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Abstract
In the present study, we systematically investigated population differentiation of drug-related

(DR) genes in order to identify common genetic features underlying population-specific re-

sponses to drugs. To do so, we used the International HapMap project release 27 Data and

Pharmacogenomics Knowledge Base (PharmGKB) database. First, we compared four mea-

sures for assessing population differentiation: the chi-square test, the analysis of variance

(ANOVA) F-test, Fst, and Nearest Shrunken Centroid Method (NSCM). Fst showed high sen-

sitivity with stable specificity among varying sample sizes; thus, we selected Fst for determin-

ing population differentiation. Second, we divided DR genes from PharmGKB into two

groups based on the degree of population differentiation as assessed by Fst: genes with a

high level of differentiation (HD gene group) and genes with a low level of differentiation

(LD gene group). Last, we conducted a gene ontology (GO) analysis and pathway analysis.

Using all genes in the human genome as the background, the GO analysis and pathway

analysis of the HD genes identified terms related to cell communication. “Cell communica-

tion” and “cell-cell signaling” had the lowest Benjamini-Hochberg’s q-values (0.0002 and

0.0006, respectively), and “drug binding”was highly enriched (16.51) despite its relatively

high q-value (0.0142). Among the 17 genes related to cell communication identified in the

HD gene group, five genes (STX4, PPARD, DCK,GRIK4, and DRD3) contained single nucle-

otide polymorphisms with Fst values greater than 0.5. Specifically, the Fst values for

rs10871454, rs6922548, rs3775289, rs1954787, and rs167771 were 0.682, 0.620, 0.573,

0.531, and 0.510, respectively. In the analysis using DR genes as the background, the HD

gene group contained six significant terms. Five were related to reproduction, and one was

“Wnt signaling pathway,”which has been implicated in cancer. Our analysis suggests that

the HD gene group from PharmGKB is associated with cell communication and drug binding.
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Introduction
The DNA sequence of the 3-billion-nucleotide-long human genome varies by approximately
0.1% between individuals. Surprisingly, this small difference in the DNA sequence accounts for
individual differences in appearance, behavior, and even disease status. Furthermore, this dif-
ference in DNA sequence can have an even larger effect among ethnic populations. Genetic di-
vergence between ethnic groups is called population differentiation (PD). PD results from
genetic factors that enforce natural selection, genetic drift, or gene flow. Moreover, genes relat-
ed to Mendelian diseases have a significant excess of single-nucleotide polymorphisms (SNPs)
with high levels of PD, and the incidence of and susceptibility to these diseases differ among
populations [1].

Several recent studies on PD have focused on genetic variations. Myles et al. attempted
to identify SNPs accounting for disease-associated PD [2]. However, they found no disease-
associated SNPs that were more significantly differentiated than randomly selected SNPs in the
genome among populations. Nevertheless, the frequencies of risk alleles for disease-associated
SNPs showed substantial variation across human populations. Barreiro et al. analyzed the de-
gree of PD with 2.8 million SNPs and discovered the role of natural selection in shaping PD
[3]. Wu and Zhang also performed a genome-wide study of PD and found that many groups of
genes had higher degrees of PD [1]. Specifically, PD existed on some loci associated with phe-
notypes (e.g., hair growth and pigmentation) that are well known to vary across populations.

PD has also been investigated in pharmacogenomic studies [4]. For example, the response to
warfarin, one of the most widely studied drugs, depends not only on genetic variants [5] but also
on population [6]. As a result, some authors have suggested that warfarin be dosed according
to the patient’s race. In fact, Pavani et al. suggested a linear model for optimizing population-
specific warfarin dose [7]. Huang et al. identified SNPs contributing to etoposide-induced cyto-
toxicity in a genome-wide association study (GWAS) using International HapMap cell lines, and
they demonstrated different genotypes associated with cytotoxicity between two populations [8].
In order to investigate PD of DR genes, we analyzed data from two databases: International Hap-
Map release 27 (phase II + III) [9] and Pharmacogenomics Knowledge Base (PharmGKB)
[10,11], the most widely used DR database. Originally, HapMap release 27 contained 11 subpop-
ulations. However, the allele frequencies of populations in the same ethnic groups are highly cor-
related [12], and there is lack of genotypic information in some populations. Therefore, we used
the following subpopulations: European, African, and Asian from Japan and China.

There are several measures for determining the distance among populations. Among them,
Fst is the most widely used measure to determine PD. Akey et al. [13] and Barreiro et al. [3]
used Weir and Cockerham’s estimate, an unbiased estimate of Fst [14,15]. Casto et al. used four
measures: (i) δ, the difference in allele frequency between two groups; (ii) integrated haplotype
score (iHS), which characterizes the lengths of the haplotypes surrounding each allele of a SNP
[16]; (iii) latitude/longitude correlation (LLC), which describes how closely changes in a SNP’s
allele frequency follow geographical coordinates; and (iv) Fst, which shows variation in allele
frequency among populations [17]. Park et al. used the Nearest Shrunken Centroid Method
(NSCM) [18,19], which was originally designed for clustering of microarray data. NSCM has
been proposed for solving the classification problem with a large number of features and it was
also applied to the analysis of population differentiation in SNPs via Hapmap data [18]. Han
et al. modified Fst for use with allele frequency data with unbalanced sample sizes [20].

In order to investigate PD of DR genes, we first compared four measures for assessing popu-
lation differentiation: the chi-square test, the ANOVA F-test, Fst, and NSCM. Fst showed high
sensitivity with stable specificity among varying sample sizes; thus, we selected Fst for deter-
mining population differentiation. We then divided DR genes from PharmGKB into two
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groups based on the degree of population differentiation as assessed by Fst: genes with high a
level of differentiation (HD gene group) and genes with a low level of differentiation (LD gene
group). Finally, we conducted a gene ontology (GO) analysis and pathway analysis.

Several studies have investigated PD associated with individual drugs [4]. In the present
study, we systematically studied PD of drug-related (DR) genes by simultaneously considering
all reported DR genes. This integrative approach may help clarify the inconsistent genetic fea-
tures of drug response associated with PD. Furthermore, our findings will improve the study
and prediction of drug responses that differ among populations due to genetic stratification.

Methods

1. Measures of PD
Since the measures of PD are not always consistent, it is difficult to choose an appropriate mea-
sure for PD. Thus, we first performed a comparison analysis in order to identify the highest
performing measures in our study. We compared the following four measures: Weir and Cock-
erham’s Fst [15], the sum of square of di from NSCM, the chi-square test, and analysis of vari-
ance (ANOVA) F-test. Other measures were excluded for the following reasons. δ is used for
comparisons between two populations; however, we compared PD among three populations.
In our research, we tried to evaluate which SNPs are highly differentiated but iHS shows
whether SNPs are differently selected. Therefore, the results via iHS are not concordant with
the results from other measures. Moreover, Ferrer-Admetlla et al. suggest that iHS seems to be
affected by the recombination rate [21]. Thus, we would like to exclude iHS from our sensitivity
and specificity analysis. LLC was excluded, because latitude and longitude information for each
individual was needed to determine PD.

We compared the specificity and sensitivity of these measures using simulation studies. Our
comparison study focused on consistency and reliability with respect to the populations’ sample
sizes and imbalance in sample sizes among populations. Our comparison revealed that Fst had
the most stable specificity regardless of the variability in sample size and the highest sensitivity
as compared to other measures. Thus, we concluded that Fst was the most appropriate measure
of PD for our integrative analysis of International HapMap release 27 and PharmGKB.

The chi-square test is a widely used statistical method for testing the homogeneity of group
proportions. In this study, we used it to test whether allele frequencies of the J subgroups were
equal; the null hypothesis was:

p1 ¼ � � � ¼ pJ ð1Þ

where pi denotes the allele frequency of the ith population. In the chi-square test, 0.05 or the q-
value from Benjamini and Hochberg’s method [22] is usually used as the significance level for
testing the null hypothesis. Thus, the significance level varies according to N.

The model for the ANOVA F-test was:

aij ¼ mþ ti þ �oij;
X

ti ¼ 0 ð2Þ

where aij is the number of the allele (value of 0, 1, or 2) for the jth individual in the ith popula-
tion. μ and μ+τi are the overall mean genotype frequencies within individuals and mean of al-
lele frequencies in the ith population, respectively. �ij is the error term. Thus, by testing H0:
τi = 0, for 8i, we could test whether the allele frequencies of subgroups were equal to one anoth-
er assuming a Gaussian distribution.

We used Weir’s Fst estimate ŷ [14,15], an unbiased estimator of Fst. ni denotes the sample
size of the ith subpopulation (i = 1,. . .,s). n = Sni denotes the total sample size. p̂idenotes the
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observed allele frequency of the ith subpopulation, and �p ¼
X

nip̂i=n denotes the weighted av-

erage of allele frequency.

ŷ ¼ MSP�MSG
MSPþ ðnc � 1ÞMSG

; ð3Þ

where

MSP ¼ 1

s� 1

Xs

i¼1

niðp̂i � �pÞ2; ð4Þ

MSG ¼ 1Xs

i¼1
ðni � 1Þ

Xs

i¼1

nip̂ið1� p̂iÞ; ð5Þ

nc ¼
1

s� 1

Xs

i¼1

ni �
Xs

i¼1
n2
iXs

i¼1
ni

 !
ð6Þ

MSP and MSG represent the observed mean square error of a locus between populations and
the observed mean square error of a locus within populations, respectively. nc is the average
sample size across n samples, correcting for variation in sample size among subpopulations.

We also defined the sum of square of standardized distance to measure PD via NSCM as fol-
lows;

SSd ¼
X

i

d2
ik ð7Þ

It is a representative value for the kth SNP in population i, where

dik ¼
aik � ak

miðs0 þ skÞ
ð8Þ

Here, aik denotes the mean of allele frequencies in population i; ak denotes the overall mean of

allele frequency of SNP k, andmi ¼
ffiffiffiffiffiffiffiffiffiffiffi
1
nk
þ 1

n

q
, which makesmi�sk equal to the estimate of stan-

dard error for the numerator of dik�s0 was set equal to the median of sk over the set of SNPs to
prevent inflation of dik.

2. GO analysis and pathway analysis of the HD and LD gene groups
We used a gene ontology (GO) analysis to identify biological characteristics of the HD and LD
gene groups. We compared each gene group to other functionally annotated genes in HapMap
Data [23] and to DR genes in the PharmGKB Database.

Wright proposed the following Fst categories: (i) Fst < 0.05, low divergence; (ii) 0.05< Fst
< 0.15, moderate divergence; (iii) 0.15< Fst < 0.25, high divergence; and (iv) Fst > 0.25, very
high divergence [24]. Using Wright’s Fst criteria, genes containing at least one SNP with an Fst
value greater than 0.25 were considered to have a high level of differentiation (HD gene group)
[25,26], while those containing SNPs with Fst values less than 0.05 were considered to have a
low level of differentiation (LD gene group). Additionally, we identified the SNPs with a high
level of differentiation from GO analysis results if Fst greater than 0.5, because this criterion
was used for previous studies [1,27].
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For the GO analysis, SNPs associated with drugs from PharmGKB were annotated into
genes. These DR genes were divided into two groups using the Fst criteria proposed by Wright
[24]. From 654 DR SNPs in the HapMap Database, we obtained 160 SNPs with HD and 173
SNPs with LD (Table 1). From these SNPs, 68 genes with HD and 114 genes with LD
were derived.

To investigate the biological differences between the HD and LD gene groups, we performed
a GO analysis and a pathway analysis using the Database for Annotation, Visualization and In-
tegrated Discovery (DAVID) [28] v6.7 functional annotation tool. Annotated genes from each
group were used as the input, while a list of whole genes in DAVID with at least one annotation
in the analyzing categories was used as the background. For the GO analysis, the following
three categories were selected: biological process (BP), molecular function (MF), and cellular
component (CC) [29]. For the pathway analysis, the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway was used [30].

Additional GO and pathway analyses were performed in a similar manner in order to com-
pare genes in the HD gene group to those in the DR gene group. In this case, the DR HD gene
group was used as the input for analysis, and the DR gene group was used as the background.

To correct for multiple tests, we used the hypergeometric test from Benjamini-Hochberg’s
method [22]. Fold enrichments, defined as the ratios of proportions between the input and
background, were calculated for each term. Terms with Benjamini-Hochberg’s q-values of 0.05
or lower were considered significant.

Results

1. Data collection
We analyzed SNP data from International HapMap Phase II + III, release 27 (http://www.
hapmap.org) [9,31]. According to Hapmap consortium, there are distinct three clusters, Euro-
pean, African and Asian from the principal component plot of 11 populations in hapmap3
[31]. Therefore, we used three groups based on these three regions. We included 120 Yoruba
from Ibadan, Nigeria (YRI), 181 Asians of which are 91 Japanese from Tokyo, Japan (JPT) and
90 Han Chinese from Beijing, China (CHB), and 120 Utah residents with ancestry from north-
ern and western Europe (CEU). We used only founders of CEU and YRI to exclude the related
samples. Because International HapMap release 27 consists of a mixture of two phases, each
SNP had a different sample size. Fig. 1 shows the sample-size distributions of subpopulations
from International HapMap Data. The SNPs from Phase II had smaller sample sizes, while
those from Phase III had larger sample sizes (Fig. 1B). Some SNPs are only genotyped in phase
II and others are only genotyped in phase III. In this reason, we only included four populations,
which are both in phase II, and III simultaneously to avoid the potential biases due to different
settings of each phases.

In addition, Kim et al. (2012) reported that JPT and CHB in Hapmap possess the common
genetic information through MDS plot and Fst [32]. Therefore, we merged these two data into
one East Asian data. We used allele frequency data of three populations as following: Yoruba in
Ibadan, Nigeria (YRI), Utah residents with ancestry from Northern andWestern Europe

Table 1. Summary of each SNP group.

SNPs with high differentiation SNPs with low differentiation Total

Count 160 173 654

Mean (Fst) 0.364 0.020 0.157

Median (Fst) 0.344 0.019 0.111

doi:10.1371/journal.pone.0119994.t001
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(CEU), and East Asian (EA), which consists of the Han Chinese population in Beijing, China
(CHB) and the Japanese population in Tokyo, Japan (JPT). Also, we used only founders of
CEU and YRI to exclude the related samples. For pharmacological research, we collected 2595
DR SNPs from PharmGKB (http://www.pharmgkb.org) [10,11]. Finally, from these two data-
bases, 654 compatible SNPs among three populations were used for analysis.

2. Comparison of four PD measures using simulation
We selected four PD measures: chi-square test, Weir’s Fst, ANOVA F-test, and sum of square
of di from NSCM. Since each phase in HapMap release 27 had different sample sizes, we set the
sample size ni of the subpopulations as a parameter of the simulation as well as the distance d
between allele frequencies in order to compare the performance of the four measures. To exam-
ine the effect of sample size on these measures, we set ni as follows:

Scenario I: Increased sample sizes (n1,n2,n3) = (100,100,100), (200,200,200), and
(400,400,400).

Scenario II: Unbalanced sample sizes among the subpopulations (n1,n2,n3) = (200,100,100),
(100,200,100), and (100,100,200)

For convenience, we assumed equal distance between adjacent alleles and let the distance
d = p2-p1 = p3-p2(p1�p2�p3). We generated pi with d = 0.1,0.2,0.3 and p1 was generated under
uniform distribution on [0, min(0.5,1-2d)] (Table 2). Here, we usedmin(0.5,1-2d) as the maxi-
mum of p1 rather than 1 because of the symmetry in allele frequency. If p1 is greater than 0.5,
then p2 and p3 are also greater than 0.5, and we can alternatively identify a set of allele frequen-
cies {1-p3,1-p2, and 1-p1} instead of {p1, p2, p3}.

Fig 1. Histogram of sample sizes from 654 drug-related SNPs. A. Total sample sizes of SNPs.B. Sample size of each population of SNPs. CHB and JPT
are plotted separately according to the format of the original HapMap Data. SNPs with larger sample sizes are included in Phase III, and SNPs with smaller
sample sizes are included in Phase II.

doi:10.1371/journal.pone.0119994.g001
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From these conditions, we generated 200 sets of genotype frequency data from three bino-
mial distributions under Hardy-Weinberg Equilibrium (HWE): binomial distributionðni; p

2
i Þ,

binomial distribution (ni, 2piqi) and binomial distributionðni; q
2
i Þ. We then calculated the four

PD measures. Fig. 2 shows the box plots representing the distributions of the measures from
two scenarios. As d increased, the box sizes of the chi-square test, ANOVA F-test, and NSCM
increased, while those of Fst did not. All measures increased as d increased. As the total sample
size increased, the p-values from the chi-square test and ANOVA F-test decreased, while those
from Fst and SSd from NSCM did not change significantly (Fig. 2A).

Fig. 2B shows the effect of unbalanced sample size. All measures tended to increase as d in-
creased. All measures showed higher levels of differentiation when n1 or n3 was unbalanced
(n1,n2,n3) = (200,100,100)�(100,100,200) than when n2 was unbalanced (n1,n2,n3) =
(100,200,100). This was because sample sizes n1 and n3 of the subpopulation with extreme val-
ues of allele frequencies p1 and p3 had large effects on the PD measures.

3. Comparison of the sensitivity and specificity of four PD measures
We simulated additional data from the same sample-size condition ni as described above. p1
was generated under uniform distribution on [0, min(0.5,1-2d)]. In these simulations, d = 0 in-
dicates the null hypothesis, and other values of d indicate the alternative hypothesis. For a
given d and ni, we generated 100 datasets from the three binomial distributions under HWE.
We calculated the specificity (when d = 0) and the sensitivity (when d = 0.05,0.1,. . .,0.3) by
counting the true negatives and true positives and repeated this step 100 times to calculate the
average sensitivity and specificity.

The chi-square test and ANOVA F-test depended on total sample sizes, as indicated by the
specificities calculated under the null hypothesis (d = 0) for Scenario I (Fig. 3). When the total
sample sizes were small, the chi-square test and ANOVA F-test showed high specificities; how-
ever, the specificities fell to 92% as the sample size increased. This reflects a general characteris-
tic of test statistics, where the test statistic tends to reject the null hypothesis more when the
sample size increases. For Scenario II, all four measures yielded high specificities that were
close to one.

In general, the sensitivity increased for all measures as the sample size increased. Still,
NSCM consistently yielded the lowest sensitivity. The sensitivities of the chi-square test and
ANOVA F-test increased as the total sample size increased. When the sample size was small,
Fst had the highest sensitivity among the measures (Fig. 4A). When the sample size was moder-
ate or large, the chi-square test and the ANOVA F-test had the highest sensitivities (Fig. 4B,
4C). Note that Fst yielded sensitivity and specificity that were robust to sample size, while the
other measures did not. Fig. 5 shows the sensitivities from Scenario II. For the same d, specifici-
ties were lower when (n1,n2,n3) = (100,200,100) than other situations, similar to the result

Table 2. Examples of data sets.

p1 d

0.1 0.2 0.3

0 {0, 0.1, 0.2} {0, 0.2, 0.4} {0, 0.3, 0.6}

0.1 {0.1, 0.2, 0.3} {0.1, 0.3, 0.5} {0.1, 0.4, 0.7}

0.2 {0.2, 0.3, 0.4} {0.2, 0.4, 0.6} {0.2, 0.5, 0.8}

0.3 {0.3, 0.4, 0.5} {0.3, 0.5, 0.7} {0.3, 0.6, 0.9}

0.4 {0.4, 0.5, 0.6} {0.4, 0.6, 0.8} {0.4, 0.7, 1.0}

0.5 {0.5, 0.6, 0.7} {0.5, 0.7, 0.9} NA

doi:10.1371/journal.pone.0119994.t002
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shown in Fig. 2B. NCSM had the lowest sensitivity. The chi-square test and ANOVA F-test
had approximately equal sensitivities, while Fst had slightly lower sensitivities.

Based on the simulation results, we chose Fst for our study for the following reasons. First,
the chi-square test and the ANOVA F-test were not appropriate for our data because of their
dependence on sample size (Fig. 2A) and low specificity (Fig. 3); this would result in rejecting
SNPs without population differences at large sample sizes. NCSM yielded the lowest sensitivity
(Fig. 4). Therefore, we chose Fst for its high specificity and sensitivity robust to sample size.

4. GO analysis and pathway analysis: comparison of HD and LD gene
groups with all genes in DAVID
In order to biologically interpret the HD and LD gene groups, we performed a GO analysis and
pathway analysis. Eighteen terms were statistically significant when the HD gene group was an-
alyzed independently, and 48 terms were significant when the LD gene group was analyzed in-
dependently. The separate analyses had 25 significant terms in common. Table 3 shows
Benjamini-Hochberg’s q-values [22] and fold enrichments for GO terms and pathways that
were statistically significant in the analysis of the HD gene group only. Table 4 shows the re-
sults for the LD gene group. When the LD gene group was used as input for the analysis
(Table 4), DR terms in GO categories “drug metabolic process,” “drug metabolism,” and “me-
tabolism of xenobiotics by cytochrome P450” were significant. The term “drug binding” was

Fig 2. Boxplots representing four measures of simulation data with an increase in d. A. Variation of
distributions due to increase in sample sizes (Case I). B. Variation of distributions due to bias of sample sizes
(Case II). For both cases, the x-axis denotes the distance d, and the y-axis and denotes the following
measures: -log10 Pvalue for chi-square test and ANOVA F-test; Weir and Cockerham’s Fst estimates for Fst;
Sd2

i for NSCM.

doi:10.1371/journal.pone.0119994.g002
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the only significant DR term resulting from analysis of the HD gene group (Table 3). From
analysis of the HD gene group, several terms associated with cell communication had signifi-
cant p-values (0.0006, 0.0002, and 0.0142) and high fold enrichments. In particular, the terms,
“cell communication” and “cell-cell signaling” had the lowest p-values among the terms in
Table 3. However, in the LD gene group, only one significant term was related to cell commu-
nication (“regulation of cell communication”), which had a q-value (0.0273) and fold enrich-
ment (2.41).

Seventeen genes were associated with the three terms related to cell communication (“cell-
cell signaling,” “cell communication,” and “drug binding”). Among these 17 genes, we ex-
tracted five that contained SNPs with Fst values greater than 0.5: STX4, PPARD, DCK, GRIK4,
and DRD3 contained SNPs rs10871454, rs6922548, rs3775289, rs1954787, and rs167771 with
Fst values of 0.682, 0.620, 0.573, 0.531, and 0.510, respectively.

Syntaxin 4 (STX4) is a component of the SNARE complex, which mediates docking of cellu-
lar transport vesicles. In a GWAS, rs10871454 in STX4 accounted for over 25% of the variance
in log-transformed stabilized warfarin dose and was in perfect linkage disequilibrium with
rs9923231 [33].

PPARs are nuclear hormone receptors that bind peroxisome proliferators and control the
size and number of peroxisomes produced by cells. In particular, PPARδ is a receptor that
binds peroxisome proliferators such as hypo-lipidemic drugs and fatty acids [34]. The SNP

Fig 3. Specificities (%) of eachmeasure from simulation data under H0:d = 0 due to an increase in
sample size (Scenario I). The chi-square test and ANOVA F-test are similar, and Fst and SSd from NSCM
are nearly identical. Blue line: chi-square test; red line: Fst; black dotted line: ANOVA F-test; green dotted line:
SSd from NSCM.

doi:10.1371/journal.pone.0119994.g003
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rs6922548 in PPARδ is also associated with positive clinical response to docetaxel and thalido-
mide [35].

DCK is involved in the gemcitabine and lamivudine pathways [36,37]. It also participates in
the phosphorylation of cytosolic nucleosides by deoxycytidine kinase and pyrimidine salvage
reactions. Fukunaga et al. examined variants that were identified from a screen of 13 genes in
the gemcitabine metabolic pathway [38] and found that the C allele of SNP rs3775289 was not
present among Europeans or Africans in their study. However, in the International HapMap
Data, the allelic frequencies of the C allele are 0.929 in Europeans and 0.279 in Africans.

Paddock et al. implemented an association study based on the Sequenced Treatment Alter-
natives to Relieve Depression (STAR�D) cohort and found that rs1954787 in the GRIK4 gene,
which encodes the kainic acid-type glutamate receptor KA1, was associated with response to
the antidepressant citalopram [39]. Accordingly, they suggested that the glutamate system
plays an important role in modulating response to selective serotonin reuptake inhibitors
(SSRIs). In addition, Pickard et al. showed that variation in GRIK4 was significantly associated
with both an increased risk of schizophrenia and a decreased risk of bipolar disorder [40]. Fur-
thermore, the G variant of SNP rs167771 in DRD3 was associated with an increased risk of ex-
trapyramidal symptoms (EPS) in psychiatric patients receiving risperidone [41].

Fig 4. Sensitivities (%) of eachmeasure from simulation data under H0:d = 0.05,0.1. . .,0.3 due to an increase in sample size (Scenario I).
A. (n1,n2,n3) = (100,100,100). B. (n1,n2,n3) = (200,200,200). C. (n1,n2,n3) = (100,100,100). Blue line: chi-square test; red line: Fst; black dotted line: ANOVA
F-test; green dotted line: SSd from NSCM.

doi:10.1371/journal.pone.0119994.g004
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Several terms related to reproduction were identified in the analysis of the HD gene group,
but none were identified in the analysis of the LD gene group. For example, Table 3 reports the
terms “sex differentiation,” “development of primary sexual characteristics,” and “reproductive
developmental process.” Similarly, Wu and Zhang reported that reproduction-associated pro-
cesses (e.g., “sperm motility,” “spermatid development,” and “gamete generation”) had higher
levels of PD [1]. The criteria for HD genes in the present study were more robust than those for
genes with higher levels of PD used by Wu and Zhang. Nevertheless, Table 3 reports several

Fig 5. Sensitivities (%) of eachmeasure from simulation data under H0:d=0.05,0.1. . .,0.3 due to bias in sample size (Scenario II). A. (n1,n2,n3) =
(200,100,100). B. (n1,n2,n3) = (100,200,100). C. (n1,n2,n3) = (100,100,200). Blue line: chi-square test; red line: Fst; black dotted line: ANOVA F-test; green
dotted line: SSd from NSCM.

doi:10.1371/journal.pone.0119994.g005

Table 3. Q-values and fold enrichments of significant terms in HD group.

Terms FE BH’s q Terms FE BH’s q

BP: Behavioral response to nicotine 96.16 0.0201 BP: Secretion 5.24 0.0466

MF: Drug binding 16.51 0.0142 BP: Regulation of cell differentiation 4.56 0.0157

BP: Adult behavior 15.65 0.0075 BP: Cell Communication 4.53 0.0002

BP: Regulation of multicellular organism growth 14.71 0.0465 BP: Cell development 3.48 0.0464

CC: Dendrite 9.63 0.0027 BP: Regulation of developmental process 3.34 0.0276

BP: Sex differentiation 8.92 0.0210 BP: Neurological system process 3.15 0.0060

BP: Development of primary sexual characteristics 8.83 0.0468 BP: Anatomical structure morphogenesis 2.81 0.0197

BP: Reproductive developmental process 5.99 0.0307 BP: Cell differentiation 2.47 0.0214

BP: Cell-cell signaling 5.24 0.0006 BP: System development 2.21 0.0136

FE: Fold enrichment

BH’s q: Benjamini-Hochberg’s q-value

doi:10.1371/journal.pone.0119994.t003
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terms also identified by Wu and Zhang [1]. For example, terms related to the nervous system
(“dendrite” and “neurological system process”), development (“anatomical structure morpho-
genesis,” “regulation of developmental process,” “system development,” and “cell develop-
ment”), stress response, homeostasis, growth (“regulation of multicellular organism growth”),
secretion (“secretion”), and metabolism had high levels of PD.

The term “behavioral response to nicotine” had the highest fold enrichment of 96.16
(Table 3). This was likely due to the large number of nicotine-related SNPs in our dataset. Spe-
cifically, 97 of 654 SNPs were associated with nicotine according to the annotation provided by
PharmGKB. The term “adult behavior,” which had a high fold enrichment (15.65) and low p-
value (0.0075), is an ancestor term of “behavioral response to nicotine.”

Table 4. Q-values and fold enrichments of significant terms in LD group.

Terms FE BH’s
q

Terms FE BH’s q

BP: Negative Regulation Of Amine Transport 58.70 0.0170 BP: Regulation Of Response To Stress 5.71 0.0017

*BP: Drug Metabolic Process 48.92 0.0003 BP: Positive Regulation Of Transport 5.62 0.0103

BP: Negative Regulation Of Glucose Transport 46.96 0.0253 CC: Membrane fraction 5.33 4.4E-
12

BP: Negative Regulation Of Organic Acid Transport 46.96 0.0253 CC: Insoluble fraction 5.31 3.0E-
12

BP: Multicellular Organismal Water Homeostasis 42.69 0.0281 BP: Heterocycle Metabolic Process 5.16 0.0017

BP: Body Fluid Secretion 28.99 0.0011 BP: Positive Regulation Of Multicellular Organismal
Process

5.13 0.0144

BP: Negative Regulation Of Ion Transport 27.23 0.0082 BP: Regulation Of Anatomical Structure Morphogenesis 5.00 0.0329

MF: Oxygen Binding 26.82 0.0000 BP: Cellular Chemical Homeostasis 4.94 0.0011

BP: Renal System Process 22.36 0.0126 CC: Cell projection part 4.91 0.0173

CC: Presynaptic membrane 19.81 0.0167 CC: Microsome 4.85 0.0173

BP: Regulation Of Tube Size 17.72 0.0012 CC: Vesicular fraction 4.71 0.0190

KEGG: Linoleic acid metabolism 14.24 0.0306 KEGG: Calcium signaling pathway 4.53 0.0217

*KEGG: Drug metabolism: other enzymes 13.91 0.0024 CC: Cell fraction 4.51 3.1E-
12

KEGG: Arachidonic acid metabolism 12.46 0.0013 BP: Anatomical Structure Formation Involved In
Morphogenesis

4.00 0.0257

MF: Tetrapyrrole Binding 11.49 0.0000 BP: Transmembrane Transport 3.85 0.0018

KEGG: Retinol metabolism 11.08 0.0048 MF: Oxidoreductase Activity 3.83 0.0002

*KEGG: Metabolism of xenobiotics by cytochrome P450 9.97 0.0060 BP: Regulation Of Response To Stimulus 3.70 0.0124

*KEGG: Drug metabolism: cytochrome p450 9.65 0.0056 BP: Ion Transport 3.67 0.0005

BP: Negative Regulation Of Multicellular Organismal
Process

8.59 0.0006 BP: Positive Regulation Of Molecular Function 3.47 0.0065

BP: Negative Regulation Of Transport 8.12 0.0051 BP: Homeostatic Process 3.13 0.0055

BP: Regulation Of Response To External Stimulus 7.88 0.0019 BP: Regulation Of Multicellular Organismal Process 3.01 0.0018

BP: Regulation Of Body Fluid Levels 6.66 0.0281 BP: Regulation Of Catalytic Activity 2.78 0.0133

BP: Muscle System Process 6.52 0.0128 CC: Endomembrane system 2.75 0.0169

BP: Angiogenesis 6.35 0.0317 BP: Regulation Of Cell Communication 2.41 0.0273

FE: Fold enrichment

BH’s q: Benjamini-Hochberg’s q-value

doi:10.1371/journal.pone.0119994.t004
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Two terms were associated with differentiation in Table 3. “Regulation of cell differentia-
tion” and “cell differentiation” showed fold enrichments of 4.56 and 2.47 and q-values of
0.0157 and 0.0214, respectively.

5. GO analysis and pathway analysis: comparison to DR genes
We performed GO analysis and pathway analysis in order to biologically interpret the relation-
ship between the HD gene group and DR genes. The results are summarized as q-values using
Benjamini-Hochberg’s method [41] and fold enrichments of the GO terms and pathways. A
Benjamini-Hochberg’s q-value less than 0.05 indicates that the HD group contained signifi-
cantly more genes in the term as compared to randomly selected DR genes.

Table 5 shows the results from the GO analysis and pathway analysis comparing the HD
gene group and DR genes. The resulting terms included those related to reproduction that
were included in Table 3: “sex differentiation,” “development of primary sexual characteris-
tics,” “reproductive structure development,” “gonad development,” and “development of pri-
mary sexual characteristics.”

Since Wu and Zhang [1] did not conduct a pathway analysis, the “Wnt signaling pathway”
was not directly identified. However, their GO analysis identified the term “Wnt receptor sig-
naling pathway through beta-catenin” as statistically significant in the HD gene group [1]. The
Wnt signaling pathway is important in pharmacogenetics, because it is strongly associated
with cancer [42,43]. Further studies are warranted to identify drugs that inhibit the Wnt signal-
ing pathway, because inhibition of aberrant Wnt signaling in cancer cell lines inhibits their
growth [44].

Discussion
PD is important for understanding differences in drug responses among populations. However,
PD often refers to the distance between two different subpopulations; therefore, several studies
have investigated approaches for averaging the PD of each SNP. For instance, the impact of
SNP ascertainment on estimating the distance between subpopulations has already been re-
ported [45]. In contrast, the present study identified population-specific pharmacogenomics
variants. We did not focus on identifying average distances using all SNPs; rather, we used
each SNP to identify population-specific pharmacogenomics variants. As a result, our results
described the impact of sample ascertainment on different measures of PD for each SNP. In ad-
dition, the present study investigated PD of genes in the PharmGKB database, while several
previous studies have focused on genes related to individual drugs [5]. This approach enabled

Table 5. Q-values and fold enrichments of hypergeometric test between HD group and drug-related (DR) genes.

Terms HD vs. others DR vs. others HD vs DR

FE BH’s q FE BH’s q FE BH’s q

BP: Sex Differentiation 8.92 0.0210 2.52 0.2015 3.54 0.0158

BP: Development Of Primary Sexual Characteristics 8.83 0.0468 2.57 0.2558 3.44 0.0283

BP: Reproductive structure development 8.90 0.0504 2.58 0.2531 3.44 0.0283

BP: Gonad development 9.74 0.1139 2.81 0.3622 3.47 0.0527

BP: Development Of Primary Sexual Characteristics 8.83 0.0468 2.57 0.2558 3.47 0.0527

KEGG: Wnt signaling pathway 3.45 0.6823 1.32 0.8715 2.62 0.0556

FE: Fold enrichment

BH’s q: Benjamini-Hochberg’s q-value

doi:10.1371/journal.pone.0119994.t005
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us to more systematically study PD of DR genes by considering all reported DR genes from
PharmGKB.

In our comparison study, Fst showed high specificity and sensitivity robust to the different
sample sizes of HapMap release 27. After calculating Fst from the allele frequency data of each
SNP, we defined HD and LD gene groups. Then, we performed GO analysis and pathway anal-
ysis to describe the biological characteristics of the HD gene group. We compared the HD gene
group to two different backgrounds: all genes in DAVID and DR genes in the
PharmGKB database.

The GO and pathway analyses identified two terms related to cell communication (“cell-cell
signaling” and “cell communication”), which had the lowest p-values (0.0006 and 0.0002, re-
spectively). In addition, the term “drug binding,” which was related to cell communication,
was also considered to be meaningful due to its high fold enrichment (16.51) despite its moder-
ate p-value (0.0142). Thus, these results suggest that the HD gene group from PharmGKB is
highly associated with cell communication. Since drug binding is associated with the cell mem-
brane, similar to processes related to both cell-cell signaling and cell communication, the si-
multaneous identification of these GO terms is convincing. In addition, this finding suggests
that the cellular location of gene products affects PD. It is possible that, the outer surface of the
cell membrane is initially affected by mutagens, because it is closest to the
extracellular environment.

In addition, we examined genes containing SNPs with high Fst values (above 0.5) among
cell-communication-related terms, such as STX4, PPARD, DCK, GRIK4, and DRD3. Specifical-
ly, SNPs rs10871454, rs6922548, rs3775289, rs1954787, and rs167771 had Fst values of 0.682,
0.620, 0.573, 0.531, and 0.510, respectively. Further biological studies of these genes will help
elucidate their roles in pharmacogenetics.

Unlike other GO analyses, we employed DR genes from PharmGKB and performed an ad-
ditional analysis by using them as a background for the GO analysis. This strategy of changing
the background of the GO analysis from all genes to DR genes represents a novel method.
Therefore, our approach has the advantage of providing distinct information about genes of in-
terest by altering the background of analysis.

There are several similarities and differences between the PD study of Wu and Zhang [1]
and the present study. Both studies determined PD using Fst and investigated characteristics of
genes with a high level of differentiation by GO analysis. Thus, the studies identified several
similar terms such as those related to replication, development, and metabolism. In addition to
the HD gene group, our study performed GO analysis of the LD gene group and compared the
results, which identified distinct characteristics of each group. We also conducted GO and
pathway analyses comparing the HD gene group to DR genes and identified two meaningful
terms, “drug binding” and “Wnt signaling pathway,” which were not identified by Wu and
Zhang.

In conclusion, the present study describes an approach for assessing PD associated with
multiple drugs using a database. Therefore, the integrated approach may identify valid genetic
features different from the background gene list. We validated results from other systematic
analyses. Moreover, our approach allows the possibility of improving the results. DR genes that
are unknown or newly reported were not included in the present study. Thus, our approach
may be limited in its ability to interpret the population-specific difference in drug response or
efficacy caused by genetic divergence. However, this method remains convincing, because our
statistical analyses revealed high specificity and sensitivity robust to sample size. Furthermore,
we obtained significant differences from other DR genes in the PharmGKB database, and our
approach thus represents a systematic method for identifying valid population-specific
pharmacogenomics variants.
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