteomic
analysis since negative regulation of proteins related to repair
of DNA damage repair was observed after exposure to 50 mgF/L,
which might have promoted DNA strand breaks. However,
Buzalaf et al. (2006) did not observe significant DNA damage
in the liver, kidneys, and urinary bladder of rats that drank
100 mgNaF/L-containing water for 75 days. These data suggest
that submandibular glands are more susceptible to the F adverse
effects than other organs.

The findings of this study corroborate with the literature
regarding the F potential to promote cellular changes, which
are very dependent on F concentration, exposure time, and the
cell/organ type. Significant changes were observed in rats exposed
to fluoridated drinking water at similar concentrations reported
in areas of endemic skeletal fluorosis (50 mgF/L). Conversely, the
lower F concentration induced only minor alterations.

CONCLUSION

Our data revealed modulation of the oxidative and proteomic
biochemistry of submandibular gland after exposure to F in mice
at concentrations of 10 or 50 mgF/L, as well as genotoxic changes
promoted by exposure to the highest concentration (50 mgF/L).
These data reinforce the need of finding alternative sources of
potable water for people living in endemic areas of fluorosis.
Moreover, our findings reinforce the importance of permanent
monitoring of F concentrations in the drinking water and of
strategies to minimize F intake from other sources, to achieve

FIGURE 8 | Analysis of the genotoxicity. The Comet assay in
submandibular gland of mice chronically exposed (60 days) drinking water
containing 0, 10, and 50 mgF/L, during 60 days. The rate of genotoxic
damage was represented as a percentage of DNA in the tail. One-way
ANOVA and Tukey’s post hoc test, p < 0.05. Different lowercase letters
indicate significant differences among the groups.
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maximum preventive/therapeutic effects and avoid potential side
effects.
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