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The heterogeneity of tumor microenvironment (TME) of hepatocellular carcinoma (HCC) may relate to cell-cell interaction event
(CCE) dysregulation and would affect therapeutic responses and clinical outcomes. To reveal the differentiation of CCEs in the
liver tissue from healthy donors (HD) to HCC, scRNA-seq data of ~62000 cells from HD, paracancerous nontumor tissue
(NT), and HCC were analyzed. The microenvironmental CCE landscape was constructed. Dysregulated cell types and changed
molecular functions were identified with CCE alterations in HCC. Dysregulated CCEs which function as pivotal roles in
tumorigenesis and development of HCC included SPP1-CD44, MIF-TNFRSF14, and VEGFA-NRP1. A CCE-based immune
regulatory network was extracted to illustrate the mechanism of TME dysregulation. A prognostic signature based on CCE
genes was identified and validated in independent datasets. Our study provided insights into the characteristics of the cross-
talk between tumor cells and microenvironment in HCC and established a workflow strategy for CCE analyses based on
scRNA-seq data.

1. Introduction

Hepatocellular carcinoma (HCC) is observed worldwide
with a high mortality rate [1], accounting for 8.2% of all can-
cer deaths [2]. Tumor-promoting inflammation in the liver
remains a common feature of the pathogenesis of HCC
among all etiologies, accompanied by extensive immune
infiltration [3, 4]. Currently, HCC is often treated by surgical

resection, chemotherapy, drug therapy, and other methods,
but with a high recurrence rate [5]. Immunotherapy has
become a key strategy and dramatically altered the oncolog-
ical treatment landscape in the recent decades [4, 6].

The heterogeneity of the tumor microenvironment
(TME) and the alteration of the TME may be key players
for HCC immunotherapy [7, 8]. The TME shows a compo-
sition of tumor tissue consisting of malignant, immune, and
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stromal cells, defined by spatiotemporal interactions among
heterogeneous cell types [9]. From bulk tissue gene expres-
sion profiles, computational methods such as CIBERSORT
could quantify cell fractions especially tumor-infiltrating
leukocytes in TME [10]. While from single-cell transcripto-
mics data, predicting enriched cellular interactions between
cell types in TME has become accessible [11].

Recent single-cell sequencing studies on HCC reveals the
pivotal role of TME and its cellular interactions. HCC was
found with varying degrees of heterogeneity. T cells from
higher heterogeneous tumors showed lower cytolytic activi-
ties, associated with patient’s worse overall survival [8]. A
cluster of LAMP3+ dendritic cells (DCs) was potentially reg-
ulating multiple subtypes of lymphocytes in HCC TME by
expressed diverse immune relevant ligands [12].
Hepatocyte-derived VEGFA as ligand could activate PLVAP
in tumor fetal-liver-associated ECs, which may participate in
the regulation of EC fenestration during fetal-liver organo-
genesis as well as angiogenesis in HCC [13]. Further studies
are necessary to dissect the interaction mechanism between
malignant cells and surrounding cell types in the HCC TME.

In our previous work, the proportion of plasma cells in
the HCC TME was found related to the development from
cirrhosis to cancer in patients, suggesting the important role
of immunoregulation [14]. However, the causes of these
results were poorly defined. In this study, based on
scRNA-seq data, the cellular interactions in HCC, paracan-
cerous nontumor tissue, and healthy liver tissue were inves-
tigated. The alterations of cell-cell interaction events (CCEs)
were identified. Key molecules and functional pathways in
HCC caused by the CCE changes, and the related molecular
pathogenesis of HCC was further explored. An immune-
associated prognostic model was established, which may be
proved referable for studying the characteristics and mecha-
nisms of dysregulated tumor microenvironment in hepato-
cellular carcinoma.

2. Material and Methods

2.1. scRNA-seq Datasets and Bulk RNA-seq Dataset
Collection. To reveal microenvironmental alterations
between HCC and healthy liver tissue, single-cell RNA-seq
data were collected from Gene Expression Omnibus
(GEO). Single-cell transcriptomic data from primary tumor
and paired nontumor liver (paracancerous liver tissue) of 5
patients (HCC03, HCC04, HCC05, HCC06, and HCC09,
without metastatic) were downloaded from the GEO dataset
GSE149614. And single-cell transcriptomic data of healthy
livers were downloaded from the GEO dataset GSE136103
[15]. Cellranger, the single-cell software suite from 10X
Genomics, was used for alignment and counting analysis
with the reference genome (GRCh38). Matrix generated by
Cellranger was downloaded. Further, bulk RNA-seq data
for samples with HCC and healthy liver tissue (or adjacent
normal liver tissue) were downloaded from TCGA LIHC
datasets and the GEO dataset GSE14520 [16].

2.2. Cell Type Annotation and Malignant Cell Identification
with scRNA-seq. The data matrixes were downloaded from

GEO and prepared for data analysis with scRNA-seq data
analysis tools in R (Version 3.6.3). Seurat (Version 3.2.0)
[17] was mainly used in data integration and downstream
analysis. Quality of cells was evaluated based on two metrics;
cells with percent.mt ≥ 15% and gene number ≤ 500 were fil-
tered. The datasets were processed using the same quality
control parameters. IntegrateData function was performed
for data integration to eliminate batch effect. Further, unsu-
pervised clustering analyses were performed and the first 20
PCs (principal components) were applied for Uniform Man-
ifold Approximation and Projection (UMAP) analysis. Cell
clustering analyses were performed with FindClusters func-
tion. The resolution parameter was set at 0.5 in this study.
Next, cell markers among clusters were identified by Fin-
dAllMarkers and FindMarkers functions. Clusters were then
annotated based on the expression of known genes. Cell
types were annotated with cell markers and the R package
SingleR [18].

2.3. Cell-Cell Interaction Event Annotation for Functional
Alteration Analysis. Curated receptors, ligands, and the
interactions were included in CellPhoneDB (Version 2.1.5)
[11], which is a publicly available repository. CellPhoneDB
allows in searching for particular ligand/receptor or interro-
gating single-cell transcriptomics data. Aiming to reveal the
cell-cell interaction events (CCEs) among different cell types
and compare the difference between healthy liver tissue and
HCC liver tissue, cellphoneDB in python (version 3.6.0) was
applied and default parameters were used. Further, signifi-
cant interaction pairs (p value < 0.05) were reserved for run-
ning the subsequent analyses. According to the annotation
in CellPhoneDB, the genes in CCE were separated as ligand
and receptor for further studies. The genes annotated as
“True” receptor in the interacting pair were accepted as
receptors interacted in the CCE. The “False” one was taken
as ligand. Ligand-derived cell types were treated as regula-
tory cells (source cell types), while the receptor-derived cell
types were regarded as regulated cells (target cell types). Fur-
ther, Fisher’s exact test was performed to identify CCE-
enriched cell types. The CCE with the absolute value of fold
change > 0:25 refers to this CCE being differentially inter-
acted and dysregulated in two pathological states [19]. The
function of ligands and receptors in CCEs was annotated
for enrichment analysis to reveal the alteration of biological
processes and pathways in target cells.

2.4. Immune Cell Infiltration in a Microenvironment. Tran-
scriptome profiles in TCGA LIHC datasets were analyzed
for identification of immune microenvironment changes
and prognosis related features in HCC. CIBERSORT [10]
was performed with count data to estimate immune infil-
trates of tumor samples in TCGA LIHC. There are 22 infil-
trated immune cell types predicted. The proportion of
infiltrated immune cells in nontumor samples and tumor
samples were compared with Wilcoxon’s test (two-sided).
The univariable cox regression analysis and Kaplan–Meier
estimate were applied for the identification of progression
(overall survival (OS))-associated immune cell types. The
feature with p value < 0.05 in univariable cox regression
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analysis was identified as significantly associated with OS.
While for Kaplan-Meier estimate, the patients were divided
into two groups by the infiltrated proportion of cells. The
number of patients in the group should be greater than
10% of all patients. The features with log-rank p value <
0.05 were associated with patients’ progression.

2.5. CCE-Based Prognosis Signature Construction. To reveal
the CCE functions in HCC progression, the CCE genes were
used to construct a CCE-based prognosis signature. The uni-
variable cox regression analysis was applied for the identifi-
cation of progression- (OS-) associated CCE genes. The
transcriptome profiles of HCC patients in TCGA HCC data-
set were set as a training set (371 samples). The GSE14520
dataset was set as a test set. The genes with p value < 0.05
were identified as significance associated with OS. In addi-
tion, to establish a prognostic signature, multivariable Cox
regression analyses were performed with significant (p value
< 0.05) progression-related genes. The Akaike Information
Criterion (AIC) statistic was used to select a model with
function step in R package stats. To graphically exhibit the
prognostic outcomes, samples was separated into the high-
risk group and the low-risk group with the median of the
risk score as cutoff, and Kaplan Meier (KM) survival curves
were generated. The signature was validated in the test set.

2.6. Statistical Analysis and Functional Enrichment Analysis.
Genes annotated with different functions were clustered by
Gene ontology and KEGG. Functional enrichment analysis
was performed with genes by clusterProfiler (version
3.10.1) [20] in R. Enriched terms were kept with adjust p
value < 0.05. Protein-protein interactions (PPI) were anno-
tated by STRING database (version 11.0) [21]. PPI with
combined score ≥ 0:7 were reserved for the next step analy-
sis. Further, Cytoscape (version 3.7.2) [22] was used to con-
struct the immune related gene regulatory network. All the
statistical analyses in this study were calculated in R (version
4.0.3) and Python (version 3.7.7). Figures were plotted by
the correspondence R package or by ggplot2 (version 3.1.1)
in R.

3. Results

3.1. Tumor Microenvironment Alteration Identified by
scRNA-seq Data Analysis. Cells from tumor, paired nontu-
mor liver (NT, paracancerous liver tissue), and healthy
donor liver tissue (HD) were divided into 20 clusters by
the expression patterns. Single cells could be assigned to dis-
tinct cell types using known marker genes (Figures 1(a) and
1(b)). Eight major cell types were noted, including hepato-
cytes (clusters C2, C10, C11, C12, C13, and C18), endothelial
cells (clusters C5, C7, and C17), fibroblasts (cluster C6), and
five types of immune cells including T cells (clusters C0 and
C15), B cells (clusters C9 and C14), natural killer cells (NK
cells) (cluster C1), macrophage (cluster C3), and monocyte
(clusters C4, C8, C16, and C19). To compare the propor-
tions of cell clusters of samples in different pathological
states, Wilcoxon’s test was performed. The clusters including
C0, C1, C2, C3, C4, C10, C11, and C16 were found signifi-

cantly changed between healthy liver (HD) or nontumor
liver (NT) and liver tumor tissues (HCC) (Figures 1(c)–
1(j)). There is no significant cell proportion change between
HD and NT states. However, the hepatocytes (clusters C2,
C10, and C11) from HCC tumor samples were found with
a higher proportion than in HD or NT states. In addition,
the immune cell types including CD8+ T cells (C0), NK cells
(C1), and monocytes (C4) were with higher proportions in
HD or NT samples. The cell proportion change may be asso-
ciated with the immunosuppressive microenvironment in
HCC.

3.2. Infiltrated Immune Cell Proportion Changes Associated
with HCC Progression. The infiltrated proportions of
immune cells were estimated with the transcriptome profiles
of HCC samples in TCGA HCC dataset to reveal the role of
proportionally changed immune cells. CIBERSORT was per-
formed to predict the proportion of the 22 immune cell
types in HCC and nontumor samples. There were 8 immune
cell types with significantly different proportions between
tumor samples and nontumor samples (Figure 2(a)). The
predicted macrophage M0 was significantly increased in
tumor which was consistent with the increasing proportion
of macrophage cluster C3. Further, the increasing propor-
tion of macrophage M0 was associated with a poor progres-
sion (Figure 2(b)). The monocytes were found with
significantly decreased proportions in tumor samples, which
was consistent with the main monocyte cluster C4 decreas-
ing in a tumor microenvironment. The predicted CD8+ T
cells and two NK cell subtypes were not found significantly
changed, while in progression analysis, lower proportion of
CD8+ T cells and activated NK cells and higher proportion
of resting NK cells were found with significantly lower sur-
vival probability (Figure 2(b)). In addition, the neutrophils,
activated mast cells, macrophage M2, regulatory T cells
(Tregs), follicular help T cells, and resting memory CD4+
T cells demonstrated significantly different proportions.
The infiltrated proportions of resting memory CD4+ T cells,
follicular help T cells, neutrophils, resting mast cells, and
plasma cells were significantly associated with patients’ pro-
gression. The infiltrated immune cells’ proportion changed
between NT and HCC, which may also be associated with
the progression of patients with HCC.

3.3. Dysregulated CCEs in Tumor Cells That Interacted with
a Microenvironment. Cellular interactions in microenviron-
ment were annotated with cellphoneDB to reveal the func-
tional alteration when infiltrated immune cell proportion
changed. There are 13223, 10238, and 10226 CCEs identified
in healthy donors (HD), paired nontumor tissue (NT), and
liver tumor tissue (HCC) separately. Fisher’s exact test was
performed to check the significant CCE number gain or loss.
Cluster C0 and cluster C1 with lower proportion in HCC
were found with more CCEs in HCC and NT than in HD
when C0 was regulated by the other cell clusters
(Figure 3(a)). The number of CCEs interacted in C2_C0,
C2_C1, and C10_C1 was significantly increased
(Figures 3(b) and 3(c)). There appeared not only clusters
with the significantly different number of CCEs between

3Disease Markers



C0 CD8T
C1 NK
C2 Hepatocyte
C2 Macrophage
C4 Monocyte
C5 Endothelial
C6 Fibroblast
C7 Endothelial
C8 Monocyte
C9 B

C10 Hepatocyte
C11 Hepatocyte
C12 Hepatocyte
C13 Hepatocyte
C14 Plasma
C15 CD4T
C16 Monocyte
C17 Endothelial
C18 Hepatocyte
C19 Monocyte

−5

−10

−10 −5 0

−15

UMAP_1

10

5

0

5 10

U
M

A
P_

2

(a)

CD8T
NK
Hepatocyte
Macrophage
Monocyte

Endothelial
Fibroblast
B
Plasma

CD4T

−5

−10

−10 −5 0

−15

UMAP_1

10

5

0

5 10

U
M

A
P_

2

(b)

H
D

Tu
m

or

N
on

-tu
m

or

0.063

0.016

0.9

60

40

0

20Pr
op

or
tio

n 
(%

)

C0 CD8T

(c)

40

30

20

10

0

Pr
op

or
tio

n 
(%

)

H
D

Tu
m

or

N
on

-tu
m

or

0.032

0.041

0.016

C1 NK

(d)

Figure 1: Continued.
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HCC and NT or HD but also some clusters with significantly
different number of CCEs between NT and HD including
the hepatocyte cluster C2 and the fibroblast cluster C6 and
so on (Figure 3). The proportions of fibroblast were not sig-
nificantly gained or lost between pathological states. How-
ever, the number of CCEs between HCC or NT and HD
was significantly a gain (Figure 3(a)). The interacted cell
pairs with increased CCEs including C6_C2. The interacted
cell pair C2_C6 was also significantly increased in CCE
number (Figures 3(b) and 3(c)). Further, dysregulated CCEs
between states were identified.

Cluster C2 was the main hepatocyte cluster. Hepatocyte
cluster C2 was found with more CCEs in HCC than in NT
and HD. The markers of C2 are significantly enriched in
KEGG pathways including nonalcoholic fatty liver disease,

alcoholic liver disease, and ferroptosis (Figure 4(a)). The
hepatocytes from HCC would be malignant cells. Further,
C2 interacted with other cell clusters (Figure 4(b)) by CCEs
including MIF_TNFRSF14, SPP1_CD44, and VEGFA_
NRP1 (Figures 4(e) and 4(f), Figure S1). SPP1 which was
reported mainly expressed in malignant cells could act as a
driver of tumor evolution [23]. The SPP1-CD44 interacted
between malignant cells and T cells may support the key
role of SPP1 in tumor ecosystem [23]. When hepatocyte
cluster C2 interacts with fibroblast cluster C6, JAG1-
NOTCH3 interacts in HD; this is involved in the
regulation of cell fate in target fibroblasts. The loss of this
regulatory relationship in HCC may contribute to the
dysregulation of fibroblast fate [24]. In addition, VEGFA-
NRP1 and VEGFA-NRP2 interacting in HCC participate
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Figure 1: Diverse cell types in the liver microenvironment of HD, NT, and HCC delineated by single-cell RNA-seq analysis. (a) The UMAP
plot demonstrates cell clusters in the microenvironment. (b) The UMAP plot demonstrates main cell types in the microenvironment. (c–j)
Boxplot of the cell clusters with significant proportion change in the pathological states.
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in signaling pathways controlling cell migration [25]. These
increasing interactions might play important roles in TME
maintenance and tumor progression.

To reveal the functions of ligands and receptors in malig-
nant hepatocytes, function enrichment analysis was per-
formed. In HCC, the ligand genes in C2 are mainly enriched
in signaling pathways including PI3K-Akt signaling pathway,
Rap1 signaling pathway, Ras signaling pathway, and ECM-
receptor interaction (Figure 4(c)). Biological processes includ-
ing extracellular structure organization, regulation of immune

effector, myeloid leukocyte migration, and cell killing are sig-
nificantly enriched (Figure 4(d)), while the receptor genes in
malignant hepatocytes are mainly involved in regulation of
actin cytoskeleton, extrinsic apoptotic signaling pathway, and
peptidyl-tyrosine phosphorylation. The cellular interactions
between malignant cells and microenvironment reveal the
potential immune regulation and immune escape in tumor
development.

Clusters C10 and C11 are both annotated as hepatocytes,
too. The hepatocytes from HCC have significantly higher
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Figure 2: Infiltrated immune cells in HCC associated with patients’ prognosis. (a) Boxplot of the infiltrated immune cells shown the
significantly change in immune microenvironment. (b) KM-plot of the cells with infiltrated proportions predicted by CIBERSORT.
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Figure 3: Significantly changed CCE number in microenvironment. (a) The results of Fisher’s exact test when calculated the all CCEs,
regulatory CCEs, and regulated CCEs of each cell clusters (color bar means the estimate of the odds ratio after log2). (b) The results of
Fisher’s exact test when calculated the regulatory CCEs of each interacted cell cluster pair. (c) The results of Fisher’s exact test when
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Figure 4: Cell-cell interaction events (CCEs) between hepatocyte (cluster C2) and other cell clusters in the microenvironment. (a)
Significantly enriched KEGG pathways of the markers of cluster C2. (b) The circos plot for CCE counts from hepatocyte cluster to other
cell clusters in HCC. (c) Significantly enriched KEGG pathways of the ligand and receptor genes of cluster C2 in HCC. (d) Significantly
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as the regulatory cell cluster. (f) Dysregulated CCEs when C2 interacted with C1, C2 as the regulatory cell cluster.
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proportion than NT and HD. The cell markers of cluster
C10 and C11 were also enriched in KEGG pathways includ-
ing chemical carcinogenesis, nonalcoholic fatty liver disease,
and drug metabolism (Figure S2, S3). The ligand genes and
receptor genes of HCC in C10 and C11 were significantly
enriched in the KEGG pathways and GO BP terms
including regulation of immune effector process and
peptidyl-tyrosine phosphorylation. The CCEs including
MIF-TNFRSF14 and SPP1-CD44 also significantly
interacted between hepatocyte cluster C10 and other cell
clusters. However, the CCEs of C11 were different from C2
and C10. C11 were found with less CCEs in HCC than in
HD and NT. The C11 mainly interacted with the other cell
clusters including macrophage cluster C3 by MIF_CD74,
APP_CD74, and COPA_CD74. The ligand gene MIF is
macrophage migration inhibitory factor, which is a
proinflammatory cytokine [26] and an oncogene [27]. The
receptor gene CD74 may participate in the regulation of
antigen presentation for immune response. The interaction
of MIF and CD74 was reported to exert proproliferative
and antiapoptotic effects in murine hepatocellular
carcinoma [28].

3.4. Hub Genes in Cell Communication Network Affect
Clinical Outcomes. In order to clarify the relationship
between gene alteration and microenvironment in the
liver, 480 receptor and ligand genes were used to construct
the integrated interaction network. Pathological state-
specific interaction networks were extracted, then. CTLA4
was uniquely identified with a higher degree in the HCC
interaction network (Figure 5), while in HCC, CTLA4
interacted with CD86, which may participate negatively
in the regulation of T cell activation and diminishment
of immune response [29]. ITGB3 and CD80 were uniquely
identified in nontumor tissue (NT), then (Figure S4). The
proteins encoded by ITGB3 and ITGAV integrated as the
aVb3 complex interacting with genes including SPP1, F2
in NT. ITGB3 was reported to play a central role in
intracellular communication via extracellular vesicles,
which was proposed to be critical for cancer metastasis
[30]. CD80 is involved in the costimulatory signal
essential for T-lymphocyte activation. The CCE CD28_
CD80 that interacted in NT could induce T-cell
proliferation and cytokine production. In healthy donors
(HD), CXCL8 is uniquely interacted with the Atypical
Chemokine Receptor 1 (ACKR1) (Figure S5). CXCL8 is a
major mediator of the inflammatory response.

3.5. CCE-Based Prognostic Signature Construction. To reveal
the CCE genes’ potential to be candidate markers for HCC,
we constructed an immune cell prognostic model for HCC
immunoregulatory genes that interacted in cellular interac-
tions. The transcriptomic profiles of the 371 patients with
HCC in TCGA were set as the training set, and univariate
Cox proportional hazards regression was applied for prog-
nostic marker identification. There were 32 cellular interac-
tion genes selected as the signature by AIC (Figure 6(a)).
SPP1 was associated with patients’ progression with hazard
ratio ðHRÞ > 1. The multivariate Cox risk analysis model

was constructed to score the patients’ prognostic risk, and
patients were divided into the high-risk group and the low-
risk group according to the median. The predictive power
of the model was robust, and the survival time was signifi-
cantly shorter in the high-risk group than in the low-risk
group (median survival time 660 days (about 1.80 years)
vs. 3125 days (about 8.56 years), p value < 0.001)
(Figure 6(b)). The 1-year AUC value of the ROC curve is
0.838 (Figure 6(c)). Further, the model was confirmed to
be a good predictor for progression in patients in both early
tumor stage including stage I and II and later tumor stage
including III and IV (Figures 6(d) and 6(e)). There was a sig-
nificant difference between the high-risk and low-risk
groups (p value < 0.01), and the 1-year AUC is 0.754
(Figures 6(f) and 6(g)).

4. Discussion

In this study, we classified and annotated cell types in hepa-
tocellular carcinoma, paracancerous tissues, and healthy
liver tissues. CCEs in the microenvironment were annotated
and compared. The interaction between malignant cells and
other types of cells was analyzed in HCC. Functional enrich-
ment analysis was performed to interpret the biological
function alteration of the genes in CCE. The heterogeneity
of HCC TME immunoregulation was related to dysregulated
CCEs that participate in immunoregulation and immune
escape. The genes involved in CCEs were associated with
the tumorigenesis and progression of HCC. A CCE-based
immune regulatory network was extracted to illustrate the
mechanism of TME dysregulation.

Size Size

Degree low to high

CCR5 CTLA4Receptor Ligand

HD

HCC

NT

HD&NT

HD&NT&HCC

HD&HCC

NT&HCC

Figure 5: The protein-protein interaction (PPI) network
constructed with HCC-specific CCE gene CTLA4 and the related
CCE genes in HCC.
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Figure 6: Continued.

12 Disease Markers



The number of CCEs in cell clusters was found signif-
icantly gained or lost between different pathological states
including NT and HD. However, the cell proportions were
only significantly changed in the 8 clusters and between
HCC and NT or HD. The possible reasons may be that
tumor-promoting inflammation in the liver such as hepa-
titis virus infection remains a common feature of the path-
ogenesis of HCC among all etiologies, and these
inflammations are often accompanied by extensive
immune infiltration, immune microenvironment change,
and CCE alteration. Dysregulated CCEs in the surround-
ing liver tissue of HCC tumor may be involved in the
tumorigenesis and development of tumors. ITGB3 and
CD80 are unique CCE genes in NT. ITGB3 was reported
as a central role in intracellular communication via extra-
cellular vesicles (PMID: 32848136). CD80 is involved in
the costimulatory signal essential for T-lymphocyte activa-
tion. The CCE CD28_CD80 that interacted in NT could
induce T-cell proliferation and cytokine production. If
the CCE gene CD80 interacted with CTLA4 in HCC, it
will inhibit T cell activation [31]. The unique CCE hub
gene CXCL8 in HD is a major mediator of the inflamma-
tory response. In a word, the paracancerous tissue (NT)
may be the intermediate state with dysregulated CCEs
between HD and HCC.

Dysregulated CCEs including SPP1-CD44, MIF-
TNFRSF14, VEGFA-NRP1, and JAG1-NOTCH3 were
found interacting between malignant cells and the other
cell clusters. SPP1 encoded osteopontin (OPN), the physi-
ological ligand for CD44, acts as an immune checkpoint to
suppress T cell activation and confers host tumor immune
tolerance in human colon carcinoma that correlated with
decreased patient survival [32]. The interacting pair

SPP1-CD44 was significantly present in malignant cell
clusters (C2, C10) and other cell clusters in this study.
The SPP1 functions may be associated with cell prolifera-
tion and apoptosis in HCC [33]. Our collaborative previ-
ous studies found that OPN is a promoter for HCC
progression; it could induce EMT of HCC cells through
increasing vimentin stability [34]. The CCE SPP1-CD44
was reported to trigger the polarization of macrophages
in HCC, which was validated by an in vitro experiment
[35]. VEGFA-NRP1|NRP2, significantly interacting in
malignant cells and fibroblasts in HCC, may participate
in signaling pathways that control cell migration, clono-
genesis, and self-renewal capacities [25, 36]. Dysregulated
CCEs participate in the immune microenvironment
reshaping and tumor development.

To clarify the relationship between CCEs and tumor pro-
gression, we constructed a multigene tumor prognosis predic-
tion model with TCGA HCC expression datasets. SPP1, LCK,
and CCR5 were included as predictors for prognosis predic-
tion. LCK is a protooncogene, a member of the Src family of
protein tyrosine kinases (PTK), and the protein encoded by
it is a key signal molecule for the selection and maturation of
developing T cells. The signature was a good predictor both
in the test set and patients in TCGA HCC cohort with differ-
ent tumor stages. The above reports combined with the results
in this study reveal the pivotal role of CCEs in TME of HCC.

In conclusion, we have constructed the microenviron-
mental CCE landscape of HCC. To avoid the immune het-
erogeneity in different samples, we tried to interpret the
mechanism of HCC progression from paired tumor and
nontumor tissues. This workflow can be taken as an impor-
tant single-cell technology analysis strategy for other tumor
microenvironment interaction researches.
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Figure 6: Construction of the prognosis model based on the CCE genes in TME of HCC. (a) The hazard ratio of the genes in the prognosis
model. (b) Kaplan-Meier estimates of OS of HCC patients in TCGA as the training datasets based on the 7-gene signature; patients were
divided into two risk group according to median risk score. (c) The receiver operating characteristic (ROC) curve for OS survival
predictions for the signature in training set. (d) Kaplan-Meier estimates of OS of HCC patients in tumor stage I&II in TCGA based on
the signature. (e) Kaplan-Meier estimates of OS of HCC patients in tumor stage III&IV in TCGA based on the signature. (f) Kaplan-
Meier estimates of OS of HCC patients in the test datasets based on the signature; patients were divided into two risk group according to
median risk score. (g) The receiver operating characteristic (ROC) curve for OS survival predictions for the signature in test set.
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Figure S1: the CCEs of cell cluster C2 interacted with other cell
clusters. Figure S2: cell-cell interaction events (CCEs) between
hepatocyte (cluster C10) and other cell clusters in the microen-
vironment. (A) Significantly enriched KEGG pathways of the
markers of cluster C10; (B) the circos plot for CCE counts from
hepatocyte cluster to other cell clusters inHCC; (C) significantly
enriched KEGG pathways of the ligand and receptor genes of
cluster C10 in HCC; (D) significantly enriched GO BP terms
of the ligand and receptor genes of cluster C10 in HCC; (E)
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