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Abstract

Consumption of fructose-containing beverages such as high-fructose corn syrup (HFCS)

is increasing, raising concerns about the negative effects of excessive fructose intake. A

recent report indicated that excess HFCS intake impairs hippocampal function. In this

study, we focused on neurotrophic factors (NFs) in the hippocampus from the viewpoint

of epigenetics to clarify the adverse effects of fructose. We analyzed the effects of HFCS

intake on hippocampal function in three age categories: childhood and adolescence

(postnatal day (PD) 21–60), young adulthood (PD60-100), and late adulthood (PD100-

140). For the experiments, male Sprague-Dawley rats were divided into three age catego-

ries, the control group was received distilled water and the HFCS group was received

20% HFCS solution for 40 days in each period. We analyzed mRNA and protein levels for

qPCR and western blotting, respectively, of a hippocampal NF, brain-derived neuro-

trophic factor (Bdnf). HFCS consumption reduced hippocampal Bdnf mRNA and protein

expressions in childhood and adolescence. Moreover, pyrosequencing assays revealed

increased DNA methylation at the Bdnf promoter in childhood and adolescence. This

Bdnf levels reduction may be due to hypermethylation of the promoter regions. It should

be noted that this phenomenon was observed only in childhood and adolescence fructose

consumption. Our results indicate that the sensitivity of the hippocampus to fructose may

vary with age. This study provides insight into the adverse effects of excessive HFCS con-

sumption on the hippocampus in children.
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Introduction

A diet high in added sugars, especially fructose, has adverse metabolic outcomes and is associ-

ated with metabolic disorders [1]. Fructose is a natural sugar found in fruits and vegetables

often consumed in the form of high-fructose corn syrup (HFCS). HFCS, which consists of

45% glucose and 55% fructose, is low in cost and high in sweetness; hence, its consumption

has been increasing over the last 50 years [2]. According to various studies, increased HFCS

consumption is considered a risk factor for metabolic syndrome, dyslipidemia, insulin resis-

tance, obesity, and type 2 diabetes [1, 3–7]. Therefore, the social concern about excessive fruc-

tose consumption has been growing in recent years.

Emerging data also indicate that high-fructose diets have a marked impact on brain func-

tion [8, 9], particularly within the hippocampus, a brain region involved in learning, memory,

and food intake regulation that is particularly susceptible to metabolic impairment [10–12].

Excessive consumption of fructose-containing beverages such as HFCS, a hallmark of mod-

ern lifestyles, is especially pronounced in the young population [13]. Childhood is a critical

period for the maturation of the hippocampal circuitry [14] and heightened neural plasticity

[15, 16]. In addition, it is an important period of susceptibility to various stresses with long-

term consequences in the cognitive and memory domains. As metabolism and physiological

functions differ greatly between childhood and adulthood, it is expected that susceptibility to

the adverse effects of fructose may also differ between childhood and adulthood. However,

only a few studies have focused on the duration of intake while examining the adverse effects

of fructose. Hsu et al. showed that the effects of high fructose diets on hippocampal function

are particularly damaging during sensitive periods of neurocognitive development, such as

childhood and adolescence [17]. Recently, Clark et al. demonstrated that higher dietary intake

of added sugars, particularly fructose, was associated with alterations in hippocampal structure

and connectivity during childhood in 103 children aged 7–11 years [18].

NFs are composed of four types of liquid factors: nerve growth factor (Ngf), Bdnf, neurotro-

phin-3 (Nt3), and neurotrophin-4 (Nt4) [19]. NFs play an important role in the development

of brain functions during growth [11, 20, 21]. NF deficits have also been shown to hamper cog-

nitive processes through the inhibition of crucial mechanisms such as long-term potentiation

[22]. Furthermore, Bdnf and Ngf may play vital roles in mediating processes that associate

adulthood environment with brain development and behavior [23]. Based on previous find-

ings, excess fructose intake causes cognitive decline and impaired neurogenesis and might lead

to aberrant expression of these NFs.

In this study, we focused on NFs in the hippocampus from the viewpoint of epigenetics to

clarify the adverse effects of fructose. Furthermore, we aimed to clarify the effects of HFCS

intake on hippocampal function in three age categories: childhood and adolescence (PD21-

60), young adulthood (PD60-100), and late adulthood (PD100-140).

Materials and methods

Ethics statement

The study protocol was approved by the Animal Ethics Committee of Fujita Health University

(Permit No. H0862) and complied with guidelines of the National Research Council’s Guide

for the Care and Use of Laboratory Animals.

Animal experiments

All animals were housed in an environmentally controlled cage at room temperature

(23 ± 3˚C) under a 12:12 h light-dark cycle. The experimental period was divided into three
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parts: childhood and adolescence (21–60 days old: Period I), young adulthood (60–100 days

old: Period II), and late adulthood (100–140 days old: Period III). 21, 60, 100 days old male

Sprague-Dawley rats (Shizuoka Laboratory Center, Shizuoka, Japan, RRID: RGD_2314928)

were divided into control (C, n = 7–8) and HFCS groups (H, n = 7–8) in each period, and fed

ad libitum with distilled water or 20% HFCS water in separate water bottle. All animals were

housed in groups of 2–3 and given 40-days ad libitum access to their respective water source

and standard chow (Nisshin Seifun Group, Tokyo, Japan) during the experimental period.

20% HFCS solution was prepared using 75% HFCS (Japan Corn Starch, Tokyo, Japan) and dis-

tilled water. Body weight was measured once per week. Finally, access to food was withdrawn

from all animals 6 h before dissection.

The rats were sacrificed following isofluorane. A surgical plane of anesthesia was confirmed

when a toe pinch failed to elicit a change in respiratory rate or pattern [24].

Hippocampal DNA and RNA extraction

Hippocampal tissues of all animals were dissected to extract DNA and RNA from the hippo-

campus. To extract DNA, we used NucleoSpin Tissue (Takara, Otsu, Japan). Total RNA was

isolated from the hippocampal tissues using TRIzol reagent (Thermo Fisher Scientific, Wal-

tham, MA, USA). Nucleic acid quality was confirmed by the 260/280 (>1.8) and 260/230

(>1.8) optical density ratio by using a NanoDrop ND-1000 spectrophotometer (Thermo

Fisher Scientific). Samples were stored at -80˚C for quantitative analysis of DNA methylation

and quantitative assessment of mRNA expression.

Quantification of mRNA expression

As in our previous report [25] qPCR for quantitative assessment of mRNA expression was per-

formed using the THUNDERBIRD SYBR qPCR Mix (Toyobo, Osaka, Japan) and QuantStu-

dio 7 Flex system (Thermo Fisher Scientific) at 95˚C for 1 min, followed by 40 cycles of 95˚C

for 15 s, 55˚C for 30 s, and 60˚C for 1 min. The expression levels of the target genes were nor-

malized using beta-actin (Actb) mRNA as an internal control. We compared the C group with

the H group by fold change using the 2− ΔΔct method [26, 27]. To analyze the specificity of the

qPCR, a melt-curve analysis was subsequently performed as follows at 95˚C for 1 min, 55˚C

for 1 min, then the temperature was increased by 0�5˚C every 10 s from 55 to 95˚C. The prim-

ers used to amplify the target genes were as follows: Ngf: forward: 50-CAGAGTTTTGGCCTG
TGGTC-30, reverse: 50-GGACATTACGCTATGCACCT-30; Bdnf: forward: 50-CTCCGCCATG
CAATTTCCAC-30, reverse: 50-CAGCCTTCATGCAACCGAAG-30; Nt3: forward: 50-ACGGCA
ACAGAGACGCTAC-30, reverse: 50-CTCCAAAGGGGTGCTGTC-30; Nt4: forward: 50-GCCCC
AGAGTGAGGAGGT-30, reverse: 50-GGAGGAGGAGAAGGAAAAGG-30; Actb: forward: 50-CCC
GCGAGTACAACCTTCT-30, reverse: 50-CGTCATCCATGGCGAACT-30.

Western blot analysis

Hippocampal tissues were homogenized in RIPA buffer (Wako Pure Chemicals, Osaka,

Japan). The total protein concentration was determined using the BCA Protein Assay Kit

(Thermo Fisher Scientific). As previously reported [28, 29], SDS-PAGE and western blotting

were carried out as follows: the proteins were boiled in EzApply Buffer (Atto, Tokyo, Japan),

run in SDS-PAGE gels and transferred to PVDF membranes (Atto, Tokyo, Japan). The mem-

branes were then incubated overnight at 4˚C with primary antibodies against Bdnf (1:1000;

Santa Cruz Biotechnology Cat# sc-546, RRID: AB_630940), Actb (1:2000; Abcam Cat#

ab8227, RRID: AB_2305186), total Akt (1:1000; Cell Signaling Technology Cat# 9272, RRID:

AB_329827), and phosphorylated Akt (1:1000; Cell Signaling Technology Cat# 9271, RRID:
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AB_329825). Subsequently, the membranes were incubated with a secondary antibody conju-

gated with horseradish peroxidase for 1 h at room temperature, and the immunoreactive

bands were visualized using ECL+ chemiluminescence detection reagent (GE Healthcare,

Amersham, UK). The intensities of the chemiluminescence of specific bands were analyzed

using a FUSION—Chemiluminescence Imaging System (M&S Instruments, Osaka, Japan).

Analysis of CpG methylation of hippocampal Bdnf
Bisulfite pyrosequencing was performed to determine the proportion of methylated CpG site,

as in our previous report [30, 31]. First, we treated DNA (250 ng) with bisulfite using the Epi-

Tect Fast DNA Bisulfite Kit (Qiagen, Hilden, Germany) to convert unmethylated cytosines to

uracils while leaving methylated cytosines unmodified. PCR was then performed using bisul-

fite-treated DNA (10 ng/μL) with the TaKaRa EpiTaq HS (for bisulfate-treated DNA; Takara)

in a total volume of 20 μL. Samples were washed in PyroMark Q24 Vacuum Workstation (Qia-

gen) with 70% ethanol and PyroMark Denaturation Solution (Qiagen) to separate the comple-

mentary strand from the biotin-tagged strand. The samples were then washed with PyroMark

Washing Buffer (Qiagen). Samples were then annealed with sequencing primers in PyroMark

Q24 Plate (Qiagen), followed by heating at 80˚ for 5 min using a preheated PyroMark Q24

plate holder. The heated plate containing single-stranded template DNA and sequencing prim-

ers was transferred to the PyroMark Q24 Instrument to begin the run to collect methylation

data. Finally, site-specific methylation rates were collected visually using PyroMark Q24

Advanced software and data quality was assessed according to the manufacturer’s guidelines.

We used the following PCR primer sequences for the PyroMark Assay Design SW 2.0 (Qia-

gen): Bdnf: forward: 50-AGGTAGAGGAGGTATTATATGATAG-30; reverse: 50-biotin-
ATTTCCCCTTCTCTTCAATTAAA-30, and sequencing: 50-AGGTAGAGGAGGTATTATAT-30.

Statistical analysis

Statistical difference of the results was tested using 2-tailed Student t test or one-way ANOVA.

Data are expressed as mean ± standard deviation (SD). Values of p< 0.05 were considered sta-

tistically significant.

Results

Effect of HFCS consumption on body weight

The model used in this study is shown in Fig 1A. We evaluated the effect of HFCS intake on

body weight gain during each period (Fig 1B). The body weight showed a group x days interac-

tion (Period I: F(6, 66) = 1.96, Period II: F(6, 84) = 1.30, Period III: F(6, 72) = 1.663, p> 0.05

for each). No significant differences were observed in body weights between group.

HFCS intake influences the hippocampal expression of Bdnf in Period I

To confirm that the consumption of HFCS induces effects on hippocampal gene expression

related to brain development, we quantified the mRNA levels of NFs. Bdnf gene expression

was measured by targeting Bdnf exon IV, which is involved in neural activity-dependent Bdnf
expression in rodents [30]. Hippocampal Bdnf gene expression was reduced in Period I (C

group: 1.0 ± 0.3; H group: 0.7 ± 0.1; p< 0.05) (Fig 2). We also found the level of Bdnf protein

was reduced significantly (C group: 1.0 ± 0.5; H group: 0.5± 0.1; p < 0.05) (Fig 3). As expected,

hippocampal pAkt expression, a downstream target of Bdnf signaling, was reduced in Period I

(C group: 1.0 ± 0.2; H group: 0.7± 0.1; p< 0.05) (Fig 3).
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Response to HFCS exposure in hippocampal Bdnf methylation levels at

promoter region

We analyzed the CpG methylation levels at the CREB binding site in the targeted exon IV pro-

moter of Bdnf using the bisulfite pyrosequencing method. HFCS consumption increased

methylation level in the promoter of Bdnf during Period I (C group: 2.8 ± 1.0%; H group:

4.3 ± 1.4%; p< 0.05) (Fig 4B). There were no significant changes during the other periods.

These results suggest that excess HFCS consumption in Period I induces high methylation

of the Bdnf promoter region, which may lead to the suppression of gene expression (Figs 2

and 4).

Discussion

In this study, we evaluated the effects of excess HFCS solution intake on the DNA methylation

status of NFs in the hippocampus. The results showed that only in Period I, a decrease in the

hippocampal Bdnf gene expression and Bdnf protein levels was found through increase in

DNA methylation (Fig 5).

Recently, several studies showed that the expression of neurotrophic factors is regulated by

epigenetic modifications, such as DNA methylation [11, 32, 33]. DNA methylation plays an

important role in a variety of biological processes. This regulation is known to occur in the

CpG site, where cytosine and guanine are linked, and has been reported to vary with environ-

mental factors [10]. We previously indicated the adverse effects of chronic fructose intake on

the DNA methylation levels of hepatic PPARα and CPT1A promoters, and on mitochondrial

Fig 1. Body weight during each experimental period. (A) Experimental schedule of this study. (B) No significant differences were observed in the

body weight between the two groups. Period I: C and H, n = 7, Period II: C and H, n = 8, Period III: C and H, n = 7. C, Control group; H, HFCS group.

Data are presented as the mean ± SD.

https://doi.org/10.1371/journal.pone.0270144.g001
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DNA in adult rats [3, 7]. These findings clearly indicate that epigenetic modifications, espe-

cially DNA methylation, are highly sensitive to high levels of fructose consumption. DNA

methylation is also highly sensitive to excessive stress and poor nutritional status in childhood

[12, 34].

There are some reports that the hippocampus is particularly susceptible to metabolic

impairment [10–12]. Epidemiological studies have reported an association between increased

fructose intake and cognitive dysfunction such as dementia [35]. Experimental animal studies

have shown that high fructose consumption leads to a reduction in hippocampal neurogenesis

[36] and altered mitochondrial activity [37] suggesting a potential mechanistic basis for fruc-

tose-induced cognitive deficits [17, 38]. In addition, a high-fructose diet is associated with neu-

roinflammation [17] and a high level of oxidative stress [39], both of which are implicated as

risk factors in the pathogenesis of neurodegenerative disorders [40].

Several studies have shown that fructose intake has negative effects on the hippocampus.

For example, short-term fructose intake without metabolic syndrome has been reported to

decrease hippocampal weight and the number of neurons [41]. It has also been reported that

fructose water causes inflammation in the hippocampus [42]. Thus, the adverse effects of fruc-

tose on the hippocampus are gradually becoming clearer, but the relationship between the sen-

sitivity of the hippocampus to fructose and age is still unknown. To the best of our knowledge,

the only report is that of Cigliano et al. They reported that when fructose was fed to young and

adult rats, hippocampal inflammation and oxidative stress were observed in both age groups

[39], indicating that age-related changes in fructose sensitivity are similar across age groups. In

Fig 2. Hippocampal mRNA levels of NFs. Each mRNA was quantified by qPCR. The results are expressed as the ratio

of the relative intensity of levels of gene expression to Actb. Bdnf gene expression was reduced in the Period I with

HFCS. Period I: C, n = 5; H, n = 6, Period II: C, n = 8; H, n = 7, Period III: C, n = 7; H, n = 6. C, Control group; H,

HFCS group; data are presented as mean ± SD.�p< 0.05.

https://doi.org/10.1371/journal.pone.0270144.g002
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contrast, the present study found that hippocampal Bdnf expression was differentially sensitive

to fructose with age (Fig 5). Interestingly, only Bdnf expression in Period I was reduced by

fructose ingestion. Given the fact that childhood is a particularly important period for hippo-

campal development, fructose-induced hippocampal dysfunction may have a significant

impact on tissue disorders. Bdnf is known to play a role in hippocampal neurogenesis, neuro-

protection, maintenance of synaptic plasticity, and memory formation [20, 43–45]. Bdnf has

also been associated with several diseases. It has been reported that Bdnf expression in the

brain is decreased in patients with Alzheimer’s disease [46, 47]. Decreased hippocampal Bdnf

expression leads to decreased neurogenesis and cognitive function [48, 49]. Collectively, the

effects of reduced hippocampal Bdnf expression in Period I may persist throughout life.

Furthermore, once methylation modifications are introduced, they are maintained for a

long time. Therefore, a decrease in Bdnf signaling is expected to occur over a relatively long

period of time. This idea is supported by our previous report that methylation modification of

the Bdnf promoter in 21-day-old hippocampi was maintained for at least 2 months [30]. Thus,

the adverse effects of fructose ingestion during puberty may be long-lasting. We conclude that

Fig 3. Hippocampal Bdnf and pAkt protein expression. The results are expressed as the ratio of relative intensity of

protein expression levels to Actb or Akt. Hippocampal Bdnf and pAkt protein levels were decreased in the Period I

with HFCS. Period I: C, n = 5; H, n = 6 (Bdnf), C and H, n = 6 (pAkt), Period II: C and H, n = 8 (Bdnf), C and H, n = 8

(pAkt), Period III: C and H, n = 7 (Bdnf), C and H, n = 6 (pAkt). C, Control group; H, HFCS group; data are presented

as mean ± SD.�p< 0.05.

https://doi.org/10.1371/journal.pone.0270144.g003
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Fig 4. Hippocampal DNA methylation levels of the Bdnf promoter IV. (A) The schematic shows the target sequence of

Bdnf exon IV promoter for pyrosequencing analysis. (B) HFCS intake induced high methylation levels of Bdnf promoter

regions at the CREB binding site in Period I. Period I: C, n = 7; H, n = 6, Period II: C, n = 5; H, n = 6, Period III: C and H,

n = 7. C, Control group; H, HFCS group. Data are presented as the mean ± SD.�p< 0.05.

https://doi.org/10.1371/journal.pone.0270144.g004

Fig 5. Differences in sensitivity to HFCS consumption in Period I. Excessive HFCS intake induces aberrant DNA

methylation of Bdnf promoters in Period I but has no effect on the other periods. This specific change in Period I might

cause the downregulation of Bdnf expression and finally hippocampal dysfunction.

https://doi.org/10.1371/journal.pone.0270144.g005
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fructose intake in childhood and adolescence is more harmful to hippocampal function than

fructose intake in adulthood.

Several studies have reported that reduced Bdnf expression is associated with hippocam-

pus-dependent cognitive decline [50, 51]. Heldt SA et al. demonstrated that hippocampus-

specific BDNF deletion impairs novel object recognition and spatial learning by the Morris

water maze test [50]. In our previous report, we also reported hippocampus-dependent

behavioral abnormalities due to reduced Bdnf expression caused by DNA hypomethylation

during adolescence [30]. Considering these findings, although additional experiments are

necessary to validate, it is likely that behavioral abnormalities are also induced in the present

model.

We found that excessive HFCS solution intake during Period I increased the DNA meth-

ylation rate of the CRE-binding region in the Bdnf gene (Fig 4). The CRE-binding region is

a binding site for CREB, a transcription factor that plays an important role in the promoter

activity of Bdnf. Specific hypermethylation of this region has been reported to result in

decreased transcriptional activity [33]. Our previous study analyzed the effect of DNA

methylation of the Bdnf promoter on its transcriptional activity using a luciferase assay, sug-

gesting that DNA methylation in the CRE-binding region may play important roles in its

transcriptional activity [30]. Taken together with reports that a few percent change in the

promoter methylation level of Bdnf can affect its transcription, DNA hypermethylation of

CREB binding sites observed in this study may lead to transcriptional repression of the Bdnf
gene [52].

In this study, a 20% HFCS solution was used. Twenty percent HFCS solution has a concen-

tration comparable to that of a typical soft drink and contains approximately 11% fructose.

This is approximately 20% of the total daily caloric intake derived from fructose, which is com-

parable to the intake of the top 5% of fructose users in the US [53]. Therefore, this research

model seems to be relatively consistent with human lifestyle. In this context, we observed that

fructose intake during Period I has a particularly strong negative impact on the hippocampus

and considering the high fructose intake in 12–18-year-olds, excessive fructose intake during

Period I should be avoided.

This study has several limitations. First, this study used an ad libitum model. The calories

derived from fructose out of total calories were similar between periods. While, HFCS intake

differed with growth; future studies are needed to examine the effects of a controlled HFCS

intake. Second, it is unclear whether fructose acts directly on the hippocampus or indirectly

through its metabolites. Fructose is absorbed from the small intestine and transported to the

liver, where it is rapidly metabolized by phosphofructokinase, a rate-limiting enzyme located

upstream of the glycolytic system. Therefore, the effects of the metabolites cannot be ruled out.

As reported by Bouvet et al., fructose appeared to be imported into the rat brain by CT imaging

[54]. In addition, the presence of glucose transporter 5, which plays a role in fructose transport,

has been reported. Based on these findings, we hypothesized that fructose absorbed from the

small intestine by oral administration was directly taken up by the hippocampus and affected

the expression level of Bdnf [55, 56].

Conclusions

In this study, we found that fructose intake decreased Bdnf expression in the hippocampus

only during childhood and adolescence but not in adulthood. This was also found to be due to

modifications in DNA methylation modification. This study provides an insight into the nega-

tive effects of excessive HFCS intake in children.
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