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Abstract

Background

Lactation results in substantial maternal bone loss that is recovered following weaning.

However, the mechanisms underlying this recovery, and in particular the role of insulin-like

growth factor 1 (IGF-I), is not clear. Furthermore, there is little data regarding whether recov-

ery is affected by advanced maternal age.

Methods

Using micro-computed tomography, we studied bone recovery following lactation in mice at

2, 5 and 7 months of age. We also investigated the effects of reduced IGF-I availability using

mice lacking PAPP-A2, a protease of insulin-like growth factor binding protein 5 (IGFBP-5).

Results

In 2 month old mice, lactation affected femoral trabecular and cortical bone, but only cortical

bone showed recovery 3 weeks after weaning. This recovery was not affected by deletion of

the Pappa2 gene. The amount of trabecular bone was reduced in 5 and 7 month old mice,

and was not further reduced by lactation. However, the recovery of cortical bone was

impaired at 5 and 7 months compared with at 2 months.

Conclusions

Recovery of the maternal skeleton after lactation is impaired in moderately-aged mice com-

pared with younger mice. Our results may be relevant to the long-term effects of breastfeed-

ing on the maternal skeleton in humans, particularly given the increasing median maternal

age at childbearing.
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Introduction

Lactation has a profound effect on the maternal skeleton. Bone mineral density (BMD)

decreases dramatically, regardless of the use of calcium supplements, declining 1–3% per
month during lactation [1, 2]. In contrast, the decline in BMD is 1.2% per year in the first 5

years of menopause [3]. Remarkably, there appears to be complete recovery of the maternal

skeleton after weaning [1], and numerous studies have found no long-term effects of parity or

lactation history on menopausal risk of low BMD and/or fractures [4, 5]. However, the effects

of maternal age on recovery are less clear. It has been hypothesized that pregnancy prior to the

acquisition of peak BMD may impair maximum mineralization achieved, and thus may have

long-term effects [6]. Some studies have found support for this hypothesis [7–11], although a

few have found ambiguous results [12], no effect [5, 13], or the opposite pattern [14].

In contrast to studies of younger mothers, there has been no study of the long-term effects

of lactation at advanced maternal age on skeletal health. However, a shorter-term study did

find some evidence that recovery after lactation could be impaired at older maternal age; the

increase in bone mineral content from parturition to 2 years postpartum was negatively related

to age [15]. Given that some bone loss occurs before menopause [16–19] and that the perimen-

opausal rate of bone loss is higher than that in the early menopause [3], it might be expected

that pregnancies at older ages could impact BMD. Such effects would not have been detected

in previous studies that found no effect of lactation on menopausal skeletal health because they

would not have included the proportions of older mothers that make up today’s population as

a result of delayed childbearing [20].

In addition to uncertainty regarding the effects of maternal age, the mechanisms underlying

the remarkable recovery of the skeleton post lactation are unknown [2]. Insulin-like growth

factor 1 (IGF-I) is a likely candidate given its important roles in bone physiology [21–23].

IGF-I availability is regulated by insulin-like growth factor binding proteins (IGFBPs), among

which IGFBP-5 is one of the most abundant in bone [24]. IGFBP-5 influences bone mineral

density (BMD) [25–27] by regulating IGF availability as well as through IGF-independent

effects [28, 29]. The release of IGF-I from IGFBP-5 is regulated by proteases, including preg-

nancy-associated pregnancy protein-A2 (PAPP-A2) [30–33]. Loss-of-function mutations in

the human PAPPA2 gene cause short stature and reduced bone density [34, 35], and these con-

ditions are improved by treatment with IGF-I [36–38]. In mice, deletion of Pappa2 reduces the

linear growth of bones [39–41] and affects bone composition and microarchitecture [42, 43].

The goal of the present study was to assess the effects of maternal age and Pappa2 deletion

on the recovery of the maternal skeleton after lactation in a mouse model. We predict that

recovery after lactation will decrease at older maternal ages, and that recovery will be impaired

by deletion of Pappa2 as a result of reduced IGF availability. Despite differences between

rodents and humans [6], changes in the circulating levels of minerals and many of the key hor-

mones involved in calcium homeostasis during pregnancy and lactation are similar in humans

and mice [4].

Materials and methods

Mice

All work was carried out in accordance with the guidelines of the Canadian Council on Animal

Care and was approved by the SFU University Animal Care Committee (protocol 1188–11).

Mice were housed in individually ventilated cages (50 air changes/hour; in pairs for breeding

and up to 5 mice per cage otherwise) with Enrich-o’Cobs bedding (Andersons Lab Bedding,

Maumee, OH) on a 12:12 hour light:dark cycle, at constant temperature (21 ± 1˚C), 50%
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humidity, with water and food available ad libitum (maintenance diet: 5001; breeding diet:

Prolab RMH 3000, LabDiet, St. Louis, MO). Animal health was monitored daily, and apart

from 9 mice culled due to dystocia or other ill health, there was no mortality outside of planned

euthanasia. Euthanasia was performed by isoflurane anesthesia followed by CO2 inhalation.

Mice homozygous for a constitutive Pappa2 deletion allele (Pappa2KO/KO) with a C57BL/6

background were generated as previously described [40, 44]. As controls, we used mice homo-

zygous for a conditional deletion allele (where the Pappa2 gene is intact, but exon 2 is flanked

by LoxP sites [40], i.e., floxed, Pappa2fl/fl). We have previously shown that postnatal growth

does not differ between Pappa2fl/fl and Pappa2wt/wt mice [44]. The use of Pappa2fl/fl as controls

enabled a reduction in the number of mice used, since we needed to breed these mice to main-

tain the colony. Genotypes were confirmed by PCR using ear-clip tissue obtained at weaning,

as previously described [44].

Mice were bred for the first time at either 2 months, 5 months or 7 months. Mice breed well

at 2 and 5 months, but reproductive performance declines by 7 months (personal observation).

Peak BMD is achieved shortly before 19 weeks [45], but trabecular bone peaks at 2 months

and declines thereafter [46]. Thus, 2 month mice are young breeders, who have not yet

achieved peak BMD, 5 month mice have achieved peak BMD and show some trabecular bone

loss, while 7 month mice have more bone loss and are approaching reproductive senescence.

Females were euthanized after 3 weeks of lactation (the normal duration of mouse lactation

in the lab), or 3 weeks after weaning. In mice, the recovery of the vertebrae is complete by 4

weeks post-weaning, whereas the recovery of the femur is incomplete after 3–4 weeks [47, 48].

We therefore focused on recovery of the femur 3 weeks after weaning as this skeletal site and

time point would allow assessment of variation in recovery. Mice bred at 7 months were very

poor breeders; many did not become pregnant, and among those who did, many took a long

time to become pregnant and/ or cannibalized their litter. Therefore, at 7 months, we only col-

lected mice 3 weeks after weaning to obtain a sufficient sample size. For mice bred at 2 months

and 5 months, we only included females who had given birth to, and lactated for, a single litter.

However, since breeding performance was so poor at 7 months, at this age we also included

females that cannibalized a first litter, but successfully reared a second litter.

Within 4 days of birth, litter size was adjusted to 7 pups to reduce variability in maternal

lactational demands. Bred females were excluded from analyses if they weaned fewer than 5

pups. Where possible, for each breeding female, we also collected a virgin age-matched control

(AMC), usually a sibling of a bred mouse. All mice (bred and virgin) were kept in identical

conditions, including changes to a breeder diet during breeding.

Micro-computed tomography

Following sacrifice, mice were stored at -20˚C, and later exposed to dermestid beetles for

removal of soft tissue. Femurs were scanned using micro-computed tomography (micro-CT)

with an isotropic voxel size of 7.4 μm (Scanco Medical μCT100, Switzerland; 70 kVp, 114 μA,

100 ms integration time). For trabecular bone, the region of interest was proximal to the distal

growth plate, 222 μm proximal from where the four sections of the bone appeared to fuse in

cross-section. The region of interest for cortical bone was the mid-shaft, immediately distal to

the third trochanter (where the cross-section of the bone transitioned from a teardrop shape

and became rounder). For both trabecular and cortical bone, 5% of the total length of bone

was analysed. Apart from knowledge of bone length, the selection of the region of interest was

performed blind to age, genotype and breeding status. Measures of trabecular bone microarch-

itecture included bone volume fraction (BV/TV, %), trabecular number (Tb.N, mm-1), trabec-

ular separation (Tb.Sp, μm), and trabecular thickness (Tb.Th, μm) [49]. Measures of cortical
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bone morphology included cortical area fraction (Ct.Ar/Tt.Ar, %), average cortical thickness

(Ct.Th, μm), and cortical porosity (Ct.Po, %) [49].

Serum IGF-I and IGFBP-5

At collection, females were blood sampled by cardiac puncture, and serum was stored at

-80˚C. We measured serum IGF-I and IGFBP-5 using the IGF-1 DuoSet ELISA kit (#DY791,

R&D Systems) and the IGFBP-5 DuoSet ELISA kit (#DY578, R&D Systems), respectively, fol-

lowing the manufacturer’s instructions.

Statistical analyses

Data were analysed using general linear models (proc GLM, SAS, version 9.4). The specific

models and sample sizes are described below.

Results and discussion

Skeletal traits affected by lactation

To identify traits that were affected by lactation and that showed recovery after three weeks,

we first analysed the effects of breeding (bred mice vs. AMC) and timing (collected at wean vs.

three weeks after wean) in Pappa2fl/fl mice (with intact Pappa2) at 2 months of age to facilitate

comparison with previous studies [47, 48]. These analyses used general linear models includ-

ing effects of breeding, timing and the interaction between breeding and timing. An effect of

breeding indicated that a trait was affected by lactation, whereas an effect of timing indicated a

change with age (since it occurred in AMC as well). A significant interaction between breeding

and timing potentially indicated recovery from the effects of lactation, if bred mice were more

similar to AMC after three weeks of recovery than at wean. Trabecular bone volume fraction

was reduced by both breeding and 3 weeks of aging, while trabecular number declined and tra-

becular separation increased with 3 weeks of aging, and trabecular thickness was reduced by

breeding (Table 1). However, none of these traits showed an interaction between breeding and

timing, suggesting no evidence of recovery (Table 1). In contrast, cortical area fraction and

cortical thickness were reduced by breeding and increased with 3 weeks of aging, but the inter-

action between breeding and timing was significant, such that values increased more in bred

mice over the 3 weeks following weaning, and were more similar to AMC after three weeks of

recovery than at wean (Table 1). Cortical porosity showed a similar but inverse pattern (i.e.,

increased by breeding, etc., Table 1).

Our finding that both trabecular and cortical bone were affected by lactation, but that corti-

cal bone showed more recovery, is consistent with previous work. In a previous study of

C57BL/6J mice, femoral trabecular bone volume fraction, trabecular number and trabecular

spacing showed little recovery 3 weeks after weaning [47]. In contrast, while cortical thickness,

cortical area fraction and cortical porosity still showed an effect of lactation 3 weeks after

weaning, the difference between bred mice and non-lactating controls was smaller after recov-

ery than at wean [47]. Similar results were observed after 4 weeks of recovery in CD-1 mice

[48]. In rats, tibial cortical bone showed complete recovery 6 weeks after weaning whereas the

recovery of trabecular bone was incomplete [50, 51]. The reduction in cortical bone during lac-

tation is due to both reduced periosteal bone formation [52] and increased endocortical bone

resorption [53] with the latter being reversed after weaning [54].
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Factors affecting circulating IGF-I and IGFBP-5 levels

We analysed circulating IGF-I and IGFBP-5 levels in 2 month old mice using general linear

models including the effects of breeding, timing, and genotype, as well as the interaction

between breeding and timing (as above), and the three-way interactions between breeding,

timing and genotype (to test whether recovery differed between genotypes). IGF-I levels were

significantly lower in Pappa2KO/KO mice than Pappa2fl/fl mice (P = 0.0001), but were not influ-

enced by any other factor (breeding P = 0.28; timing P = 0.13; breeding� timing P = 0.28; bree-

ding�timing�genotype P = 0.92; S1 Fig). Conversely, IGFBP-5 levels were significantly higher

in Pappa2KO/KO mice than Pappa2fl/fl mice (P < 0.0001), but were not influenced by any other

factor (breeding P = 0.21; timing P = 0.73; breeding� timing P = 0.51; bree-

ding�timing�genotype P = 0.34; S2 Fig).

The increase in IGFBP-5 levels as a result of the deletion of Pappa2, a gene encoding an

IGFBP-5 protease, was expected, and consistent with our previous work [42, 44]. Similarly,

this increase in IGFBP-5 would be expected to reduce available IGF-I levels, and such an

increase has previously been observed in an independent transgenic mouse carrying a muta-

tion eliminating the proteolytic activity of PAPP-A2 [55]. However, while we found that IGF-I

levels were not altered by breeding or recovery, a previous study found IGF-I levels to be sig-

nificantly elevated 3 weeks after weaning, although there was no difference between lactating

and non-lactating mice at wean [47].

Effects of age and Pappa2 deletion on the recovery of the skeleton after

lactation

To examine the effects of age and Pappa2 deletion on the recovery of the skeleton after lacta-

tion, we performed analyses including both Pappa2KO/KO and Pappa2fl/fl mice at 2 and 5

months of age; sample sizes are shown in Table 2. We did not include 7 month old mice in this

Table 1. Effects of lactation and recovery after weaning on skeletal traits in 2 month old control mice.

Bred females Age-matched controls Breeding (bred vs.

AMC)

Timing (at wean vs. 3 weeks

after)

Breeding�timing

interaction

At wean 3 weeks after

wean

At wean 3 weeks after

wean

P P P

Sample size 17 17 16 15

Trabecular

Bone volume fraction

(%)

6.4±0.4 3.9±0.4 7.2±0.4 4.8±0.4 0.04 < 0.0001 0.85

Trabecular number

(mm-1)

3.84

±0.09

3.33±0.09 3.79

±0.09

3.25±0.09 0.45 < 0.0001 0.89

Trabecular separation

(μm)

260±8 302±8 262±8 310±8 0.55 < 0.0001 0.78

Trabecular thickness

(μm)

37.4±0.9 36.4±0.9 43.4±0.9 41.4±1.0 < 0.0001 0.11 0.59

Cortical

Cortical area fraction

(%)

36.6±0.6 43.4±0.6 45.5±0.6 46.8±0.6 < 0.0001 < 0.0001 < 0.0001

Cortical thickness (μm) 147±2 182±2 185±2 193±2 < 0.0001 < 0.0001 < 0.0001

Cortical porosity (%) 6.3±0.2 5.1±0.2 5.2±0.2 5.1±0.2 0.008 0.006 0.01

Values are least squares means ± standard error from a general linear model including effects of breeding (bred vs. age-matched control), timing (at wean vs. 3 weeks

after), and the breeding�timing interaction.

https://doi.org/10.1371/journal.pone.0256906.t001
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analysis since these were not collected at wean. General linear models included effects of

breeding, timing, genotype, age, as well as the interaction between breeding and timing (as

above), and three-way interactions between breeding, timing and genotype (to test whether

recovery differed between genotypes) and between breeding, timing and age (to test whether

recovery differed between ages) (Table 3). Trabecular bone volume fraction was reduced by

breeding and by aging (both between wean and 3 weeks afterwards, and between 2 and 5

months) (Table 3; Fig 1). The three-way interaction between breeding, timing and age was sig-

nificant, whereby trabecular bone volume fraction was reduced by breeding at 2 months, but

there was little effect of breeding at 5 months, either at wean or 3 weeks later (Table 3; Fig 1). A

potential explanation for this result was that trabecular bone was already greatly reduced at 5

months even in virgin mice, such that it could not provide a substantial amount of calcium for

lactation. Trabecular number showed a similar pattern, except that this trait declined between

wean and recovery at 2 months but not 5 months (Table 3; S3 Fig). Trabecular spacing showed

only increases with aging (both between wean and 3 weeks afterwards, and between 2 and 5

months, Table 3; S4 Fig). Trabecular thickness showed an effect of breeding (reduced in bred

mice), age (increased at 5 months) and genotype (higher in Pappa2KO/KO mice) (Table 3; S5

Fig).

Cortical area fraction showed significant effects of breeding (lower in bred mice), timing

(higher after 3 weeks), age (higher at 5 months), genotype (higher in Pappa2KO/KO mice), and a

significant interaction between breeding and timing, as described above (Table 3; Fig 2). More-

over, there was a significant three-way interaction between breeding, timing and age, whereby

the difference between bred and AMC mice diminished between wean and 3 weeks later

(reflecting the breeding by timing interaction), but did so to a greater extent at 2 months, indi-

cating that recovery was impaired at 5 months of age (Fig 2). Cortical thickness showed similar

patterns, and although the effects of age and genotype were not significant, the three-way

Table 2. Sample sizes in analyses of the effects of age and Pappa2 deletion on the recovery of the skeleton after lactation.

Age Breeding Timing Genotype Sample size

2 months Bred At wean Floxed 17

Knock-out 14

3 weeks after Floxed 17

Knock-out 19

AMC At wean Floxed 16

Knock-out 14

3 weeks after Floxed 15

Knock-out 18

5 months Bred At wean Floxed 13

Knock-out 8

3 weeks after Floxed 13

Knock-out 4

AMC At wean Floxed 11

Knock-out 9

3 weeks after Floxed 13

Knock-out 5

7 months Bred 3 weeks after Floxed 3

Knock-out 4

AMC 3 weeks after Floxed 5

Knock-out 10

https://doi.org/10.1371/journal.pone.0256906.t002
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interaction between breeding, timing and age was significant (Table 3; S6 Fig). Cortical poros-

ity also showed similar patterns (Table 3; S7 Fig).

No trait showed a significant three-way interaction between breeding, timing and genotype

(Table 3), suggesting that recovery was not impaired by Pappa2 deletion. While this result is

surprising given the roles of IGF-I and IGFBP-5 in bone physiology, IGF-I availability may not

be crucial for recovery after lactation. A previous study found that osteocyte-derived IGF-I is

not required for the recovery of bone following dietary calcium deprivation [56]. Pappa2 dele-

tion has previously been shown to affect bone growth in virgin animals, and in the present

study we found that it increased cortical area fraction and trabecular thickness. The increase in

cortical area fraction is consistent with previous work [42], and is likely the result of reduced

IGF-I availability, given that it was also observed with a knock-in Pappa2 allele coding for pro-

tein that lacked proteolytic activity [55].

Because 7 month old mice were not collected at wean, we also performed analyses including

Pappa2KO/KO and Pappa2fl/fl mice at 2, 5 and 7 months of age, including only those mice col-

lected 3 weeks after weaning. General linear models included effects of breeding, age and geno-

type, as well as the interactions between breeding and age and between genotype and age.

Because these analyses included only mice collected 3 weeks after weaning, the effect of breed-

ing was used to assess recovery (a significant effect of breeding 3 weeks after weaning indicated

that recovery was not complete), and the breeding by age interaction was used to test whether

recovery differed between ages. Similar to the previous analysis, for trabecular bone volume

fraction, the effect of age was significant and there was a significant interaction between age

and breeding. Trabecular bone volume fraction was reduced by breeding at 2 months, but not

at 5 and 7 months (Table 4; Fig 3). For trabecular number and spacing, only the effect of age

was significant, with number decreasing and spacing increasing with age (Table 4; S8 and S9

Table 3. Effects of age and Pappa2 genotype on the recovery of skeletal traits in 2 and 5 month old mice.

Breeding

(bred vs.

AMC)

Timing (at

wean vs. 3

weeks after)

Age (2 vs. 5

months)

Genotype

(Pappa2KO/KO vs.

Pappa2fl/fl)

Breeding�timing

interaction

Breeding�timing�age

interaction

Breeding�timing�genotype

interaction

Trabecular

Bone volume

fraction (%)

0.02 <0.0001 <0.0001 0.82 0.50 0.0012 0.14

Trabecular

number (mm-

1)

0.34 <0.0001 <0.0001 0.95 0.34 0.0032 0.33

Trabecular

separation

(μm)

0.15 <0.0001 <0.0001 0.84 0.18 0.14 0.37

Trabecular

thickness (μm)

<0.0001 0.84 <0.0001 0.03 0.20 0.74 0.11

Cortical

Cortical area

fraction (%)

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.36

Cortical

thickness (μm)

<0.0001 <0.0001 0.59 0.27 <0.0001 <0.0001 0.54

Cortical

porosity (%)

<0.0001 <0.0001 0.0036 0.12 0.0002 0.0013 0.97

P-values are from general linear models included effects of breeding, timing, age, genotype, the interaction between breeding and timing, and three-way interactions

between breeding, timing and genotype (to test whether recovery differed between genotypes) and between breeding, timing and age (to test whether recovery differed

between ages). AMC = age-matched controls.

https://doi.org/10.1371/journal.pone.0256906.t003
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Figs). Trabecular thickness increased with age and was reduced by breeding, but there was no

significant interaction between age and breeding (Table 4; S10 Fig).

Cortical area fraction showed significant effects of breeding (lower in bred mice), age

(decrease with age), genotype (higher in Pappa2KO/KO mice), and a significant interaction

between breeding and age, whereby the difference between bred and AMC after 3 weeks of

recovery was smaller at 2 months than at 5 or 7 months (Table 4; Fig 4). Cortical thickness and

porosity showed similar patterns (Table 4; S11 and S12 Figs). Trabecular bone volume fraction

and trabecular thickness showed significant genotype by age interactions, whereby these traits

Fig 1. Effects of age, Pappa2 genotype, lactation and recovery after weaning on trabecular bone fraction. Blue triangles denote bred mice, and

red circles denote age-matched controls (AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percentiles.

https://doi.org/10.1371/journal.pone.0256906.g001
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were elevated in Pappa2KO/KO mice at 5 months but reduced at 7 months (S13 and S14 Figs).

These results including 7 month old mice are consistent with the analyses above including

only 2 and 5 month old mice collected at both wean and after 3 weeks of recovery: the recovery

of cortical bone is impaired at older ages, whereas trabecular bone is not affected by breeding

even at wean in older mice, potentially because levels are so low that it cannot provide a sub-

stantial amount of calcium.

Fig 2. Effects of age, Pappa2 genotype, lactation and recovery after weaning on cortical area fraction. Blue triangles denote bred mice, and red

circles denote age-matched controls (AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percentiles.

https://doi.org/10.1371/journal.pone.0256906.g002
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Table 4. Effects of age and Pappa2 genotype on the recovery of skeletal traits in 2, 5 and 7 month old mice, including only mice collected 3 weeks after weaning.

Breeding (bred vs.

AMC)

Age (2 vs. 5 vs. 7

months)

Genotype (Pappa2KO/KO vs.

Pappa2fl/fl)
Breeding�age

interaction

Genotype�age

interaction

Trabecular

Bone volume fraction

(%)

0.54 <0.0001 0.36 0.002 0.0007

Trabecular number

(mm-1)

0.66 <0.0001 0.82 0.71 0.57

Trabecular separation

(μm)

0.62 <0.0001 0.25 0.39 0.15

Trabecular thickness

(μm)

0.0002 <0.0001 0.55 0.81 0.01

Cortical

Cortical area fraction

(%)

<0.0001 <0.0001 <0.0001 <0.0001 0.11

Cortical thickness (μm) <0.0001 0.02 0.01 <0.0001 0.06

Cortical porosity (%) <0.0001 0.01 0.02 0.0004 0.40

P-values are from general linear models included effects of breeding, age, genotype, the interaction between breeding and age, and the interaction between genotype and

age. AMC = age-matched controls.

https://doi.org/10.1371/journal.pone.0256906.t004

Fig 3. Effects of age and lactation on trabecular bone fraction among mice collected 3 weeks after weaning. Blue triangles denote bred mice,

and red circles denote age-matched controls (AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percentiles.

https://doi.org/10.1371/journal.pone.0256906.g003
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Effects of pregnancy vs. lactation on bone

Pregnancy itself affects bone mass and microarchitecture [2, 57], and therefore the effects of

lactation described above could have been due, at least in part, to pregnancy. To distinguish

between effects of pregnancy and lactation, we analysed females that had given birth, but lost

the litter soon after birth, and were collected 3 weeks after birth, i.e., at the time when lactating

females would have been collected at wean. We identified 6 such females that could be

matched to both a bred female collected at wean and an age-matched control of the same age

and genotype collected around the same time. Cortical traits were all significantly reduced in

females that had successfully reared a litter, while females that had been pregnant but lost their

litters were not significant different from age-matched controls (Table 5). Thus, at 3 weeks

after birth, cortical traits were affected by lactation but not by pregnancy. Trabecular thickness

showed a similar pattern, although bred females were not statistically different from those who

lost a litter (Table 5). Trabecular separation was significantly higher in females that had been

pregnant but lost their litters than in age-matched controls (Table 5). While there were no sig-

nificant differences among groups for bone volume fraction and trabecular number, these

traits showed a similar pattern to trabecular separation, i.e., females that had been pregnant

Fig 4. Effects of age and lactation on cortical area fraction among mice collected 3 weeks after weaning. Blue triangles denote bred mice, and

red circles denote age-matched controls (AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percentiles.

https://doi.org/10.1371/journal.pone.0256906.g004
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but lost their litters had the lowest amount of bone (Table 5). These results suggest that these

females may have not been able to lactate successfully because of reduced trabecular calcium

stores.

Conclusions

In young mice with intact Pappa2, lactation affects femoral trabecular and cortical bone, but

only cortical bone shows some recovery 3 weeks after lactation. The deletion of Pappa2 does

not impair this recovery. In mice bred at 5 and 7 months, trabecular bone is no longer affected

by lactation, perhaps because levels are so low that it cannot provide a substantial amount of

calcium. However, the recovery of cortical bone is impaired at 5 and 7 months. Our results

may be relevant to the long-term effects of breastfeeding on the maternal skeleton in humans,

particularly given the increasing median maternal age at childbearing [20].

Supporting information

S1 Fig. Effects of Pappa2 genotype, lactation and recovery after weaning on serum IGF-I

levels in 2 month old mice. Blue triangles denote bred mice, and red circles denote age-

matched controls (AMC). Crosses denote means, while horizontal lines denote the 25th, 50th

and 75th percentiles.

(TIF)

S2 Fig. Effects of Pappa2 genotype, lactation and recovery after weaning on serum IGFBP-

5 levels in 2 month old mice. Blue triangles denote bred mice, and red circles denote age-

matched controls (AMC). Crosses denote means, while horizontal lines denote the 25th, 50th

and 75th percentiles.

(TIF)

Table 5. Effects of pregnancy vs. lactation on skeletal traits.

AMC (no pregnancy, no

lactation)

Lost litter (pregnancy but no

lactation)

Weaned pups (pregnancy and

lactation)

Group (AMC vs. lost litter vs.

weaned pups)

Cohort

P P

Trabecular

Bone volume fraction

(%)

5.3±0.4a 3.6±0.4a 4.2±0.4a 0.06 0.04

Trabecular number

(mm-1)

3.2±0.1a 2.9±0.1a 3.1±0.1a 0.08 0.0003

Trabecular separation

(μm)

313±11a 360±11b 337±11ab 0.045 0.0002

Trabecular thickness

(μm)

44±1a 41±1ab 38±1b 0.02 0.005

Cortical

Cortical area fraction

(%)

48±1a 49±1a 36±1b <0.0001 0.014

Cortical thickness

(μm)

193±6a 198±6a 141±6b <0.0001 0.23

Cortical porosity (%) 5.3±0.3a 5.1±0.3a 6.9±0.3b 0.004 0.70

Six females that lost their litter soon after birth were collected 3 weeks after birth and were matched with a female who bred successfully and an age-matched control

(AMC) of the same age and genotype. A matched trio of 3 mice (lost litter, bred successfully and AMC) were considered a cohort. Values are least squares

means ± standard error from a general linear model including effects of group and cohort. Values with the same superscript letter are not significantly different.

https://doi.org/10.1371/journal.pone.0256906.t005
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S3 Fig. Effects of age, Pappa2 genotype, lactation and recovery after weaning on trabecular

number. Blue triangles denote bred mice, and red circles denote age-matched controls

(AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percen-

tiles.

(TIF)

S4 Fig. Effects of age, Pappa2 genotype, lactation and recovery after weaning on trabecular

spacing. Blue triangles denote bred mice, and red circles denote age-matched controls (AMC).

Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percentiles.

(TIF)

S5 Fig. Effects of age, Pappa2 genotype, lactation and recovery after weaning on trabecular

thickness. Blue triangles denote bred mice, and red circles denote age-matched controls

(AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percen-

tiles.

(TIF)

S6 Fig. Effects of age, Pappa2 genotype, lactation and recovery after weaning on cortical

thickness. Blue triangles denote bred mice, and red circles denote age-matched controls

(AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percen-

tiles.

(TIF)

S7 Fig. Effects of age, Pappa2 genotype, lactation and recovery after weaning on cortical

porosity. Blue triangles denote bred mice, and red circles denote age-matched controls

(AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percen-

tiles.

(TIF)

S8 Fig. Effects of age and lactation on trabecular number among mice collected 3 weeks

after weaning. Blue triangles denote bred mice, and red circles denote age-matched controls

(AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percen-

tiles.

(TIF)

S9 Fig. Effects of age and lactation on trabecular spacing among mice collected 3 weeks

after weaning. Blue triangles denote bred mice, and red circles denote age-matched controls

(AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percen-

tiles.

(TIF)

S10 Fig. Effects of age and lactation on trabecular thickness among mice collected 3 weeks

after weaning. Blue triangles denote bred mice, and red circles denote age-matched controls

(AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percen-

tiles.

(TIF)

S11 Fig. Effects of age and lactation on cortical thickness among mice collected 3 weeks

after weaning. Blue triangles denote bred mice, and red circles denote age-matched controls

(AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percen-

tiles.

(TIF)
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S12 Fig. Effects of age and lactation on cortical porosity among mice collected 3 weeks

after weaning. Blue triangles denote bred mice, and red circles denote age-matched controls

(AMC). Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percen-

tiles.

(TIF)

S13 Fig. Effects of age and genotype on trabecular bone fraction among mice collected 3

weeks after weaning. Blue triangles denote Pappa2fl/fl mice and red circles denote Pappa2KO/
KO mice. Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percen-

tiles.

(TIF)

S14 Fig. Effects of age and genotype on trabecular thickness among mice collected 3 weeks

after weaning. Blue triangles denote Pappa2fl/fl mice and red circles denote Pappa2KO/KO

mice. Crosses denote means, while horizontal lines denote the 25th, 50th and 75th percentiles.

(TIF)

S1 File. Raw data.

(XLSX)
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