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Abstract

Background: The Canadian National Antiviral Stockpile (NAS) contains treatment for 17.5% of Canadians. This assumes no
concurrent intervention strategies and no wastage due to non-influenza respiratory infections. A dynamic model can
provide a mechanism to consider complex scenarios to support decisions regarding the optimal NAS size under uncertainty.

Methods: We developed a dynamic model for pandemic influenza in Canada that is structured by age and risk to calculate
the demand for antivirals to treat persons with pandemic influenza under a wide-range of scenarios that incorporated
transmission dynamics, disease severity, and intervention strategies. The anticipated per capita number of acute respiratory
infections due to viruses other than influenza was estimated for the full pandemic period from surveys based on criteria to
identify potential respiratory infections.

Results: Our results demonstrate that up to two thirds of the population could develop respiratory symptoms as a result of
infection with a pandemic strain. In the case of perfect antiviral allocation, up to 39.8% of the population could request
antiviral treatment. As transmission dynamics, severity and timing of the emergence of a novel influenza strain are
unknown, the sensitivity analysis produced considerable variation in potential demand (median: 11%, IQR: 2–21%). If the
next pandemic strain emerges in late spring or summer and a vaccine is available before the anticipated fall wave, the
median prediction was reduced to 6% and IQR to 0.7–14%. Under the strategy of offering empirical treatment to all patients
with influenza like symptoms who present for care, demand could increase to between 65 and 144%.

Conclusions: The demand for antivirals during a pandemic is uncertain. Unless an accurate, timely and cost-effective test is
available to identify influenza cases, demand for antivirals from persons infected with other respiratory viruses will be
substantial and have a significant impact on the NAS.
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Introduction

Influenza has a long history in human populations. The 1918

influenza A/H1N1 pandemic resulted in millions of deaths

worldwide, overwhelmed the existing health services infrastructure

and resulted in significant economic losses [1]. Pandemics present

an economic burden to affected countries as well as increased

morbidity and mortality attributable to the emergence and

subsequent global spread of a novel influenza virus. Pandemic

plans outline the ways in which groups will prepare for and

respond to an influenza pandemic when it occurs [2–4]. In order

to prepare for such an event, plans need to be developed based on

an estimate of the potential national impact of a pandemic. There

exist a variety of freeware programs that have been used to aid

planners in making these projections (e.g. FluSurge) [5]. Before the

occurrence of the 2009 influenza A/H1N1 pandemic, Canada

used a number of static planning assumptions resulting in plans

that were based on an anticipated clinical attack rate of 15–35%

[6]. Using these planning assumptions as the foundation, the

Canadian Pandemic Preparedness Plan (CPIP) for the Health

Sector identifies responses that may be employed during a

pandemic.

The CPIP includes recommendations and guidelines for public

health interventions such as vaccines and antiviral drugs [6].

Antiviral strategies are of particular importance as antivirals will

be the only pharmaceutical intervention that will not require

significant lead time such as the time required to produce a

vaccine. The Canadian government maintains a National

Antiviral Stockpile (NAS) in case of an influenza pandemic. Drugs

are for the direct care of infected patients and not prophylaxis [6].

Acquiring and maintaining a stockpile for a pandemic that will

occur at some unknown time in the future comes with significant

challenges and costs. These include the expiry of stockpiled drugs,

and the costs associated with long-term storage. A large stockpile
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could be very costly but a small stockpile could be insufficient if the

next pandemic is very severe (e.g. with a high clinical attack rate

and/or a high case fatality rate), or if a reliable, timely and cost

effective point of care test for the pandemic strain is not available.

At the time of developing the 2006 CPIP, point of care tests

were very promising and many jurisdictions planned to use point

of care tests to screen patients for influenza during a pandemic.

The decision to stockpile enough antivirals to treat 17.5% of the

Canadian population was based on expert opinion after consid-

eration of the clinical attack rate planning assumption of 15–35%

and the assumption that a point of care test would be available.

The evidence used to make the decision regarding the final size of

the stockpile did not incorporate any information about the co-

circulation of other pathogens causing respiratory disease for

which antivirals may be prescribed based on symptoms alone and

in the absence of any type of point of care test. As a result, the issue

of antiviral wastage has not been considered in the majority of

mathematical modelling papers that address antiviral stockpiles

[7–12] and was not mentioned in the 2006 version of the CPIP.

However, empirical treatment of all respiratory infections could

quickly deplete antiviral stockpiles, especially if the pandemic

strain emerges during the spring and activity continues into the

fall.

Pandemics have occurred at 10 to 50 year intervals and are due

to the emergence of a novel influenza virus subtype [13]. In past

pandemics, transmissibility has been higher than for seasonal

influenza, though clinical severity of the novel strains has been

quite variable in comparison to seasonal influenza. For some

pandemics, the burden among the elderly has been less than for

seasonal influenza as a result of pre-existing immunity from

previous exposure to a similar strain. However, the disease burden

for younger cohorts without previous exposure has been higher

than for seasonal influenza [14]. These different viral ‘‘profiles’’

have important implications for pandemic planning. The WHO is

now encouraging countries to plan for a scalable response. In

response, we have used a dynamic model to demonstrate the

impact of the viral profile and concurrent interventions on the

clinical attack rate, disease burden and demand for antiviral

treatment. By incorporating age-specific effects we captured the

impact of varying the birth cohorts with pre-existing immunity and

the demand for adult or child dosing.

In this paper, we use a modified version of a previously

published, age-structured, dynamic influenza model that describes

the transmission of ‘‘novel’’ pandemic influenza viruses with

different characteristics within the Canadian population combined

with estimates of antiviral wastage as a result of empirical

treatment of cases with influenza-like-illnesses (ILI) due to non-

influenza pathogens to identify the projected national demand for

antivirals in each scenario.

Results

Cases of Pandemic Influenza
The total number of scenarios run was 480 (5 transmission rates

63 levels of pre-existing immunity62 levels of treatment seeking

behaviour 6 2 age-specific vaccine coverage levels 6 2 wave

scenarios 64 levels of vaccine availability). In the absence of any

interventions (vaccine or antiviral), the median of these 480 model

generated clinical attack rates for a spring emergence and a

subsequent fall wave was 36% (IQR = 28–41%; min = 22%,

max = 48%). This median clinical attack rate corresponded to a

scenario with a reproductive number of 1.6 and 20% pre-existing

immunity in older individuals. For a fall or winter emergence, the

model generated median clinical attack rate was 32% (IQR = 27–

36%; min = 22%, max = 39%) over a single wave (with the median

corresponding to a reproductive number of 1.6 and 40% pre-

existing immunity in older individuals).

Stockpile Size
Regardless of the season of viral emergence, as the proportion of

clinical cases requiring care increases and vaccine availability is

delayed, the proportion of the population requiring antiviral

treatment increases (Figure 1). For scenarios where the virus

emerges in the fall, the model projects that antiviral need in a

perfect allocation scenario could be significantly higher than the

current 17.5% stockpile for most scenarios (Figure 1A). In

contrast, for the set of scenarios where viral emergence occurs in

the spring, the decline in transmission over the course of the

summer buys time to produce a vaccine, reduces the clinical attack

rate and hence reduces antiviral need. For a spring emergence, a

shorter time to vaccine (3–4 months) was sufficient to reduce the

antiviral need in a perfect allocation scenario to below 17.5% for

most scenarios (Figure 1B).

Combining the results for the 2 different wave patterns (Figure 1)

and stratifying them by the transmissibility characteristics of the

virus (R0) demonstrates that the existing stockpile size (17.5%) is

sufficient for most scenarios if vaccine can be ready 3 months after

viral emergence (Figure 2). However, in scenarios where vaccine is

delayed (.3months), high transmissibility values (R0.1.6) result

in an antiviral need that exceeds 17.5% (Figure 2). Vaccine has a

more substantial impact on reducing the final size of the outbreak

and therefore reducing antiviral need when R0 is low even when

vaccine is available relatively late in the epidemic. At higher values

of R0, the same amount of vaccine effort results in very little

change to antiviral needs (Figure 2).

The impact of increasing vaccine coverage levels is more

substantial when vaccine becomes available less than 5 months

after emergence (Figure 3). At 3 months post emergence, vaccine

coverage at the highest level (RRFSS) drops all but one of the

scenario results below the 17.5% threshold compared to coverage

at UIIP levels where the upper bound remains well above 20%

antiviral need (Figure 3). Moving to higher levels of vaccine

coverage when vaccine becomes available .5 months post

emergence, does not have a significant impact on antiviral need

in the population (Figure 3).

Baseline Respiratory Infections
In Canada, baseline (non-influenza) ILI consultation rates reach

a nadir near the end of July and peak around the last week of

December/first week of January with a maximum 3.4 times the

minimum. Hence the number of respiratory infections occurring

over the summer months is non-negligible. As a result of year

round activity, the 3 respiratory infections per person per year is

equivalent to 1.65 infections per person from May to December

(for a spring emergence of the pandemic strain continuing with a

full fall wave) and 1.48 per person for a single wave emerging in

the fall or winter and a 4 month pandemic alert period. Use of the

CDC definition of ILI, which includes a temperature higher than

37.8uC (100uF) plus either cough or sore throat, results in an

estimate of the per capita number of self-reported ILI of 0.68 and

0.5 for the same periods. Disease severity plays a strong role in

baseline rates, as illustrated in Table 1.

Wastage Due to Non-Influenza Respiratory Infections
Calculating the number of antiviral treatment courses required

to treat all cases of suspected viral respiratory infections (not just

pandemic influenza) who present for care during the pandemic

period, demonstrates the significant impact that wastage consid-
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erations can have on overall antiviral requirements (Table 2).

Wastage increases the anticipated demand for antivirals during the

pandemic period to a range of 65% to 144% of the Canadian

population compared to 0.1% to 40% as was the case with the

assumption of perfect allocation (Table 2).

Discussion

Using a dynamic influenza disease transmission model struc-

tured by age and chronic health conditions we have described the

transmission of ‘‘novel’’ pandemic influenza viruses with different

characteristics within the Canadian population. We have used the

model to identify the size of the NAS required to meet the national

antiviral need in each scenario in circumstances where we have

both perfect and imperfect allocation of antivirals to true

pandemic influenza cases. Previous modelling work to examine

optimal allocation of an antiviral stockpile within a population has

not included the possibility of patients presenting for medical care

who are infected with a respiratory pathogen that is not pandemic

influenza [9,15–19]. By leaving out this important biological

component of the population disease dynamics during a pandemic

the projected size of antiviral stockpile required is underestimated.

Our findings provide important insight into the impact of

imperfect allocation of antiviral treatment.

Effect of Virus Characteristics
The transmissibility characteristics of a novel pandemic

influenza strain upon emergence are impossible to predict.

However, historical pandemics have yielded a range of plausible

values for the transmissibility of pandemic strains that have been

encountered to date. Clearly the characteristics of the virus as well

as the level of pre-existing immunity that exists in the population

will strongly influence both the final size of the epidemic and the

time over which the epidemic occurs. In instances where

transmissibility is high (R0 = 2.0) and there is no pre-existing

immunity, the virus spreads rapidly throughout the population. In

Figure 1. Projected range of treatment required for different pandemic wave patterns. The median (line within the shaded box), 25th and
75th percentile values (top and bottom of shaded box), and upper and lower adjacent values (error bars) proportion of the Canadian population
expected to require antiviral treatment (Y-axis) in the presence of a safe and effective pandemic vaccine that becomes available at different points in
time (X-axis). We assumed that the proportion of clinical cases seeking medical attention for their illness was 50% (left) or 70% (right). The dashed line
represents the proportion of the Canadian population who would be able to be treated by our existing stockpile (17.5%). A – Fall/Winter emergence,
1 wave; B – Spring emergence, 2 waves.
doi:10.1371/journal.pone.0067253.g001

Figure 2. Projected range of treatment required depending on
the transmissibility of the virus. The proportion of the Canadian
population expected to require antiviral treatment for different
combinations of model scenarios in the presence of a safe and effective
pandemic vaccine when the reproductive number of the virus ranges
from 1.3 to 2.0 [1.4 for seasonal influenza, 1.6–2.0 historical pandemic
range]. The dashed line represents the proportion of the Canadian
population who would be able to be treated by our existing stockpile
(17.5%).
doi:10.1371/journal.pone.0067253.g002

A Dynamic Model to Consider Antiviral Stockpiling

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e67253



contrast, a low R0 combined with significant pre-existing

immunity can result in an epidemic that climbs more slowly and

is more prolonged. The implications of these differences in virus

characteristics are seen in the way that the characteristics may

interact with intervention strategies such as antiviral treatment and

vaccination. In addition, differences in the timing of the pandemic

waves as a result of a reduction in transmission rates over the

summer resulted in waves that were consistent with the timing of

peak activity in Canada in 2009. In contrast, when the novel strain

emerges during the fall or winter season, a single large wave is

expected, though some jurisdictions have observed multiple waves.

These different time scales can significantly affect the observed

impact of an intervention strategy such as vaccination because the

success of the intervention is determined in part, by how much of

Figure 3. Projected range of treatment required depending on the level of vaccine coverage in the population. The proportion of the
Canadian population expected to require antiviral treatment in the presence of a safe and effective pandemic vaccine when different vaccine
coverage levels are considered [UIIP – Ontario Universal Influenza Immunization Program age-specific coverage, RRFSS – Ontario Rapid Risk Factor
Surveillance System age-specific coverage estimates]. The dashed line represents the proportion of the Canadian population who would be able to
be treated by our existing stockpile (17.5%).
doi:10.1371/journal.pone.0067253.g003

Table 1. Additional Assumptions for the calculation of antiviral stockpile: Number of baseline respiratory infections per pandemic
period per capita meeting various ILI definitions.

Study

% per capita 1 wave:
4 month pandemic
period (Fall/Winter)

% per capita 2 waves:
Spring/Fall 9 months
(May-Dec) References Notes

Any acute respiratory
infection

148% 165% [55,61] Tecumseh, Michigan study. The Fall/Winter wave
includes an estimated clinical attack rate of 27% from
the Tecumseh study for seasonal influenza.

Harris-Decima 95% 130% Marek Smieja (personal
communication)

Harris- Decima study definition of ILI: fever with one
or more of the following symptoms: cough,
headache, sore muscles, runny nose, or sore throat

CDC, Behavioral Risk Factor
Surveillance System

50% 68% [21] CDC definition of ILI: temperature higher than 37.8uC
(100uF) plus either cough or sore throat

Absenteeism due to ’flu’ 30%
(workforce only:12%)

41%
(workforce only:16% )

[58] Workplace absenteeism in Canada due to ‘flu’ by self
report for the month of January 2010, when influenza
activity was minimal. This estimate was obtained
from a special question added to the Labour Force
Survey (LFS), Statistics Canada. A factor of 2.5, derived
from the CDC estimates of self reported ILI, was used
to include similar levels of illness in children.
Workplace absenteeism due to the ‘flu’ was a self
assessment that the illness and absence were due to
‘flu’.

doi:10.1371/journal.pone.0067253.t001
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the population has already been naturally infected at the time the

intervention begins.

Effect of Vaccination
For both the spring and fall/winter emergence scenarios, the

impact of vaccine is most significant when vaccine becomes

available as early as possible. In scenarios where vaccine becomes

available 6 months after viral identification, the impact of vaccine

on antiviral need is very modest, as most scenarios have the

pandemic peaking within 6 months of detection of imported cases.

Current advances in vaccine technology that attempt to move

from egg-based, vaccine production to cell-based, or plant-based,

vaccine production show great promise and could likely produce

vaccine within this shorter timeframe [29–30], increasing the odds

that a vaccination program could be rolled out before the natural

pandemic peak. Sensitivity analysis to examine the impact of

vaccine efficacy (VE) demonstrated that even if VE were higher

than 70% [20], the impact is largely overshadowed by the long

period required to begin the vaccine program if vaccine takes 6

months to produce. Improved VE combined with earlier vaccine

availability decreases the need for antivirals even more than what

is reported here.

Wastage Considerations
To date, the size of the National Antiviral Stockpile (NAS) has

focused on the number of antiviral courses that would be required

to treat symptomatic cases of pandemic influenza in Canada [7].

However, there are other pathogens which also produce similar

respiratory symptoms. Wastage under a strategy that attempts to

treat all patients with respiratory symptoms who might present for

treatment results in antiviral need that in some circumstances

could exceed 100% of the Canadian population. Using a more

specific case definition such as that used by the United States

Centre for Disease Control (CDC) (temperature higher than

37.8uC (100uF) plus either cough or sore throat) [21] should

reduce wastage, however, this also means that some proportion of

true pandemic influenza cases would also present missed treatment

opportunities due to a lack of fever (especially in older adults) [31].

However, one study found that only 58% of campers who tested

positive for the 2009 pandemic strain had a fever, [22] and ILI

criteria are not always met in hospitalized patients who test

positive. Despite, interest in using point of care testing during a

pandemic, a previously published decision analytic model has

demonstrated that using near-patient testing as a triage method for

managing a stockpile of antiviral drugs is unlikely to be a cost-

effective mechanism for conserving drugs [23]. In fact, Siddiqui

and Edmunds (2008) have demonstrated that it is more cost-

effective to increase the size of the stockpile in case of a higher

clinical attack rate than to rely on near-patient testing [23]. A

strategy that includes a more strict case definition could result in

increased morbidity and mortality [24–28].

Our results do demonstrate that stockpiling for a ‘‘treat all’’

approach may not be logistically feasible and therefore, alterna-

tives may need to be considered such as targeting specific sub-

groups or examining creative procurement arrangements to

reduce upfront stockpile requirements. In any case, ethics must

be considered. Further research to identify clinical symptoms that

would help to target individuals who would benefit the greatest

from antiviral treatment would help reduce wastage.

Limitations
We have not included any possible impacts of non-pharmaceu-

tical public health measures. Non-pharmaceutical intervention

measures range from public health messaging (e.g. hand hygiene
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and cough etiquette) to requests to stay home when ill, school

closure, isolation and quarantine. Ultimately, it is difficult to

predict the way that individual Canadians might behave in a

pandemic and behaviour will be driven by each individual’s

perception of risk over the course of a pandemic. For this reason,

we have not included non-pharmaceutical measures in this model.

We have also not explicitly considered the possible impact of

antiviral resistance. Stockpiles will likely be comprised of several

different antiviral drugs (e.g. amantadine, oseltamivir, and

zanamivir) as a way to hedge against the possibility of a resistant

strain emerging or that the new strain develops resistance as a

result of aggressive antiviral use in the community. Clearly,

decisions about stockpile size and composition cannot be made

without considering the risk of antiviral resistance.

All models require simplifications and assumptions and we have

taken steps to root our simplifications and assumptions in the best

available evidence. In the case where evidence was lacking, we

consulted clinical experts in order to make choices that were

realistic however, important uncertainties remain for specific

assumptions that are important to highlight. All of our vaccine

timing scenarios assume that the strain emerges in Canada shortly

after it is first identified as a strain with pandemic potential. It

seems likely that if the virus were to emerge outside of Canada (e.g.

southeast Asia), there may be more lead time before the novel

strain was introduced to Canada than we saw in 2009. In this case,

vaccine development would already be underway. If this were the

case, Canada would receive vaccine at an earlier stage of the

epidemic. Our findings make the case for pursuing technological

advances in vaccine production and distribution. Vaccination

remains the cornerstone of public health and as such, improving

our ability to offer vaccine early in an epidemic as well as having

antiviral stockpiles to treat symptomatic individuals in order to

prevent them from serious morbidity and mortality will have

significant positive effects on the health of all Canadians when the

next pandemic occurs.

Conclusions
This work demonstrates the utility of incorporating transmission

dynamics, disease severity, bundled intervention strategies, and

wastage into pandemic planning discussions. Since the character-

istics of the next pandemic influenza strain will be unknown until

the virus emerges, this dynamic methodology allows decision-

makers to examine wide-ranging scenarios in order to make

informed decisions in the face of uncertainty. The demand for

antivirals during a future pandemic is uncertain. In the absence of

an accurate, timely and cost-effective point of care test to identify

influenza cases, demand for antivirals from persons infected with

other respiratory viruses will be substantial. Once new technology

reduces the production time of influenza vaccines from 6 to 3

months, antivirals will still be needed for the first wave, and in

temperate climates, the first wave may be a full pandemic wave if

the virus emerges during the fall or winter. Further research in

areas such as improving the sensitivity of point-of-care laboratory

tests for influenza and into identifying functional status indicators

at time of symptom onset that predict severe disease outcomes

could reduce the potential demand for antivirals stockpiles.

Methods

Model Structure
We developed a deterministic, SEIR compartmental model

based on our previously published model for pandemic influenza

[29]. The model assumed that all Canadians were in one of

several, mutually exclusive health states at any given point in time.

Initially, individuals without pre-existing immunity are considered

susceptible to infection (S), while those with pre-existing immunity

are placed in the recovered compartment (R). Once exposed,

individuals move from the S to the E compartment, until they

become infectious (I). The previously published model [29] was

modified to include three different ‘‘Infected’’ compartments.

Individuals could be asymptomatically infected (IA), symptomat-

ically infected but never treated with antivirals (IS), or symptom-

atically infected and treated with antivirals (IT). Lastly, recovered

individuals moved to the R compartment. Re-infection of

previously infected individuals was not included in the model.

We assumed that 40% of all infected individuals were asymptom-

atic but that there was no differential transmissibility between the

two groups [30–31]. Population data was from the 2006 Canadian

Census [32]. The timing of the initial cases was based on data for

imported cases in Canada during the 2009 pandemic [29]. The

model ran for 12 months following the initial introduction of the

pandemic influenza strain to Canada.

Age Structure
The model was age-structured (0–4, 5–13, 14–17, 18–23, 24–

52, 53–64, 65+) and age-specific mixing patterns were based on

empirical data from Mossong et al. [33]. To account for

individuals with chronic, underlying medical conditions, the

proportion of each age group with at least one chronic condition

for which seasonal influenza immunization is recommended

(asthma, emphysema, chronic obstructive pulmonary disease,

diabetes, heart disease, cancer, and stroke) was estimated from

the Canadian Community Health Survey (CCHS) [34]. The

elevated risk to pregnant women in the second and third trimester

was accounted for by a separate health state for pregnancy (P).

The population estimated to be in this state at any given point in

time was derived from Canadian census data for pregnancies and

live births [35–36]. Health state and pregnancy categories were

used to set priorities for interventions.

Pre-existing Immunity
In the model, we varied the proportion of individuals aged 65

and older who were not susceptible to infection by the circulating

pandemic strain as a result of previous exposure to a similar

influenza strain from 0–40%. Since identifying individuals with

pre-existing immunity is not possible, intervention strategies were

applied equally based only on health status and age.

Influenza Transmissibility, Natural History and Clinical
Characteristics

We examined the impact of using a range of basic reproductive

numbers (R0) from 1.3 to 2.0, derived from the epidemic growth

rate of historic pandemics [9,30,37–44], and included scenarios

with transmission rates similar to seasonal influenza [45]. All

natural history parameters and ranges examined in the model are

outlined in Table 3.

Seasonality
Significant uncertainty exists regarding where and when a novel

pandemic influenza strain may emerge or be introduced. Influenza

epidemics typically peak during January or February in Canada,

though recent data have shown peaks as early as November, and

as late as April in some communities [46]. The reasons for the

observed seasonality of influenza in temperate climates is poorly

understood, though may be due to reduced transmission rates over

the summer, changes in environmental factors (e.g. humidity) or

contact patterns (e.g. school holidays) [47–51]. To force season-
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ality to align with the spring/fall wave phenomenon observed in

the northern hemisphere in previous pandemics, transmissibility

was decreased from July to early September. We included two

scenarios: a spring/fall scenario with two waves; and a fall/winter

scenario with one wave in either the late fall or winter.

Vaccination
All scenarios evaluated included some form of vaccination. We

assume that the pathogen would be identified as the first cases are

imported to Canada and the vaccine would be available for

distribution within either 3 months or 6 months of the first

imported cases. Currently available technology is egg based, and

vaccine production took approximately 6 months in 2009. Non-

egg based technologies are under development and would likely

require a three month production and approval period [52–53].

We assumed that it will take an additional 6 weeks to fully roll out

a pandemic vaccination program. Vaccine efficacy in the model

was set to 70% and the time required to develop full immunity

post vaccination was assumed to be 10 days [29]. Vaccine

prioritization was defined according to the 2009 experience in

Canada: 1) pregnant women and all individuals with a chronic

underlying condition as defined by the CCHS (regardless of age),

2) healthy children aged 0–4 and healthy adults aged 65+, 3)

healthy children aged 5–17, and 4) healthy adults aged 18–64.

Vaccine coverage levels by age group were set to levels for the

2009 pandemic [29] (Table 1).

Antivirals
Antiviral use was captured in the model by including a

compartment for infectious individuals who were treated (IT).

We assumed that 50–70% of symptomatic individuals would

request antiviral therapy [30] (Table 1), and that for ethical

reasons, all individuals with respiratory symptoms who requested

treatment would be eligible to receive antivirals. In addition, we

assumed that antiviral treatment would not decrease the risk of

transmission to others. The model assumes that all treated

individuals receive a 5 day course of antivirals [54]. Longer

durations of treatment or higher dosages for severely ill patients

were not considered.

Antiviral Wastage
To assess treatment courses required to treat non-influenza viral

infections, it was assumed that the public would be encouraged to

seek antiviral treatment for respiratory infections as soon as

possible after symptom onset during the pandemic period. The

most definitive study on the number of respiratory infections per

person per year that we identified is the Tecumseh, Michigan

study [55]. The 3 respiratory infections per person per year, less

9% that were identified as infections with a seasonal influenza

strain, were prorated to the pandemic period, using the seasonality

of medical consultations for respiratory infections, or more

specifically, influenza like illness (ILI) consultation rates per 1000

patient visits as reported to FluWatch [56]. The weekly seasonality

of ILI infections due to viruses other than influenza was estimated

from this time series using a Poisson regression model similar to

Table 3. Parameter values and assumptions used for the Canadian antiviral stockpile model.

Item Strain Value Reference(s)

TRANSMISSIBILITY

R0 2009 1.3 [37]

Seasonal 1.4 [45]

1957/1958 1.6 [9,30,39–40,42]

1968/1969 1.8 [30,39–40,42–44]

1918 2.0 [30,38–42]

NATURAL HISTORY

Latent period Seasonal 2.1 days [45]

Duration of infection Seasonal 4.8 days [45]

Pre-existing immunity in individuals .65 years 0% (0–40%) Assumption

CLINICAL CHARACTERISTICS

Proportion symptomatic 1957 60% [30]

Proportion of symptomatic cases seeking medical attention 1957 50% (50–70%) [30]

VACCINATION

Vaccine coverage by age group Age group UIIP (%) [59–60] RRFSS (%)*

0–4 26 60

5–13 30 60

14–17 31 60

18–22 29 62

23–52 29 54

53–64 47 65

65+ 75 75

UIIP – Universal Influenza Immunization Program.
RRFSS – Rapid Risk Factor Surveillance System.
*RRFSS Module – Ontario Ministry of Health and Long Term Care and Public Health Ontario.
doi:10.1371/journal.pone.0067253.t003
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the models used to estimate hospital admissions [57] and

absenteeism attributable to influenza [58]. For the fall/winter

scenario, seasonal influenza infections were included in the

baseline estimate as a non-pandemic respiratory illness. We

assumed that all persons visiting their doctor for an ILI would

be equally likely to request antiviral treatment based on the

severity of the symptoms and health status, rather than whether

the infection was actually due to the pandemic strain. Baseline

rates were estimated for a range of disease severity criteria

(Table 2).
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