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With the advances in neurophysiological
recording technology and active im-
plantable medical device development,
sensing-enabled neurostimulators have
become an emerging technology of
the fully implantable brain–computer
interface (BCI). These implantable neu-
rostimulators are designed for deep brain
stimulation (DBS), a well-established
treatment for movement disorders and
a promising treatment for psychiatric
disorders. By integrating neural record-
ing, sensing-enabled neurostimulators
can sample local field potentials (LFPs)
through the available contacts of theDBS
electrode while delivering stimulation.

In the past decade, fully implantable
BCIs have been developed considerably
by integrating low-power recording, in-
ductive recharging and wireless commu-
nication [1]. These implantable BCIs
have the potential to reveal precise brain
states and human behaviors in complex
conditions by recording neural activities
with a high spatial and temporal resolu-
tion [1,2]. Currently, fully implantable
BCIs are designed bi-directionally, i.e. for
decoding brain activities and modulating
brain networks [1]. The latter modula-
tion effects have become an essential as-
pect of BCIs [3]. However, most of the
fully implantable BCIs have only been in-
vestigated in preclinical animal models
[1,2]. From the currently available solu-
tions, sensing-enabled neurostimulators
are particularly striking when it comes

to achieving fully implantable BCI ap-
plications. The functionality of record-
ing invasive neural activities after im-
plantation would allow us to investigate
fully implanted BCIs in a clinical set-
ting. The measured brain signals could
be used as inputs in classical BCI sys-
tems, as biomarkers for the clinical assess-
ments, and as triggers and feedback for
modulating stimulation pulses [4]. Previ-
ous studies have validated the feasibility
of using a sensing-enabled neurostimula-
tor as a fully implanted BCI. In Mariska
Vansteensel’s study, a neurostimulator
was used to sense the LFPs in the mo-
tor cortex of a patientwith late-stage amy-
otrophic lateral sclerosis and transmit the
signals to a real-time brain-control typ-
ing system [5]. More and more clini-
cal researchers are trying to validate the
feasibility and the effectiveness of using
the sensing-enabled neurostimulator for
long-term closed-loop stimulation [6,7].

In our previous studies, we designed a
sensing-enabled neurostimulator for lon-
gitudinal brain signal recording in clinical
practice [8]. Recently, we improved the
neurostimulator system and investigated
its potential as a motor BCI. As shown
in Fig. 1a, the sensing-enabled neu-
rostimulator is equipped with Bluetooth
communication capability. Eight LFP
channels (24-bit resolution) could be
differentiated between pairs of contacts
and transmitted synchronously to a
recording computer or a mobile phone.

The transmission delay is <10 ms, and
the maximum sampling rate is 1 kHz.
The wireless communication distance is
∼2m, and the rechargeable battery life is
10 years. This stimulator could continu-
ously sample and transmit LFPs for ∼6
to 12 hours, depending on the number of
the synchronous channels.

To validate the safety and function-
ality of the sensing-enabled neurostimu-
lator, a patient with Parkinson’s disease
was recruited for DBS surgery. The
study procedures were approved by the
ethics committees of Beijing Tiantan
Hospital of Capital Medical University,
and informed consent was obtained.
Implantation surgery was performed by
neurosurgeons using a standard proce-
dure with frame-based stereotaxic and
microelectrode recording techniques.
The DBS electrodes were implanted in
the bilateral subthalamic nucleus (STN).
The post-operative improvement was
84.21% (relative decrease of UPDRS-III
scores under the stimulation-on state to
the stimulation-off state, after washing
in/out for at least 30 minutes). The
post-operative improvement confirmed
the locations of the electrodes and
the essential stimulation safety and
functionality of the neurostimulator.

To validate the functionality of the
chronic LFP-sensing and real-time data
transmission of the neurostimulator,
LFP-based BCI experiments were
conducted after 14 months of DBS
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Figure 1. Illustration of the fully implantable brain–computer interface. (a) The data recording and decoding system. The sensing-enabled neurostimu-
lator recorded and transmitted local field potentials (LFPs) to the computer via Bluetooth communication (the blue coils). It could also transmit LFPs to a
mobile phone via Bluetooth communication. A screen was placed 60 centimeters before the patient to show the instructions or interactive interfaces.
During movement-related experiments, the patient followed the instruction on the screen and performed voluntary movements. For the study of the
patterns of movement-related LFPs, electromyography and acceleration recordings were wirelessly transmitted to the computer and synchronized with
LFP recordings. (b) The paradigm of movement-related LFP recording. Each trial began with a resting interval of random duration between 8 and 11 s.
During this period, a fixed cross was shown in the center of the screen and the patient was asked to keep their focus on it. Then an arrow replaced the
cross and instructed the patient to perform continued upper limb movements (repeated bilateral hand closing and opening) or lower limb movements
(repeated bilateral instep extension and flexion) for a random duration between 2 and 4 s. (c) The interface of the motor BCI based on movement-related
LFPs. The white area is an enclosed area of 19.08 cm × 25.44 cm, which simulated an area of 9 m × 12 m. The red block is the simulative wheelchair.
The green block represents the target area. The dashed line suggested a recommended path to hit the target area. When the decoder detected contin-
ued upper limb movements, a dial with a rotary pointer would appear to select turning left or right. When the decoder detected lower limb movements,
the red block would move forward along the current direction. When the classifier detected a resting state, the block would stop.

implantation. As shown in Fig. 1a, LFPs
were recorded during DBS-off state via
Bluetooth communication. Four LFP
channels in each STN (eight channels
in total) were sampled and the sampling
rate was 500 Hz. To record the neural
activities during the onset of voluntary
movement, surface electromyography
(EMG) and accelerometers were wire-
lessly recorded by a commercial amplifier
(Noraxon USA Inc., Scottsdale, AZ,
USA).The surface EMG electrodes were
placed on the bilateral upper forearm
and lower leg muscles, and the ac-
celerometers were placed on the bilateral
hands and instep. A screen was placed
60 cm in front of the patient to show
movement instructions. The instructions
were generated by the instructions
system in the computer. The patient was
seated in an armchair and instructed
to perform voluntary movements. For
multimode signal synchronization, a
spare surface EMG channel was used to

detect the DBS artifacts in the LFP chan-
nels, and another spare EMG channel
was used to detect a serial port level
outputted by the instruction system.
Figure 1b shows the paradigm of
movement-related LFP recording. In
each trial, the patient performed contin-
ued upper limb movements (bilateral
hand closing and opening) or lower limb
movements (bilateral instep extension
and flexion) for a random 2–4 s.The rest-
ing interval was random8–11 s.The trials
of upper and lower limb movements
were counterbalanced.

To decode the movement-related
LFP patterns, we developed a machine-
learning classifier based on LFP features
in the frequency domain. Previous
studies revealed that the STN-LFP beta
oscillation is modulated by voluntary
movement. A previous study illustrated
that online decoding beta suppression
as a neurofeedback signal linked the
subthalamic oscillations and the motor

impairment of DBS patients [9]. By
extracting the beta oscillations during
voluntary movements, it is possible to
predict movement onset and classify up-
per and lower limb movements [10–13].
In our study, features in the alpha band
(10–13 Hz), the beta band (13–35 Hz)
and the gamma band (35–50 Hz) were
used for movement-states decoding. To
simulate real-time testing, the features
were extracted for every 100 ms data
segment. To improve the frequency es-
timation performance, we expanded the
100 ms window in each end to construct
a smooth window of 600 ms (400 ms
before and 100 ms after the current
window). The data were first filtered by
a 6th-order 6–60 Hz Butterworth filter
and the frequency domain features were
extracted using the wavelet transform
(morlet) with a frequency resolution
of 1Hz. The machine-learning classifier
was a one-hidden-layer recurrent neural
network with 5 input neurons and 25
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hidden neurons. The classifier’s inputs
were the frequency domain features,
and the outputs were the labels of the
three movement states (resting state,
upper limb movements and lower limb
movements). For training, 100 trials of
LFP recording were used, and 20 trials
were used for prediction. In the offline
prediction, the sensitivity of each cate-
gory was 95.33% (resting state), 70.31%
(upper limb movement) and 78.96%
(lower limb movement). The selectivity
of each category was 91.36% (resting
state), 78.44% (upper limb movement)
and 92.42% (lower limb movement).
The general accuracy of prediction was
89.85%. The decoding performance was
comparable with previous studies. In
reference [10], the researchers predicted
the onset of movements with 95%
sensitivity and 77% specificity. In refer-
ence [11], the accuracy of movement
decoding achieved 99.6% and the accu-
racy of laterality classification reached
77.9%. In one study, the low-frequency
bursts were used to predict the intended
movements, and the area under the
receiver operator characteristic curve
was ∼0.80 [13]. Another study decoded
the movement states in stepping cycles
based on subthalamic LFP frequency
features and the accuracy was above
81.3% [12].

To evaluate the performance of the
motor BCI based on the classifier, we
designed a two-dimensional center-out
task to simulate a wheelchair control. As
shown in Fig. 1c, at the beginning of each
trial, a red block (simulative wheelchair)
randomly appeared in the white area
(19.08 cm×25.44 cm, simulating an area
of 9 m × 12 m). The patient freely per-
formed the three movements to control
the red block. During online testing, the
feature extraction process was the same
as the offline analysis, and the control sig-
nal was updated every 100 ms. When the
classifier detected five consecutive sam-
ples of upper limb movements, a dial
with a rotary pointer would appear to se-
lect the direction. The block would then
turn 90 degrees to its left or right. When
the classifier detected a sample of lower
limbmovements, the blockwould start to
move forward along the current direction
with an initial speed of 0.32 cm/s (sim-
ulating typical wheelchair initial speed

0.15m/s).The distance the blockmoved
would be 0.032 cm. If the classifier de-
tected continued lower limbmovements,
the block would speed up with an accel-
eration of 1.06 cm/s2 (typical wheelchair
acceleration 0.50 m/s2). The maximum
speed was 2.12 cm/s (typical wheelchair
maximum speed 1.00 m/s). When the
classifier detected a sample of the rest-
ing state, the block would stopmoving. A
valid trial ended when the block hit the
green target area. After transitory train-
ing, thepatient successfully completed16
of 21 trials (76%).The average time to hit
the target area was 63.25 ± 29.67 s. The
results confirmed the feasibility of using
the sensing-enabled neurostimulator to
control a two-dimensional block.

In conclusion, we investigated the
performance of a sensing-enabled neu-
rostimulator when used as a motor BCI.
To our knowledge, this is the first trial
demonstrating the potential for a fully
implantable BCI based on motor infor-
mation in STN-LFP. It should be noted
that the fully implantable BCI in the cur-
rent study is compromised since all the
computations were implemented in an
external computer, and the decoding was
performed based on actual movements.
Future studies could investigate the
detection of various behavioral and
physiological states, such as imaginary
movements, sleep patterns and mental
states, and explore the possibility of
on-board computations in the sensing-
enabled neurostimulator. Standing at
the intersection of neuromodulation
and neural decoding, sensing-enabled
neurostimulators have opened a window
onto the deep brain and could largely
propel the development of closed-loop
BCIs for clinical applications.
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