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Aging is a major risk factor for metabolic impairment that may lead to age-related diseases such as car-
diovascular disease. Different mechanisms that may explain the interplay between aging and lipopro-
teins, and between aging and low-molecular-weight metabolites (LMWMs), in the metabolic
dysregulation associated with age-related diseases have been described separately. Here, we statistically
evaluated the possible mediation effects of LMWMs on the relationships between chronological age and
lipoprotein concentrations in healthy men ranging from 19 to 75 years of age. Relative and absolute con-
centrations of LMWMs and lipoproteins, respectively, were assessed by nuclear magnetic resonance
(NMR) spectroscopy. Multivariate linear regression and mediation analysis were conducted to explore
the associations between age, lipoproteins and LMWMs. The statistical significance of the identified
mediation effects was evaluated using the bootstrapping technique, and the identified mediation effects
were validated on a publicly available dataset. Chronological age was statistically associated with five
lipoprotein classes and subclasses. The mediation analysis showed that serine mediated 24.1% (95% CI:
22.9 – 24.7) of the effect of age on LDL-P, and glutamate mediated 17.9% (95% CI: 17.6 – 18.5) of the effect
of age on large LDL-P. In the publicly available data, glutamate mediated the relationship between age
and an NMR-derived surrogate of cholesterol. Our results suggest that the age-related increase in LDL
particles may be mediated by a decrease in the nonessential amino acid glutamate. Future studies may
contribute to a better understanding of the potential biological role of glutamate and LDL particles in
aging mechanisms and age-related diseases.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Aging is a major nonmodifiable risk factor for chronic diseases
such as type 2 diabetes mellitus and cardiovascular disease [1].
Indeed, an array of physiological processes and signaling pathways
have been associated with aging, with metabolic dysregulation
being one of its seven key hallmarks [2,3]. From our point of view,
the integration of data containing the concentration of different
molecular species (e.g., amino acids, lipids or lipoproteins) from a
single sample and experiment, will result in a greater coverage of
the metabolome, thus facilitating the study of their interconnec-
tion in aging and disease progression as it has been evidenced pre-
viously. For example, different mechanisms that may explain the
interplay between amino acids and lipids in the onset of insulin
resistance and metabolic diseases have been described. One exam-
ple is a model described by Newgard et al. showing that an accu-
mulation of branched-chain amino acids may lead to an increase
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in the circulating levels of certain lipid species in humans with
insulin resistance [4]. Therefore, understanding the metabolic
alterations (and their interrelationships) that occur in living organ-
isms and that have a central role in the mechanistic contribution to
both lifespan and disease course in humans is of paramount
importance.

Current approaches to better understand the metabolic alter-
ations linked to aging include the search for statistical associations
between chronological age and metabolome profiles provided by
high-throughput metabolomic technologies [3,5]. Along this line,
mass spectrometry (MS)-based platforms allow for the profiling
of a large number of metabolites including amino acids and lipid
species, the so-called low-molecular-weight metabolite (LMWM)
window [6]. For example, Wang et al. investigated age-specific sta-
tistical associations in a set of blood plasma metabolites obtained
by electrospray ionization tandem MS [7]. On the other hand,
nuclear magnetic resonance (NMR) spectroscopy allows for the
simultaneous profiling of lipoprotein classes and subclasses, the
so-called LIPO window, in addition to the profiling of a smaller
set of LMWMs (smaller compared to MS-based platforms) [8]. In
this case, the seminal work by Freedman et al. is a comprehensive
study on the effects of age and sex on NMR-based advanced
lipoprotein profiles. In their study, the authors investigated the sta-
tistical relationship between chronological age and lipoprotein
concentrations as determined by NMR spectroscopy [9]. Of note,
most of the studies reported to date that have investigated the
effect of chronological age on metabolome profiles have used
MS-based platforms for the metabolic profiling of blood samples
(i.e., they have used the LMWM window as the phenotype of
choice) [7,10–14] whereas NMR-based studies have only evaluated
the effect of age on lipoprotein profiles (i.e., they have used the
LIPO window as the phenotype of choice) [9]. Indeed, we have
found few studies investigating the metabolic correlates of aging
that included both MS- and NMR-based profiles [13,15].

Overall, these and other studies highlight the potential of meta-
bolic profiling for the study of the associations between aging,
metabolism, and disease. However, studies evaluating the effect
of age on MS-based metabolic profiles have not explored more
complex statistical relationships such as those involving mediation
effects (e.g., they have not explored whether the statistical rela-
tionships between age and lipid species are statistically mediated
by amino acids). In our opinion, the examination of the statistical
mediation between age and metabolome profiles could contribute
to furthering our biological understanding of aging, metabolism,
and disease. For this purpose, we aimed to expand the existing lit-
erature by examining the mediation effects in the statistical anal-
yses evaluating the effect of age on metabolome profiles.
Specifically, we investigated whether statistical mediation of the
relationship between lipoproteins and age by LMWMs in the
absence of any pathological condition existed. To this end, both
lipoprotein and metabolic profiles were assessed by NMR spec-
troscopy in healthy men ranging from 19 to 75 years, and a pub-
licly available dataset was used for validation purposes. The
identified mediation effects may be further investigated in future
studies to establish whether they are associated with aging mech-
anisms and disease conditions.
2. Materials and methods

2.1. Subjects

Subjects were recruited in Clermont-Ferrand, France (n = 77)
and Reus, Spain (n = 96) as part of a European Commission-
funded research and technology development project [16]. The
methodology was standardized between recruitment centers. A
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physician conducted personal interviews with the potential partic-
ipants to gather information on anthropometric data, personal his-
tory, lifestyle, medication use, physical activity, smoking habits,
and use of dietary supplements containing vitamins or trace ele-
ments. The exclusion criteria were strict and included familial
hypercholesterolemia, chronic diseases (including diabetes; can-
cer; cardiac insufficiency; neurological diseases; inflammatory dis-
eases and chronic diseases of the liver, lung, or thyroid; unstable
hypertension; dementia; and infectious diseases known to affect
the immune system such as human immunodeficiency virus and
hepatitis C), vaccination during the previous 2 months, alcohol
abuse or drug addiction, competitive sports activities, and the con-
sumption of special diets or dietary supplements in the previous
3 months. The ethics committee of the two recruiting centers
approved the study protocol, and written informed consent was
obtained from all volunteers.

2.2. Blood sample collection and biochemical analyses

Fasting venous blood samples were collected in EDTA tubes and
centrifuged immediately for 15 min at 4 �C at 1,500 g. The plasma
samples were then kept at �80 �C until further analysis. Biochem-
ical parameters such as glucose, triglycerides, total cholesterol, LDL
cholesterol (calculated by the Friedewald formula), and HDL
cholesterol were measured using colorimetric and enzymatic
assays (Spinreact, SA, Spain; Wako Chemicals GmbH, Germany;
Polymedco, NY, US; CV < 4%) that were adapted to a Cobas Mira
Plus Autoanalyzer (Roche Diagnostics, Spain). The standard lipid
profile was analyzed according to Spintrol ‘‘H” CAL (Spinreact, SA,
Spain) GC–MS reference methods. Spintrol ‘‘H” Normal (Spinreact,
SA, Spain) was used as a quality control.

2.3. NMR-based metabolomics

1H NMR spectroscopy. A total of 430 ml of plasma samples was
transferred to a 5-mm NMR tube. A double tube system was used.
The external reference tube (O.D. 2 mm, supported by a Teflon
adapter) containing the reference substance (9.9 mmol/l sodium
3-trimethylsilyl[2,2,3,3-d4]propionate (TSP) and 0.47 mmol/l
MnSO4 in 99.9\% D2O) was placed coaxially into the NMR sample
tube (O.D. 5 mm). This double tube system was kept at 4 �C in
the sample changer until the moment of analysis. 1H NMR spectra
were recorded at 37 �C on a Bruker Avance III 600 spectrometer
operating at a proton frequency of 600.20 MHz (14.1 T). The
Carr-Purcell-Meiboom-Gill (CPMG) sequence was used to attenu-
ate the signals from the macromolecules. A spin-echo of 100 ms
was used. The acquisition time was approximately 8 min per sam-
ple. The NMR spectra were phase- and baseline-corrected using
TOPSPIN and then imported into MATLAB using in-house scripts.
The imported NMR spectra were referenced to the alanine doublet
at 1.465 ppm.

NMR feature extraction. To reduce the dimensionality of (and the
redundancy in) the data, we applied a feature extraction approach
(peak picking) implemented in the Focus software [17]. To run
Focus, the entire NMR spectrum was divided into two main win-
dows: 8.5–5.15 and 4.671–0.8 ppm. We defined a peak intensity
threshold to be 6 times the standard deviation of the noise, a fre-
quency subsample of 2 data points, and a window length of
0.1 ppm. Finally, we defined the noise level threshold as 4 times
the average standard deviation (SD) from the noisy region between
11 and 10 ppm and kept the selected peaks with a peak intensity
above this threshold as metabolomic features for every selected
peak. The resulting metabolomic features were represented by a
1H chemical shift in ppm units, which were used in the subsequent
regression analyses. Statistically significant features (see the statis-
tical analyses section) were manually annotated using existing lit-



Fig. 1. A) Direct effect model between predictor X and outcomes Y and B)
mediation model of the relationship between predictor X and outcome Y by
mediator M. a, b, c, and c’ represent the different effects (regression coefficients).
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erature and databases [18–20] as well as correlation analysis (Sup-
plementary Figs. S4-S5).

2.4. NMR-based lipoprotein profiling

Lipoprotein particle sizes and concentrations were obtained by
NMR spectroscopy by means of the LP2 software (Liposcience,
USA). This software simultaneously quantifies subclasses of
lipoproteins, lipid content, and average particle size [21]. This tech-
nique allows for the determination of the average sizes and particle
concentrations of VLDL, LDL, and HDL and the particle concentra-
tions for ten subclasses: three subclasses for VLDL, four subclasses
for LDL, and three subclasses for HDL.

2.5. Validation dataset

To validate possible mediation effects from the previously
described dataset, we made use of a publicly available dataset from
a multi-site, cross-sectional study, including subjects with age-
related macular degeneration (early, intermediate and late disease)
and a control group of subjects without any macular diseases [22].
Briefly, this dataset consisted of 396 1H NMR CPMG and diffusion-
based spectra of plasma samples obtained from 253 female and
143 male subjects. Only data from the male group were included
in our validation step. For each individual, age, smoking status,
body mass index, disease status and city of origin (Boston or Coim-
bra) were also available. This data is available at the NIH Common
Fund’s National Metabolomics Data Repository (NMDR) website,
the Metabolomics Workbench, https://www.metabolomicswork-
bench.org where it has been assigned Project ID ST000590. The
data can be accessed directly via it’s Project https://doi.org/10.
21228/M8BK5R. This work is supported by NIH grant U2C-
DK119886.

2.6. Statistical analyses

General data processing procedures. Except when otherwise sta-
ted, all data are presented as the mean ± SD for continuous vari-
ables. Samples with missing values for clinical traits were
discarded. The normal distribution of clinical traits was assessed
using the Lilliefors test. All continuous traits passed the test, except
for triglyceride levels, which only passed after its log
transformation.

Characteristics of the sample set and covariate analysis. Differ-
ences in the mean values of clinical and biochemical variables
between the two countries were assessed using Student’s t-test.
Covariate analysis was performed using univariate and forward
stepwise multiple linear regression analyses to evaluate the associ-
ation between potential confounders (BMI and SBP) and age, meta-
bolomic features and lipoprotein parameters.

NMR-specific data scaling and transformation. For the metabolo-
mic data, values <= 0 were set to NaN (not-a-number), which were
ignored. Additionally, metabolomic features were log transformed,
normalized (Z-score row-wise) and standardized (Z-score column-
wise). The Z-score transformation of all metabolomic features per
individual is comparable to common biological normalizations
(e.g., normalization by total metabolite content). Additionally, we
applied the Z-score transformation for all metabolomic features
individually to yield comparable effect sizes. For lipoproteins, out-
liers (>= 4 SD from the mean) were removed.

Correction for multiple testing. To note, because a metabolite can
give rise to multiple peaks in an NMR spectrum, we computed the
effective number of independent components, that is, the number
of principal components that explain 95% of the data, as a surro-
gate of the number of LMWMs included in this dataset. Thus, we
corrected the significance level a for multiple testing using the
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Bonferroni correction when associating age with metabolomic fea-
tures, i.e., we divided the nominal significance level (a = 0.05) by
the number of independent components in the NMR-based meta-
bolomic dataset and followed this same approach when associat-
ing age with lipoprotein concentrations (see the Results section
‘‘3.2. Effect of age on lipoprotein profiles and metabolomic
features”).

Statistical mediation analysis. Here, we aimed to identify
whether statistically significant associations between age and
lipoprotein concentrations (Fig. 1A) could be statistically mediated
by metabolomic features (Fig. 1B), i.e., that metabolomic features
could be in the causal path between aging and lipoprotein levels.
Notably, in order for statistical mediation to occur, the predictor
of interest (age) has to predict the mediator (metabolomic fea-
tures). Thus, we first determined the effect of age on metabolomic
features and lipoprotein profiles. Forward stepwise multiple linear
regression analyses were performed to determine the contribu-
tions of age, BMI, and SBP (explanatory variables) to the variability
in metabolomic features and lipoprotein parameters (outcome
variables) separately. Next, we also explored the correlations
between metabolomic and lipoprotein profiles using Pearson cor-
relation analysis. Finally, we investigated the statistical mediation
of the relationship between age and lipoprotein concentrations by
metabolomic features. To this end, we built statistical models that
included age and metabolomic features as predictors and lipopro-
tein concentrations as outcomes (Fig. 1B). We hypothesized that
the addition of age- and lipoprotein-related metabolomic features
to the multipredictor models showing statistically significant asso-
ciations between age and lipoprotein concentrations would atten-
uate the estimated coefficient for age, i.e., a mediation effect was
present. We used the bootstrapping technique to test the statistical
significance of the identified mediation effects. Specifically, using
the original dataset of 173 individuals, we created a bootstrap sam-
ple of 173 individuals by random sampling with replacement 1000
times. Then, we calculated the sample standard error of the indi-
rect or mediated effect a*b and the corresponding 95% confidence
intervals (CIs).

MATLAB (MathWorks) R2018b Update 7 (9.5.0.1298439) was
used for all statistical analyses.
3. Results

3.1. Study subjects and covariate analysis

Characteristics of the sample set. The sample set comprised 173
healthy, nonsmoking males (0 cigarettes/day for > 6 months) that
were aged 19–75 years with all ages being proportionally repre-
sented (Fig. 2) and free of any chronic disease or condition known
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Fig. 2. Study subjects were recruited to represent all ages proportional to the
general population.

R. Mallol, Joan Carles Vallvé, R. Solà et al. Computational and Structural Biotechnology Journal 19 (2021) 6169–6178
to alter the concentrations of circulating LMWMs and lipoproteins.
Although there were statistically significant differences in systolic
blood pressure (SBP) and glucose levels between the two countries,
there were no significant differences in mean age or plasma choles-
terol or triglyceride levels (Table 1). Hence, the data from all sub-
jects were pooled for the statistical analyses.

Covariate analysis. First, we identified the potential confounders
of the relationship between age and metabolome profiles (metabo-
lomic features and lipoprotein concentrations) using univariate
regression analysis (Table 2). In the univariate analyses, body mass
index (BMI) was statistically associated with 39.3% of the metabo-
lomic features, with 76.5% of the lipoprotein parameters, and with
age (p-value = 0.024 for the latter). SBP was statistically associated
with 18.5% of the metabolomic features and with age (p-
value < 0.001 for the latter). In the stepwise regression analyses,
the percentage of metabolomic features associated with BMI and
SBP dropped to<10%, and none of the lipoprotein parameters
remained associated with SBP or glucose. Notably, glucose levels
were statistically associated with 25.4% of the metabolomic fea-
tures in the stepwise regression analysis. However, the NMR spec-
trum of serum or plasma samples contains several NMR signals
arising from the glucose molecules present in the sample, making
it difficult to evaluate the impact of glucose signals on these asso-
ciations. Therefore, we decided to not use glucose as a covariate in
subsequent analyses and checked whether glucose levels were
associated with our LMWMs of interest a posteriori (see the para-
graph ‘‘Relationship between age and metabolomic features” in the
following section). Additionally, we only considered BMI and SBP
as potential confounders in subsequent analyses, and they were
only included in those models involving the metabolomic features
Table 1
Characteristics of the study sample set.

All (n = 173)

Age, years
Mean (SD) 45.82 ± 15.61

Range 19–75
Body mass index, kg/m2 24.78 ± 2.64
Systolic blood pressure, mm Hg 129.19 ± 12.66
Diastolic blood pressure, mm Hg 78.68 ± 8.53
Glucose, mmol/L 5.02 ± 0.66
Triglycerides, mmol/L 1.06 ± 0.52
Total cholesterol, mmol/L 4.82 ± 0.88
LDL cholesterol, mmol/L 2.69 ± 0.72
HDL cholesterol, mmol/L 1.29 ± 0.3
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or lipoprotein parameters for which they showed a statistical asso-
ciation in the aforementioned stepwise regression analysis.
3.2. Effect of age on lipoprotein profiles and metabolomic features

Relationship between age lipoprotein concentrations. For lipopro-
teins, age was nominally associated (p-value < 0.05) with 7
lipoprotein parameters, including BMI and SBP as potential covari-
ates, in the stepwise regression models (Table 3). In this case,
because the different lipoprotein parameters can also be corre-
lated, we also computed the number of independent lipoprotein
parameters. We found that this number was 7. After correcting
the significance level for multiple testing (a = 0.05/7, see the statis-
tical analyses paragraph ‘‘Correction for multiple testing”), age
remained statistically associated with 5 lipoprotein parameters,
namely, small VLDL-P (p-value = 0.0004), LDL-P (p-
value = 0.0062), large LDL-P (p-value = 0.0022), total HDL-P (p-
value = 0.0006), and small HDL-P (p-value = 0.0007). Notably, age
was positively associated with all lipoprotein parameters. Addi-
tionally, not all the models finally incorporated BMI as a covariate
when associating age and the different lipoprotein parameters.
Finally, SBP was not included in any of the stepwise regression
models, as expected from the previous covariate analyses (Table 2).

Relationships between age and metabolomic features. The raw
NMR spectral data comprised 64 K spectral data points within a
spectral window from 15 to �5 ppm. Once the original dataset
was reduced by means of Focus, the resulting dataset included
173 metabolomic features (i.e., variables) representing the signal
intensities of NMR visible metabolites. We ran stepwise regression
analyses to consider BMI and SBP as potential confounders when
associating age with these metabolomic features. In total, age
was nominally associated (p-value < 0.05) with 27 metabolomic
features (Supplementary Table S1). After correcting the signifi-
cance level for multiple testing (a = 0.05/31, see the statistical
analyses paragraph ‘‘Correction for multiple testing”), age remained
statistically associated with 9 metabolomic features (Table 4 and
Supplementary Figs. S1-S3), which were manually annotated to
known LMWMs using existing literature and databases and
cross-correlation analysis (Supplementary Figs. S4-S5). Among
these features, the metabolomic features at 2.04, 1.05, and
0.993 ppm were considered to be independent and were annotated
as glutamate, isobutyrate, and isoleucine, respectively. To note, the
signal at 2.324 ppm was nominally associated with age, and it also
showed a statistically significant correlation with the signal at
2.04 ppm (Supplementary Figs. S4-S5), suggesting that they arise
from the same molecule (i.e., glutamate). Additionally, the signals
at 3.977 and 3.949 ppm were assigned to serine, and the signals
at 1.026, 1.015, 0.975, and 0.963 ppm were assigned to valine.
Thus, after averaging the two latter sets of signals to yield average
measures for serine and valine, respectively, the final set of age-
related LMWMs that passed the Bonferroni threshold was reduced
France (n = 77) Spain (n = 96) p-value

45.19 ± 15.23 46.31 ± 15.97 0.641
20–74 19–75

24.33 ± 2.63 25.14 ± 2.62 0.044
135.34 ± 13.73 124.26 ± 9.18 <0.001
79.62 ± 9.25 77.92 ± 7.88 0.192
4.66 ± 0.57 5.30 ± 0.58 <0.001
0.98 ± 0.54 1.13 ± 0.48 0.052
4.92 ± 0.97 4.75 ± 0.79 0.194
2.75 ± 0.82 2.64 ± 0.62 0.329
1.32 ± 0.3 1.27 ± 0.31 0.222



Table 2
Percentage (%) of metabolomic features and lipoprotein parameters statistically associated (p-value < 0.05) with different potential confounders using univariate and multivariate
(stepwise) approaches.

Molecular window Model BMI SBP Glucose

LMWM Univariate 39.3 18.5 38.2
Stepwise 5.8 6.9 25.4

LIPO Univariate 76.5 0 47.1
Stepwise 41.2 0 0

BMI, body mass index; SBP, systolic blood pressure.

Table 3
Association statistics between age and all lipoprotein parameters. Significant associations (p-value < 0.05/7) are highlighted in bold.

Lipoprotein parameter Covariates b SE p-value

VLDL-P BMI 0.203 0.127 0.1123
Large VLDL-P BMI �0.004 0.003 0.1887
Medium VLDL-P BMI �0.001 0.002 0.5394
Small VLDL-P – 0.273 0.075 0.0004
LDL-P BMI 0.002 0.001 0.0062
IDL-P BMI 0.002 0.002 0.4028
Large LDL-P BMI 0.003 0.001 0.0022
Small LDL-P BMI 0 0.001 0.9436
Medium-small LDL-P BMI 0 0.001 0.8042
Very-small LDL-P BMI 0 0.002 0.9352
HDL-P – 0.071 0.02 0.0006
Large HDL-P BMI 0.02 0.014 0.1712
Medium HDL-P BMI �0.002 0.003 0.3903
Small HDL-P – 0.074 0.021 0.0007
VLDL Size BMI 0 0 0.1976
LDL Size BMI 0.006 0.003 0.0867
HDL Size BMI 0 0 0.0327

b: regression coefficient; SE: standard error; BMI: body mass index; VLDL: very low-density lipoproteins; LDL: low-density lipoproteins; HDL: high-density lipoproteins.

Table 4
List of significant associations (p-value < 0.05/31) between age and metabolomic features, including the annotated LMWMs and the covariates that were kept in the final
regression model.

Metabolomic feature (ppm) Annotated LMWM Covariates b SE p-value

3.977 Serine BMI �0.018 0.005 0.0002
3.949 Serine BMI, SBP �0.018 0.005 0.0003
2.047 Glutamate SBP �0.017 0.005 0.0011
1.057 Isobutyrate SBP 0.016 0.005 0.0012
1.026 Valine BMI �0.018 0.005 0.0001
1.015 Valine BMI �0.019 0.005 0.0001
0.993 Isoleucine BMI �0.018 0.005 0.0002
0.975 Valine BMI �0.017 0.005 0.0003
0.963 Valine BMI �0.018 0.005 0.0001

LMWM: low molecular weight metabolite; b: regression coefficient; SE: standard error; BMI: body mass index; SBP: systolic blood pressure.
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to 5 variables (Table 4). All LMWMs, but isobutyrate, were nega-
tively associated with age. Importantly, glucose levels were not
statistically associated with serine or glutamate levels and were
only nominally (0.05/31 < p-value < 0.05) associated with valine
and isoleucine levels in the initial univariate analyses.
3.3. Statistical mediation analysis

Correlation analysis between LMWMs and lipoprotein profiles.
Before evaluating the possible statistical mediation effects, we
evaluated the existence of correlations between the identified
age-related metabolome profiles. We found eight pairwise correla-
tions among LMWM levels and lipoprotein concentrations that
were associated with age in the previous step (Table 5). Serine
was correlated with LDL-P (r = -0.30, p-value < 0.001), glutamate
was associated with large LDL-P (r = -0.19, p-value = 0.014), valine
was associated with large LDL-P (r = -0.27, p-value < 0.001) and
with HDL-P (r = -0.20, p-value = 0.008), isoleucine was associated
with HDL-P (r = -0.16, p-value = 0.032) and with large LDL-P
6173
(r = -0.29, p-value < 0.001), and isobutyrate was associated with
LDL-P (r = 0.17, p-value = 0.022). All the associations maintained
the same association trends after adjustment for BMI (data not
shown).

Statistical mediation analysis. Subsequently, we examined to
what extent LMWMs explained the associations between age and
lipoprotein profiles (Fig. 3). Although the association between
age and LDL-P was attenuated (b = 0.0013, SE = 0.0006) after the
inclusion of serine (and BMI) in the model, the associations
between age and serine levels with LDL-P remained statistically
significant (p-values of 0.0425 and 0.0301, respectively) (Fig. 3A-
B). In addition, the inclusion of glutamate (together with SBP and
BMI) in the model studying the relationship between age and large
LDL-P also attenuated this latter association (b = 0.0027,
SE = 0.0012), and age and glutamate were still statistically associ-
ated with large LDL-P (p-values of 0.0264 and 0.0268, respectively)
(Fig. 3C-D). These two mediation effects were statistically signifi-
cant as tested using the bootstrapping technique. Briefly, the esti-
mated mediation effect (a*b) of the relationship between age and



Table 5
Correlation analysis between age-related LMWMs and lipoprotein profiles. p-values are shown in parentheses. Nominally significant correlations (p-value < 0.05) are highlighted.

Small VLDL-P LDL-P Large LDL-P HDL-P Small HDL-P

Serine �0.12 (0.125) �0.30 (<0.001) 0.12 (0.111) �0.14 (0.068) �0.15 (0.046)
Glutamate 0.05 (0.497) 0.12 (0.110) �0.19 (0.014) �0.02 (0.828) �0.06 (0.414)
Valine �0.07 (0.392) 0.01 (0.851) �0.27 (<0.001) �0.2 (0.008) 0.03 (0.734)
Isoleucine �0.12 (0.105) 0.0 (0.959) �0.29 (<0.001) �0.16 (0.032) 0.01 (0.904)
Isobutyrate 0.05 (0.552) 0.17 (0.022) �0.06 (0.443) 0.0 (0.950) 0.03 (0.664)

Fig. 3. Mediation analysis of A-B) the relationship between age and LDL-P by serine and C-D) the relationship between age and large LDL-P by glutamate. a, c and c’ represent
the effects (regression coefficient) of age on the corresponding LMWM or lipoprotein parameter, and b represents the effect (regression coefficient) of a particular LMWM on
the corresponding lipoprotein parameter. The covariates have been omitted for visualization purposes.
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LDL-P by serine was 4.06x10-4 (95% CI: 3.93x10-4 – 4.19x10-4). The
estimated mediation effect of the relationship between age and
large LDL-P was 5.92x10-4 (95% CI: 5.77x10-4 – 6.07x10-4). Propor-
tionally, serine mediated 24.1% (95% CI: 22.9 – 24.7) of the effect of
age on LDL-P, and glutamate mediated 17.9% (95% CI: 17.6 – 18.5)
of the effect of age on large LDL-P. The remaining associations
between LMWMs and lipoprotein profiles shown in Table 3 disap-
peared after adjustment for age and BMI (and SBP for the associa-
tion between isobutyrate and LDL-P). However, in all these models,
the association between age and the corresponding lipoprotein
parameter remained statistically significant after the inclusion of
the corresponding age-related LMWMs in the statistical model.

Validation of the identified mediation effects. Afterwards, we
explored whether the identified mediation effects could be repli-
cated in a second dataset obtained from the Metabolomics Work-
bench repository. In this dataset, quantitative lipoprotein data
was not available. However, we leveraged the diffusion NMR spec-
tra as a surrogate of an NMR-based lipoprotein profile. As shown in
Fig. 4 and Table 6, we could replicate the mediation effect of the
relationship between age and a surrogate of cholesterol, namely
the integral intensity (from 0.63 to 0.66 ppm) of the NMR signal
arising from the C18 cholesterol moiety, by the integral intensity
(from 2.048 to 2.056) of the glutamate NMR signal. Briefly,
Fig. 4A shows statistically significant associations (colormap)
between chronological age and the glutamate NMR signals around
2.05 ppm (path a). Also, Fig. 4B shows statistically significant asso-
ciations between chronological age and the C18 NMR signals
around 0.65 ppm (path c). Finally, Fig. 4C-D show statistically sig-
nificant associations between the C18 NMR signals with chrono-
logical age and the glutamate NMR signals (paths c’ and b,
respectively). Table 6 shows the regression coefficients (b), stan-
dard errors (SE) and 95% confidence intervals for the different
paths as determined by the bootstrapping method. Importantly,
all the regression coefficients were statistically significant, and of
the same direction as in the first dataset. All regression models
included smoking status, BMI, disease status and the disease sta-
tus*age interaction term.

Fine mapping of the glutamate NMR signal. To conclude, we per-
formed a more finned mapping of the NMR region containing the
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glutamate signal to further validate this particular annotation. To
note, we further validated this annotation because only glutamate
could be validated in the second sample set. For this validation, we
took the NMR signal (2.047 ppm) that was annotated as glutamate
and performed a correlation analysis with all the signals within the
[2.6–1.9] ppm range (Supplementary Fig. S5A). Notably, this cor-
relation analysis was performed considering the raw NMR data,
not the peaks from the peak picking step. Supplementary
Fig. S5A depicts a fingerprint composed of a number of ‘‘peaks”
(correlation is present with the reference signal) that deviate from
0 (no correlation is present with the reference signal). Since Gowda
(18) and other authors [23,24] have identified glutamate, glu-
tamine, and proline in this region, Supplementary Fig. S5B-C show
the NMR spectra of these metabolites obtained from the Human
Metabolome Database to guide the matching of the different
‘‘peaks” with the corresponding signals from these pure com-
pounds. Importantly, this correlation analysis showed high correla-
tion coefficients (r > 0.8) within the [2.3–2.35] ppm range, a region
that matches another glutamate signal (see Supplementary
Fig. S3A) that was nominally associated with age (with a similar
effect size an p-value). On the other hand, although proline also
shows an NMR signal within the same region, the fact that the cor-
relation coefficients within the [2–1.95] ppm range are lower
(r � 0.4), and that this region matches another proline signal, allow
us to confidentially annotate the reference signal as glutamate.
4. Discussion

4.1. Effects of age on lipoprotein profiles

We identified positive and significant associations between age
and the concentrations of 1) small VLDL, 2) total LDL, 3) large LDL,
4) total HDL, and 5) small HDL particles. Importantly, these associ-
ations remained significant after adjustment for age-related meta-
bolomic features. As we will discuss later, these results may
indicate that although lipoproteins increase with age among
healthy men, they present a beneficial lipoprotein profile that
may be associated with healthy aging. Briefly, small VLDL and large
LDL particles do not predispose to an atherogenic profile as large



Fig. 4. Colour-coded NMR envelopes of A) LMWM (CPMG pulse) and B-D) LIPO (diffusion-based pulse) windows. Each NMR feature was considered in the different regression
models. The red line represents the experimental NMR spectrum of a reference sample. The colour coding represents the statistical significance of the corresponding
associations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 6
Regression coefficients (b), standard errors (SE) and 95% confidence intervals for the
different paths as determined by the bootstrapping method.

Path b SE 95% Confidence interval

a (Age -> Glutamate) �0.0667 8.03x10-4 �0.0683, �0.0651
b (Glutamate -> C18) �0.0012 4.27x10-6 �0.0013, �0.0012
c’ (Age -> C18) 8.84x10-5 1.20x10-6 8.60x10-5, 9.07x10-5

a * b 8.29x10-5 1.02x10-6 8.09x10-5, 8.49x10-5
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VLDL and small LDL particles do [25,26]. Moreover, the positive
and significant associations between age and HDL parameters
include the small, atheroprotective, and antioxidant HDL subclass
[27]. When comparing our results with previous findings (Table 7),
Table 7
Comparison of the direction of the relationship between age and different lipoprotein par

This study Freedman et al. (9)

Small VLDL + n.s.
Total LDL + +
Large LDL + n.s.
Total HDL + n.s.
Small HDL + n.s.

n.s.: nonsignificant; n.a.: not available.
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the direct relationship between age and the 1) concentration of
small VLDL and 2) total LDL particle concentrations follows a com-
mon pattern across previous studies. However, the direct relation-
ship between age and the other lipoprotein parameters (large LDL,
total HDL, and small HDL) shows certain degree of discordant
results when comparing them with the results of previous litera-
ture. Nevertheless, this discordance must be taken cautiously since
all the studies have very different study designs. First, the study
reported by Freedman et al. involved participants from the general
population, and thus was not focused on a healthy population as
was our case. Second, the study reported by Heijmans et al.
involved the study of families, and only total LDL-P and HDL-P
were available. Finally, we found a total agreement with the study
reported by Rajalahti and co-authors.
ameters across studies.

Heijmans et al. (28) Rajalahti et al. (29)

n.a. +
– +

n.a. +
n.s. +
n.a. +
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Briefly, in the seminal work by Freedman et al., large and inter-
mediate VLDL particle concentrations, but not small VLDL particle
concentrations, were positively associated with age in men. In con-
trast, and more in line with our results, total and intermediate LDL
particle concentrations, but not small LDL particle concentrations,
were positively associated with age in men [9]. Of note, Freedman
et al. did not find correlations between HDL subclasses and age in
men. In addition, Heijmans et al. reported that long-lived siblings
had lower LDL particle concentrations and larger mean LDL particle
size compared with their offspring [28]. The authors argued that
this effect could be associated with a decrease in the concentration
of small LDL particles in long-lived individuals. Another study that
reported changes in lipoprotein patterns during aging in men
found increases in small VLDL concentrations as well as in total,
large and medium LDL classes and subclasses [29]. They also found
increases in concentrations of ‘‘healthy” lipoproteins such as HDL
and almost no changes in concentrations of the atherogenic small
and very small LDL particles. Notably, in this study the lipoprotein
profiles were determined using high-performance liquid chro-
matography. Finally, Slade et al. found a negative and significant
association between age and VLDL size in men [13]. This result is
in line with an increase in small VLDL concentrations.

4.2. Effects of age on serine and glutamate levels

Of the different age-related metabolic features found to be asso-
ciated with age in our study, we focus our discussion on those fea-
tures that remained significant when included in the statistical
model modeling the effect of age on lipoprotein profiles. Specifi-
cally, we identified negative and significant associations between
age and the metabolic features annotated as serine and glutamate.
There have been previous attempts to study the effects of age on
metabolite concentrations under a similar study design (e.g., linear
regression analysis of metabolomic profiles on chronological age).
Serine and glutamate were previously reported to be modulated
by age in a study investigating the effects of age, sex and race on
the relative concentrations of metabolites in the blood of healthy
(and adult) men and women [11]. However, they reported a direct
relationship between these same metabolites and age. In another
study, Menni et al. reported associations between age and both glu-
tamate and serine levels; whereas glutamate showed a direct rela-
tionship with age, serine was inversely related to age, agreeing
with our results [12].

Other studies have investigated age-related metabolic changes
using different study designs. For example, Collino et al. showed
higher serine concentrations in centenarian’s offspring compared
to offspring of non-long-lived parents [15]. In another study, Chak
et al. found a direct relationship between age and serine levels in
women but not in men. However, the relationship between age
and serine levels was significant in men under FDR-adjusted p-
values in both the discovery and replication studies [30]. Finally,
in a longitudinal study investigating longitudinal changes of the
plasma metabolome, the authors found that serine decreased with
age [31].

4.3. Roles of lipoproteins, serine, and glutamate in aging processes:
Focus on oxidative stress

Aging is a process characterized by the progressive loss of tissue
and organ function [32]. The oxidative stress theory of aging is
based on the hypothesis that age-associated functional losses are
due to the accumulated damage induced by reactive oxygen and
nitrogen species [33]. In parallel, oxidative stress is involved in sev-
eral age-related conditions such as cardiovascular diseases [34]. In
this line, current evidence links atherosclerosis with oxidized LDL-
cholesterol [35]. In our study, we found a positive and significant
6176
statistical association between age and small HDL particle concen-
trations. Current knowledge about the role of HDL subclasses in
atherogenesis acknowledges the atheroprotective and antioxida-
tive role of the small HDL subclass, which protects LDL particles
from oxidation [36–38]. Indeed, the antioxidative activity of HDL
subclasses increases with the density [36]. Importantly, these
properties may be impaired in disease states such as atherogenic
dyslipidemia or familial hypercholesterolemia [38,39].

Serine is a nonessential amino acid and a predominant source of
one-carbon groups for the de novo synthesis of purine nucleotides
that are essential for cell proliferation. From a metabolic point of
view, oxidative stress resistance has been noted as a potential bio-
logical pathway of serine related to biological aging [30]. Impor-
tantly, the antiatherogenic and antioxidant properties of serine
have already been demonstrated [40]. Serine has also been linked
with decreased lifespan in yeast models through sensitization to
oxidative stress and activation of the TOR-S6 signaling pathway
[41]. Moreover, serine is necessary for the metabolism of fats and
fatty acids, for muscle growth and for maintaining a healthy
immune system [15]. In this line, serine levels were previously
found to be lower in plasma under inflammatory conditions [42].

Finally, prior literature has already shown the interconnection
between lipoproteins and metabolites such as glutamate in rela-
tion to aging and disease processes like atherosclerosis and cardio-
vascular diseases. In the case of glutamate, systemic plasma
glutamate levels have been shown to be elevated in several dis-
eases characterized by chronic oxidative stress and inflammation
[43], and thus the link between glutamate, oxidative stress and
neurological disorders has been extensively described [44]. For
example, Wang et al. applied a targeted metabolomics approach
to investigate the mechanisms of hyperlipidemia and discover
potential biomarkers in control and hyperlipidemic rats [45]. They
found that arginine levels reflected oxidative stress behavior, and
that hyperlipidemia was also closely related to oxidative stress.
Importantly, glutamate plays an important role in decreasing argi-
nine as an oxidative stress messenger and regulator. In addition,
Zheng et al. reported that baseline glutamate levels were associ-
ated with increased cardiovascular disease risk in the PREvención
con DIeta MEDiterránea (PREDIMED) trial [46]. More recently, an
association between the single nucleotide polymorphism (SNP)
rs10911021 and oxidative stress biomarkers in coronary artery dis-
ease patients was reported [47]. Importantly, this SNP is present
upstream of the GLUL gene, which affects glutamate metabolism.
5. Study strengths and limitations

Age-related changes in metabolites, lipids and lipoproteins are
well described in the general population, but to the best of our
knowledge, no study has described the statistical mediation effects
in healthy subjects recruited following our strict criteria. Here, we
took advantage of the technical possibility to simultaneously
assess a very diverse and informative set of markers to study
how they associate with age in the absence of any pathological
condition in healthy men ranging from 19 to 75 years. Indeed,
our study is probably the one that has used the strictest inclusion
criteria in order to recruit a healthy population. Furthermore, we
were able to validate the statistical mediation effect of glutamate
on the relationship between chronological age and LDL on a second
dataset. Besides, as a cross-sectional study, we could only explore
the correlations among variables. In this regard, a follow-up study
will be of great value to determine the longitudinal changes. In
addition, the statistical focus of this study does not allow for the
experimental confirmation of the identified mediation effects or
for the identification of the signaling or metabolic pathways that
would be affected by age.
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6. Conclusions

There is already a large body of research studying the relation-
ships between aging and different molecular species with the ulti-
mate goal of better understanding aging mechanisms and age-
related diseases. Considering the large number of metabolites
and other molecular entities that can be profiled in metabolomics
studies and the possible biological interrelations between them, a
more complex statistical approach can contribute to this current
research topic. Here, we hypothesized that the relationship
between chronological age and lipoprotein concentrations was sta-
tistically mediated by LMWMs. Indeed, we found that a proportion
of the effect of age on LDL-P levels was mediated by serine levels,
and a proportion of the effect of age on large LDL-P levels was
mediated by glutamate levels. Thus, our results suggest that the
age-related increase in LDL particles may be mediated by a
decrease in the nonessential amino acids serine and glutamate.
Further research is needed to investigate the potential biological
roles of serine, glutamate and LDL particles in aging mechanisms.
Overall, since similar studies continue to appear in the literature,
we encourage researchers to consider these and/or other statistical
scenarios (e.g., statistical interactions) when evaluating the interre-
lations between age factors and the metabolome.
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