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Immune Signature-Based Subtypes
of Cervical Squamous Cell
Carcinoma Tightly Associated with

Human Papillomavirus Type 16
Expression, Molecular Features,
and Clinical Outcome'

Abstract

Substantial heterogeneity exists within cervical cancer that is generally infected by human papillomavirus (HPV). However,
the most common histological subtype of cervical cancer, cervical squamous cell carcinoma (CSCC), is poorly
characterized regarding the association between its heterogeneity and HPV oncoprotein expression. We filtered out 138
CSCC samples with infection of HPV16 only as the first step; then we compressed HPV16 EG/E7 expression as HPV),., and
correlated HPV),q, with the immunological profiling of CSCC based on supervised clustering to discover subtypes and to
characterize the differences between subgroups in terms of the HPV,,., level, pathway activity, epigenetic dysregulation,
somatic mutation frequencies, and likelihood of responding to chemo/immunotherapies. Supervised clustering of
immune signatures revealed two HPV16 subtypes (namely, HPV16-IMM and HPV16-KRT) that correlated with HPV/,, and
clinical outcomes. HPV16-KRT is characterized by elevated expression of genes in keratinization, biological oxidation, and
Wnt signaling, whereas HPV16-IMM has a strong immune response and mesenchymal features. HPV16-IMM exhibited
much more epigenetic silencing and significant mutation at FBXW?7, while MUC4 and PIK3CA were mutated frequently for
HPV16-KRT. We also imputed that HPV16-IMM is much more sensitive to chemo/immunotherapy than is HPV16-KRT. Our
characterization tightly links the expression of HPV16 E6/E7 with biological and clinical outcomes of CSCC, providing
valuable molecular-level information that points to decoding heterogeneity. Together, these results shed light on
stratifications of CSCC infected by HPV16 and shall help to guide personalized management and treatment of patients.
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Abbreviations: HPV, human papillomavirus; CESC, cervical squamous cell carcinoma
and endocervical adenocarcinoma; CSCC, cervical squamous cell carcinoma; FDR,
false discovery rate; FPKM, fragments per kilobase of nonoverlapped exon per million

Introduction
Cervical cancer accounts for 528,000 new cases and 266,000 deaths

worldwide annually, more than any other gynecological tumor [1]. In
2019, approximately 13,170 new cases and 4250 deaths of cervical
cancer were estimated to occur in the United States [2]. Cervical
cancer remains the second leading cause of cancer death in women
between the ages of 20 and 39 years, with nine deaths per week in this
age group [2]. Between 80% and 90% of cervical cancer cases involve
squamous cells (squamous cell carcinoma). The remainder begin from
glandular cells and are called adenocarcinomas. Ninety-five percent of
all cases are caused by persistent infection with carcinogenic human
papillomavirus (HPV) [3], which is one of the most common sexually
transmitted diseases in both men and women worldwide [4]. Based
on their association with cervical cancer and precursor lesions, HPVs
can also be classified into high-risk and low-risk HPV types. Low-risk

fragments mapped; GSEA, gene set enrichment analysis; GO, Gene Ontology; HR,
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HPV types include types 6, 11, 42, 43, and 44. High-risk HPV types
include types 16, 18, 31, 33, 34, 35, 39, 45, 51, 52, 56, 58, 59, 66,
68, 69, and 70. Similar to head and neck cancer, HPV type 16
(HPV16) is the most common high-risk type detected in tumors,
accounting for 50% of cancers and their precursors, called high-grade
squamous intraepithelial lesions [5-7]. Preliminary studies have
suggested that variants of HPV16 may show varying degrees of
association with cervical cancer [7].

HPV typically infects the basal layer of the epithelium and then
exploits the epithelial-to-keratinocyte proliferation and differentia-
tion pathways to accomplish the viral life cycle. HPV expresses two
main viral oncoproteins, E6 and E7, which are necessary for
malignant conversion and cooperatively inhibit apoptosis and
enhance tumor cell growth and proliferation by inducing the
degradation of tumor suppressor TP53 and disruption of function of
the retinoblastoma protein (Rb1), respectively [8,9]. Alteration of
additional pathways, such as suppression of the immune response
[10], cell adhesion [11], and oxidative stress [12], may also be
essential for tumor transformation.

Routine HPV testing has revealed that most HPV infections
resolve, suggesting that HPV infection is necessary but not sufficient
to develop cervical neoplasia and that other events are required. The
molecular features of cervical cancers are beginning to be described to
decipher substantial heterogeneity [13—17]. Our previous work has
minutely discussed the genomic differences of cervical cancer based
on HPV status [18]. However, little is known about how the
expression of HPV16 oncoproteins affects tumor development and
their association with the heterogeneity of cervical cancer, especially
for cervical squamous cell carcinoma (CSCC), which provided us a
motivation. Therefore, we sought here to report a detailed analysis to
determine the presence of potential subtypes of CSCC that were
associated with the expression of HPV16 oncoproteins, and we
further comprehensively characterized for the potential subtypes in a
multiomics view including somatic mutation and DNA methylation.
Similar to recent reports in head and neck cancers [19,20], two
subtypes of tumors were identified and designated as HPV16-IMM
and HPV16-KRT. These two identified subtypes exhibited distinct
molecular signaling pathway enrichment, DNA methylation profil-
ing, and somatic mutation spectrum. Implications for CSCC with
HPV16 progression and opportunities for personalized therapy are
discussed.

Materials and Methods

Patients and Samples

Molecular data were obtained from The Cancer Genome Atlas
Project (TCGA) patients diagnosed with cervical cancer. Tran-
scriptome raw count data of the TCGA-CESC project were
downloaded from the GDC data portal (https://portal.gdc.cancer.
gov) with 307 samples including 304 tumor samples and 3 normal
samples. The raw, paired-end reads in FASTQ were also obtained for
virus detection. Methylation data assessed by TCGA using Infinium
450K arrays were downloaded from Xena Public Data Hubs (https://
xena.ucsc.edu/public-hubs) with 312 tumor samples. Somatic
mutation data were obtained from cBioPortal (htep://www.
cbioportal.org/datasets) with 281 tumor samples. Three hundred
and four patients with sufficient clinical and pathologic information
were available from Firehose (http://www.firehose.org/), and 252

patients with the histological type of CSCC were chosen for this
study.

RNA Analysis

Data Preprocessing.

a) Raw counts for each gene of mRNAs from RNA-seq. Ensembl ID for genes
(protein coding mRNAs) was annotated in GENCODE27 to generate Gene
Symbol names. The gene type of protein coding was selected for mRNAs.

b) Counts data normalization. Raw reads count data were normalized across
samples using the R package “DESeq” [21]. Specifically, DESeq first estimates
the effective library size, which is also called the size factor, by dividing each
column by the geometric means of the rows given a matrix or data frame of raw
count data. Next, the median of these ratios (skipping the genes with a
geometric mean of zero) is used as the size factor for that column. With the
estimation of size factors, DESeq then divides each column of the count table by
the size factor for that column. Thus, the count values are brought to a common
scale, making them comparable across samples. Furthermore, count data were
transformed by the varianceStabilizingTransformation function provided in
DESeq [21]. With this function, the standard deviation of each gene is roughly
constant regardless of the gene expression magnitude.

c) Low expression filtering. To reduce noise, we kept only mRNAs with
normalized count equal to or above 1 in at least 10% of the samples for
downstream analysis.

Virus Detection from RNA-Seq.  The algorithm VirusSeq [22] was
harnessed to computationally subtract human sequences and generate
a set of nonhuman sequences (e.g., viruses) in RNA-Seq. The RNA-
seq libraries were aligned to both human and HPV genomes to
quantify the host and viral gene expression and determine the HPV
status. Among all 304 tumor samples, we identified 168 HPV16, 38
HPV18, 1 HPV26, 1 HPV30, 7 HPV31, 8 HPV33, 2 HPV34, 6
HPV35, 22 HPV45, 1 HPV51, 8 HPV52, 1 HPV56, 7 HPVSS, 3
HPV59, 7 HPV68, 1 HPVG6Y, 2 HPV70, and 21 no virus. Seven
HPV oncoproteins were quantified for expression: E1, E2, E5, E6,
E7, L1, and L2. Viral gene expression was presented as fragments per
kilobase of nonoverlapped exon per million fragments mapped
(FPKM). A positive integration event, described by Zhang et al. [20],
is a fusion candidate that has at least four discordant read pairs and at
least one junction spanning read [22]. A tumor sample was called
genic integration positive if it contained at least one identified
integration event.

Definition of a Comprehensive HPV Variable

The joint action of HPV E6 and E7 oncoproteins is required for
HPV-induced malignancy [23]. In the present study, we found that
only oncoproteins E6 and E7 have an influence on the patient
prognosis, and their expression levels were also confirmed to be highly
associated, prompting us to focus on E6 and E7. We identified a
comprehensive HPV variable to explain the original expression level
of oncoprotein E6 and E7 that was calculated by principal component
analysis (PCA). The new PCA-based variable HPV),, was derived
from the first principal component that represented 98.9% of the
variation in the original data. The coefficients (normalized loading) of
E6 and E7 to the first principal component are shown below:

HPV16 oncoprotein E6 E7
Coefficient 0.49 0.51
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Mathematically, let £j; represent log, (FPKM + 1) value of specific
oncoprotein j in sample 7 and C; denote the corresponding coefficient
of HPV16 oncoprotein (HPV,, j € {1,2}). The HPV,, can be

calculated as follows:

Ey - Eq
HPVyu=| i -
Ey

Molecular Characterization for Subtypes

Differential expression analysis was performed by the R package
“DESeq2” using the standard comparison mode [24]. P values were
adjusted for multiple testing using an embedded Benjamini-
Hochberg procedure in the package. Gene set enrichment analysis
(GSEA) and Gene Ontology (GO) annotation were performed using
the R package “clusterProfiler” [25,26] to characterize the subtype
according to the mRNA expression profile. Redundant enriched GO
terms were removed using the “simplify” function. To this end,
Molecular Signature Database gene sets were tested. The enrichment
scores of molecular pathways and gene expression signatures were
evaluated using single-sample gene set enrichment analysis (R package
“GSVA”) and NTP (Nearest Template Prediction, R package
“CMScaller”) [27-29]. To computationally infer the infiltration
level of specific immune cell types using RNA-seq data, we used 20
immune-related cell types from the literature that included three
categories of adaptive immunity, innate immunity, and other
component [30]. Supervised hierarchical clustering based on
immune-related cell types was performed basically using the hclust
() R function via Ward's clustering and 1-Pearson's correlation
distance with # = 2 as the number of clusters. To calculate an E6
activity score, first, for each gene in the pathway, samples were ranked
according to their expression levels. For each sample, the ranks of the
genes were summed, and the resulting values were then centered by
mean and scaled by the standard deviation across samples to yield the
final scores. For E6 negatively regulated genes, the expression levels
were ranked in descending order because the direction of regulation is
known to be opposite. The Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm and subclass mapping were used to
predict the clinical response to immune checkpoint blockade [31,32].

Genetic and Epigenetic Analysis

We used the MutSigCV_v1.41 [33] (www.broadinstitute.org) to
infer significant cancer mutated genes (g < 0.05) across the current
identified two classes with default parameters. The tumor mutation
burden was computed by summing all types of nonsilent mutations.
The mutation landscape oncoprint was drawn by R package
“ComplexHeatmap” [34]. The number of predicted neoantigens
was extracted from previous TCGA research for cervical squamous
cell carcinoma and endocervical adenocarcinoma [35]. Methylation
analysis followed the chip analysis methylation pipeline (ChAMP)
[36] with the required R package “IlluminaHumanMethylation450-
kanno.ilmn12.hgl9” as annotation. Methylation probes were filtered
by champ.filter() and champ.impute() with default parameters, and
the fvalue was normalized by champ.norm() function. Differentially
methylated probes were detected by champ.DMP(), and champ.
GSEA was used to call GSEA results. Hypermethylated probes were
identified by delta S greater than 0 and adjusted P < .05. Promoters
located in a CpG island were determined by 450 k annotation file

with the feature of TSS200 or TSS1500 and CpG island (CGI). For a
gene with more than one probe mapping to its promoter, the median
f value was considered. An epigenetically silenced gene was
determined if a promoter CGI was hypermethylated and its
corresponding gene's expression was upregulated. The DNA
methylation-based immune infiltration score was extracted from

TCGA previous research [37].

Chemotherapeutic Response Prediction

We predicted the chemotherapeutic response for each sample
based on the largest publicly available pharmacogenomics database
[the Genomics of Drug Sensitivity in Cancer (GDSC), https://www.
cancerrxgene.org/]. Two commonly used chemo drugs, cisplatin and
gemcitabine, were selected. The prediction process was implemented
by R package “pRRophetic’ where the samples' half-maximal
inhibitory concentration (ICsy) was estimated by ridge regression
and the prediction accuracy was evaluated by 10-fold cross-validation
based on the GDSC training set. All parameters were set by the
default values with removal of the batch effect of “combat” and tissue
type of “allSoldTumours,” and duplicate gene expression was
summarized as mean value [38].

Statistical Analysis

All statistical tests were executed by R/3.5.2 using a * or Fisher's
exact test for categorical data when appropriate, a two-sample
Wilcoxon test (Mann-Whitney test) for continuous data, a log-rank
test Kaplan-Meier curve [39], and Cox regression [40] for the hazard
ratio (HR). Survival analysis was performed using the R package
“survival’. Fisher's exact test of independence was used to statistically
test the association between categorical clinical information and
defined subtypes. For all statistical analysis, a P value less than .05 was
considered statistically significant.

Results

Overview of Sample Selection

Among all 304 tumor samples, we identified 168 with HPV16,
115 with other types of HPV, and 21 samples with no HPV detected
(Figure 1A4). Five samples were diagnosed with a histological type of
adenosquamous carcinoma, 252 with CSCC, 6 with endocervical
adenocarcinoma of the usual type, 21 with endocervical type of
adenocarcinoma, 3 with endometrioid adenocarcinoma of endocer-
vix, and 17 with mucinous adenocarcinoma of endocervical type
(Figure 1B). To avoid potential effects arising from histological type
and virus type, we purified the samples used for analyzing and selected
samples that were confirmed to be CSCC with infection of HPV16
virus only. By doing so, 138 HPV16 samples with full survival and
clinicopathological information were selected for downstream
analysis.

Association Between Highly Correlated Oncoproteins EG/E7
and the Clinical Outcome

We performed univariate Cox regression to determine whether the
seven detected HPV16 oncoproteins affected the patient outcome. As
expected, oncoproteins E6 and E7 were significantly associated with
overall survival, and their high expression could favor the prognosis of
patients (E6: P =.001, HR = 0.63; E7: P =.0009, HR = 0.65)
(Figure 2A4). By calculating the Pearson correlation coefficient of the
paired oncoproteins, we further found that the expression levels of

HPV E6 and E7 were highly correlated in CSCC samples [p = 0.98
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Figure 1. Overview of sample selection. (A) Pie chart of the distribution of the detected HPV type and (B) histological type. The 138
selected samples were those diagnosed with CSCC and infected by HPV16.

and false discovery rate (FDR) = 2.35¢-94] (Figure 2B, Supplemen-
tary Table S1). Given the high correlation and significant impact on
prognosis, a PCA-based variable, HPV, pcar WS calculated to compress
the expression level of oncoproteins E6 and E7. Univariate Cox
regression confirmed the correlation between HPV), and overall
=.0009, HR = 0.64, 95% confidence interval (CI) =
0.49-0.83]. Under the optimal cut point, we separated samples into
two subsets: a 97-sample HPV16-H subset with relatively high

survival [P

expression of HPV,, and a 41-sample HPV16-L subset with
relatively low expression. As expected, HPV16-H showed better
survival than HPV16-L (P =.002, HR = 0.34, 95% CI = 0.13-
0.85) (Figure 2C).

Differential expression analysis identified 360 differentially
expressed genes with a threshold of P < .05, FDR < 0.25, and
absolute log,(fold change) > log,(1.5), including 161 upregulated
and 199 downregulated differentially expressed genes for HPV16-H

Hazard Ratio
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T
]
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Figure 2. Highly correlated oncoproteins E6 and E7 were associated with clinical outcome. (A) The forest plot shows only that HPV16 E6/
E7 expression affects the patient overall survival. (B) Pearson correlation coefficient of pairwise HPV16 oncoproteins. (C) High level of

HPV,c, presented a favorable prognosis.
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compared with those for HPV16-L (Supplementary Table S2).
Upregulated genes in HPV16-H were enriched for immune-related
terms, such as positive regulation of T-cell activation (FDR = 1.03e-
06), positive regulation of leukocyte activation (FDR = 1.89¢-06),
and MHC class II receptor activity (FDR = 7.64e-17); upregulated
genes in HPV16-L demonstrated enrichment in several metabolic
processes, such as glucan metabolic process (FDR = 0.034) and
positive regulation of cAMP metabolic process (FDR = 0.015).

Association Between Two Supervised Clustering-Based HPV16
Subtypes and the Clinical Outcomes

Now that a high level of HPV,. may correspond to a strong
immune response from the above analysis, we wondered whether
immunologic profiling could distinguish the heterogeneity of CSCC
with HPV16. Thus, supervised clustering using 20 immune-related
cell types was applied to all 138 HPV16 samples, and two distinct
subtypes were revealed (Figure 3A). Specifically, a subtype, Cl1,
comprising 53 samples was separated from another subtype, C2,
containing 85 samples, exhibiting a high enrichment level for
adaptive immunity signatures (Figure 3B) and innate immunity

signatures (Figure 3C) and low enrichment for lymph vessels and
SW480 cancer cells (Figure 3D).

Subtype C1 with significantly higher HPV,, than C2 (P = .013)
presented high enrichment for samples classified into the HPV16-H
group, whereas subtype C2 was enriched for samples belonging to
HPV16-L (P = .004). We next tested whether any other HPV16
oncoproteins (E1, E2, E5, L1, L2) were differentially expressed between
Cl and C2, and no significance could be observed. Because the
expression levels were quantified using RNA levels, they may not reflect
the actual E6 or E7 protein activity levels in the cell. Fortunately, E6 and
E7 were highly correlated in our study; thus, we used published literature
[41] to calculate an E6 activity score for each sample to quantify E6 and
E7 activity (Figure 3E). Overall, the E6 score was significantly higher in
Cl1, indicating an elevated E6 activity (P = 1.36¢-07) (Figure 3F). In
particular, the genes downregulated by E6 in the literature were more
repressed in C1 than in C2, whereas the upregulated genes were induced
to a lesser degree. We next tried to determine whether a difference existed
in HPV-integration events between the two subtypes, and no significance
could be observed (P = .39).

Similar to HPV16-H, subtype C1 demonstrated a more favorable
prognosis than subtype C2 (P = .017, HR = 0.32, 95% CI = 0.14-
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Figure 4. Differentially regulated genes and pathways between the HPV16 subtypes. (A) Heatmap of significant differentially expressed
genes between the subtypes with different enrichment in the predicted epithelial-mesenchymal transition status. (B) The volcano plot
shows representative genes within interested pathways. (C) Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the
immune-related pathway and TNF signaling were enriched in the HPV16-IMM subtype, whereas the Wnt signaling was enriched in the
HPV16-KRT subtype. (E) Heatmap of the enrichment level calculated by single-sample gene set enrichment analysis for interested

pathways derived from GSEA and their corresponding GSEA plots in

0.73) (Figure 3G). Regarding progression-free survival, subtype C1
showed a lower recurrence rate than subtype C2 (P = .035, HR =
0.7, 95% CI = 0.5-0.97) (Figure 3H).

Characterization of the HPV16 Subtypes Regarding Different
Functional Pathways

We next characterized the molecular differences between the two
HPV16 subtypes. Differential expression analysis found 738
significantly differentially expressed genes, including 397 upregulated
and 341 downregulated genes [absolute log,(fold change) > log,(2)
and FDR < 0.05] (Figure 4A, Supplementary Table S3). GO
enrichment analysis of biological processes for the upregulated genes
in subtype CI revealed global enrichment for “immune response”

(F).

terms (Supplementary Table S4); upregulated genes in subtype C2
were most significantly enriched for “epithelial cell proliferation,”
“Wnt signaling pathway,” and “metabolic process” such as retinol
metabolism (Supplementary Table S5). The representative differen-
tially expressed genes from each relevant GO term are shown in
Figure 4B and include CD247, PDCD1, CTAL4, CCL5, CXCL9,
and IFNG for “immune response”; TGFB2 and VEGFC for
epithelial; DACT1 and GPC3 for Wnt signaling; and other genes
for several metabolic processes. Kyoto Encyclopedia of Genes and
Genomes enrichment analysis also showed remarkably elevated
immune-related signaling pathways in C1 subtype, such as the T-
cell and B-cell receptor signaling pathways and natural killer cell-
mediated cytotoxicity (Figure 4C). We also found C1 enriched for the
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tumor necrosis factor (TNF) signaling pathway, whereas C2 showed
high enrichment for the Wnt signaling pathway (Figure 4D,
Supplementary Table S6). GSEA of the preranked gene list showed
subtype C1 was enriched for immune-related cells (e.g., T cells, B
cells, lymphocytes, the inflammatory response, and chemokines) or
pathways (e.g., programmed cell death protein 1 signaling and cell
adhesion), whereas subtype C2 was enriched for keratinocyte
differentiation, biological oxidations, several metabolic processes
(e.g., hormones and proteoglycan), and the retinoic acid pathway
(Figure 4, E-F, Supplementary Table S7). Therefore, we designated
Cl and C2 as HPVI6-IMM and HPVI16-KRT, respectively.
Consistent with GO annotation, using a 315-gene epithelial-
mesenchymal transition signature [42], more samples in the
HPV16-IMM subtype were predicted to be in the mesenchymal
class, whereas the HPV16-KRT subtype was enriched for more
epithelial-like samples (P = .015).

Significant Immune Infiltration for the HPV16-IMM Subtype
Based on DNA Methylation

Considering the far-ranging differentially regulated genes and
pathways between the HPV16 subtypes, we wondered if such
dysregulation could mirror epigenetic alterations in CSCC with
HPV16 because of the complicated biological correlation between
gene expression and DNA methylation. After the probe-filtering
process, 339,518 probes remained across 138 tumor samples.
ChAMP identified 2512 hypermethylated probes in HPV16-IMM

(Supplementary Table S8) that were enriched for immune processes
such as T-cell, B-cell, and lymphocyte activation (Supplementary
Table S9), a trend that was coincident with a significantly higher
methylation-based immune infiltration score in HPV16-IMM than
in HPV16-KRT (P = 8.23¢-06) (Figure 54). We further annotated
44,898 promoters located in CGIs, mapping to 10,269 genes.
Integrative analysis by mRNA expression and promoter CGIs
methylation identified 187 epigenetically silenced genes, including
183 for HPV16-IMM and only 4 for HPV16-KRT (Supplementary
Table S10).

Differential Somatic Mutation Landscape Between the HPVI6
Subtypes

To investigate whether differences exist in the somatic mutation
frequencies between the HPV16 subtypes, we filtered genes with a
nonsilent mutation rate greater than 5% and identified 16 genes
differentially mutated between the HPVI16 subtypes (P < .05,
Supplementary Table S11). Under a stringent threshold of 4 < 0.05,
MutSigCV detected four significantly mutated genes (SMGs) among all
CSCC samples, including FBXW?7 (g = 7.96e-09), PIK3CA (g =
2.37¢-07), PTEN (g = 3.21e-05), and NFE2L2 (g = 3.15¢-03)
(Supplementary Table S12), all of which had been reported from
previous TCGA research [17]. MutSigCV determined 215 and 232
significant mutations for HPV16-IMM and HPV16-KRT, respective-
ly, under a loose threshold of P < .05, and only nine SMGs were
shared. Additionally, only FBXW7 (g = 3.94e-03) was detected to be
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Figure 5. Epigenetic and genetic alteration between the HPV16 subtypes in terms of (A) the methylation-based immune infiltration score,
(B) tumor mutation burden, and (C) predicted number of neoantigens. (D) Oncoprint shows the somatic mutation landscape of MutSigCV-
detected SMGs and other differentially mutated genes between the subtypes.
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SMG for HPV16-IMM (Supplementary Table S13), whereas SMGs
MUCH4 (g = 5.33¢-05) and PIK3CA (g = 0.035) could be targeted for
HPV16-KRT (Figure 5D, Supplementary Table S14).

Additionally, recent analyses have described special links between
the genomic landscape and antitumor immunity. Particularly, the
tumor mutational burden (TMB) has emerged as a highly promising
and clinically validated biomarker for immune checkpoint inhibitors,
and presence of neoantigens could drive T-cell responses [35,43,44].
To verify whether the TMB and neoantigens may affect immunology
in CSCC with HPV16, we analyzed the association between the
HPV16 subtypes and count of somatic mutation or neoantigens.
Basically, we found that HPV16-IMM presented a significantly
higher count of TMB and neoantigens than HPV16-KRT (P = .04
for TMB and .03 for neoantigens) (Figure 5, B-C), suggesting that
the HPV16-IMM subtype might be more sensitive to immune
checkpoint inhibitor treatment.

More Sensitivity to Immuno/Chemotherapies for HPV16-IMM
Subtype

Examining TMB and neoantigens of the two HPV16 subtypes
allowed us to further investigate the likelihood of responding to
immunotherapy. Although immune checkpoint inhibitors have not
yet been approved as routine drugs for cervical cancer, we therefore
harnessed the TIDE algorithm to predict the likelihood of response to
immunotherapy, and it demonstrated that HPV16-IMM (43%, 23/
53) may be more likely to respond to immunotherapy than HPV16-
KRT (26%, 22/85) (P = .04). In addition to the TIDE prediction,
we also used subclass mapping to compare the expression profile of
the two HPV16 subtypes we defined with another published dataset
containing 47 patients with melanoma that responded to immuno-
therapies [45]. We were very delighted to see that HPV16-IMM is

more promising to respond to anti-PD-1 therapy (Bonferroni
corrected P = .008) (Figure 6A4).

Considering that chemotherapy is the common way to treat
cervical cancer, we tried to assess the response of two HPVI16
subtypes to two chemo drugs: cisplatin and gemcitabine. Thus, we
trained the predictive model on the GDSC cell line data set by ridge
regression with a satisfied predictive accuracy evaluated by 10-fold
cross-validation. We estimated the ICsq for each sample in the TCGA
dataset based on the predictive model of these two chemo drugs. We
could observe a significant difference in the estimated 1Cs, between
HPV16-H and HPV16-L for these two chemo drugs where HPV16-
H could be more sensitive to commonly administered chemother-
apies (P = .022 for cisplatin, P = .003 for gemcitabine) (Figure 6B).
However, only gemcitabine could be observed to present a significant
response sensitivity to HPV16-IMM compared with HPV16-KRT
(P =.008, P = .516 for cisplatin) (Figure 6C).

Demographic Characteristics

The distributions of patient age, tumor grade, and clinical stage
were not different between HPV16-IMM and HPV16-KRT.
However, patients with HPV16-IMM tumors showed more tumor-
free cases (P =.006), consistent with a favorable prognosis. The
examined count of lymph node in HPV16-KRT was dramatically
lower than that of HPV16I-IMM (P = 8.68e-08). We observed an
elevated body mass index trend in HPV16-IMM (£ = .087), but no
significance could be drawn when considering four body mass index
categories (Supplementary Table S15).

Discussion
Essentially all cervical cancers, including CSCC, are HPV positive by
DNA, and HPV oncoprotein expression, which is critical for cancer
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Figure 6. Differential putative chemotherapeutic and immunotherapeutic response. The box plots of the estimated ICgq for cisplatin and
gemcitabine are shown in (A) for HPV).,-based HPV-H and HPV-L and (B) for HPV16-IMM and HPV16-KRT. (C) Submap analysis
manifested that HPV16-IMM could be more sensitive to the programmed cell death protein 1 inhibitor (Bonferroni-corrected P = .008).
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development, has been widely accepted [4,16]. It remains necessary to
gain an in-depth understanding of the influence of HPV expression
on the host and reveal the association between HPV and the inherent
heterogeneity of this cancer, thus developing novel or improved
personal treatment. This study, for the first time, is tightly linked to
the expression of HPV16 E6/E7 with biological and clinical features
using various types of data including TCGA public data and GDSC
database resources, shedding new lights on targeted therapy in CSCC.

In the present study, we found that highly expression-related HPV16
E6 and E7 were significantly associated with the prognosis of CSCC
patients. In general, high viral expression favored the patient clinical
outcome. We compressed the expression of E6 and E7 into a new
comprehensive PCA-based score, HPV,,.
cutoff of prognosis, samples were divided into two groups with different
HPV,, level. GO annotation indicated that the high-score group was
enriched with “immune response” terms. Thus, we conducted

According to the optimal

supervised clustering on the 138 CSCC samples by specific immune
cells and acquired two subtypes with distinct a pattern of immunologic
profile. HPV16-IMM inhibited a significantly higher PV, level and
more enriched TNF signaling, which is concordant with previous
research that enhanced TNF pathway activity shall promote HPV E6/
E7 expression [46]. The most significant difference in expression
between these two subtypes is the upregulation of mesenchymal and
immune-response genes in the HPV16-IMM subtype, which also
presented higher E6 activity, keratinization, biological oxidation
process, and metabolism dysregulation in HPV16-KRT. In fact, most
of these pathways could be explained by the biology of HPV
carcinogenesis where the HPV oncoprotein, especially E6, was reported
to downregulate a mass of genes involved in keratinocyte differentiation
and upregulate genes normally expressed in mesenchymal lineages,
which is consistent with HPV16-IMM—enriched mesenchymal-like
samples, whereas epithelial-like samples were enriched in another
subtype, HPV16-KRT.

The higher immune response in HPV16-IMM was dramatically
observed, featuring significant enrichment for immune signatures,
such as T cells, B cells, lymphocytes, the inflammatory response, and
chemokines. Together, these are hypothesized to promote a better
response to the treatment of HPV16-infected patients, especially
HPV16-IMM patients. In our study, we demonstrated that a stronger
immune response could indeed predict a better overall survival and a
lower recurrent rate. It was speculated that, when HPV shifts from the
initial episomal form to an integrated transcribed form, the
inflammatory/immune response towards HPV is simultaneously
attenuated [20], but we could not observe a significant difference in
HPV-integration events between the subtypes, which might be
caused by the relatively small sample size. Anyway, the stronger
inflammatory/immune response might be stimulated by highly
expressed HPV16 in the HPV16-IMM subtype and may partially
explain why HPV16-IMM may overall have a better prognosis. To
decipher the poor prognosis of HPV16-KRT, we found enrichment
for activated Wnt signaling. The Wnt pathway regulates cellular
proliferation and differentiation processes and, thus, plays critical
roles in pathologic conditions such as cancers. Activation of the Wnt
pathway results in the accumulation of B-catenin, which in turn
increases transcription of a broad range of genes to promote cell
proliferation, achieving progression and malignant transformation
[47]. Additionally, we found that HPV16-KRT is associated with
retino-related pathways. Specifically, HPV16-KRT was enriched for
the retinol metabolism pathway and retinoic acid, which might be of

great value in the chemopreventive and therapeutic roles for cervical
neoplasia [48] and should be investigated for the synthesis of new
pharmacological agents [49]. Emerging evidence indicates that cancer
is primarily a metabolic disease, and personalization of metabolic
therapy as a broad-based cancer treatment strategy shall likely suggest
more targets for exploration [50].

Analysis of DNA methylation suggested greater levels of immune
cell infiltrates within HPV16-IMM, including T-cell, B-cell, and
lymphocyte activation. Integrative analysis by mRNA expression and
promoter CGI methylation manifested a significant broad spectrum
of gene silencing in HPV16-IMM compared with that in HPV16-
KRT (183 vs. 4). The differentially mutated gene SMG1, which we
found to be frequently mutated in HPV16-IMM, was reported to
correlate with improved survival when functional mutated [51].
EP300, which is also frequently mutated in HPV16-IMM, could
affect growth-suppressive and proapoptotic functions driven by
TGEFP and is only observed in 30% of squamous cell carcinomas
based on the literature [17]. The two subtypes also presented different
SMGs, of which PIK3CA being significantly mutated in HPV16-
KRT is consistent with previous research of a co-occurrence condition
for PIK3CA mutation and high keratin expression [17], and higher
TMB in line with the submap result suggested that HPV16-IMM
might have a high likelihood of responding to immunotherapy;
however, no FDA-approved immune-based drugs for CSCC exists.
Cervical cancers are usually treated with a combined regimen of
platinum-based chemotherapy and radiation. Using the GDSC
database, we imputed that HPV16-IMM could be more sensitive to
commonly used chemotherapies than HPV16-KRT. The above
discussion implicates that HPV16-IMM may benefit from the
combination of chemotherapy and immunotherapy, and targeted
therapy of FBXW7 mutation should also be considered, whereas
HPV16-KRT could be more sensitive to targeted Wnt pathways, and
MUC4 and PIK3CA mutation. Retino-related agents and
metabolism-targeted therapies will also require fine-tuning to realize
personalized treatment for patients in HPV16-KRT.

Briefly, we sought here to provide comprehensive understanding of
how the expression of HPV16 oncoproteins affects tumor develop-
ment and their association with the heterogeneity of CSCCs infected
with HPV type 16. The molecular differences between the identified
subtypes may favor the opportunity to be targeted under specific
therapeutic approaches separately. However, this study has a few
limitations. First, the inconspicuous sample size may make it difficult
to observe the difference in clinicopathological features. Additionally,
the TCGA darta enrolled for analysis were mostly collected from
patients with cervical cancer in developed countries but lacked data
from developing countries.

Conclusions

Overall, our study tightly linked the expression of HPV16 E6/E7
with the biological and clinical outcomes of CSCC. Those patients
with high expression of HPV16 EG6/E7 could benefit from
immunotherapy, which may accelerate the approval of immune
checkpoint inhibitors for CSCC. We are poised for a further
investigation and eagerly anticipate the verification of our findings in
a larger cohort of patients.
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