
PERSPECTIVE
published: 03 July 2019

doi: 10.3389/fmed.2019.00146

Frontiers in Medicine | www.frontiersin.org 1 July 2019 | Volume 6 | Article 146

Edited by:

Maw Pin Tan,

University of Malaya, Malaysia

Reviewed by:

Csaba Kerepesi,

Computer and Automation Research

Institute (MTA), Hungary

Demosthenes Panagiotakos,

Harokopio University, Greece

*Correspondence:

Alessandro Gialluisi

alessandro.gialluisi@moli-sani.org

†A complete list of the Moli-sani

Project Investigators is reported in

Supplementary Materials

Specialty section:

This article was submitted to

Geriatric Medicine,

a section of the journal

Frontiers in Medicine

Received: 24 January 2019

Accepted: 10 June 2019

Published: 03 July 2019

Citation:

Gialluisi A, Di Castelnuovo A, Donati

MB, de Gaetano G, Iacoviello L and

the Moli-sani Study Investigators

(2019) Machine Learning Approaches

for the Estimation of Biological Aging:

The Road Ahead for Population

Studies. Front. Med. 6:146.

doi: 10.3389/fmed.2019.00146

Machine Learning Approaches for
the Estimation of Biological Aging:
The Road Ahead for Population
Studies
Alessandro Gialluisi 1*, Augusto Di Castelnuovo 2, Maria Benedetta Donati 1,

Giovanni de Gaetano 1, Licia Iacoviello 1,3 and the Moli-sani Study Investigators †

1Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy, 2Mediterranea Cardiocentro, Naples, Italy,
3Department of Medicine and Surgery, University of Insubria, Varese, Italy

In recent years, different machine learning algorithms have been developed for the

estimation of Biological Age (BA), defined as the hypothetical underlying age of an

organism. BA can be computed based on different circulating and non-circulating

biomarkers. In this perspective, identifying biomarkers with a prominent influence on

BA and developing reliable models for its estimation is of fundamental importance for

monitoring healthy aging, and could provide new tools to screen health status and the risk

of clinical events in the general population. Here, we briefly review the different machine

learning (ML) approaches used for BA estimation, focusing on those methods with

potential application to the Moli-sani study, a prospective population-based cohort study

of 24,325 subjects (35–99 years). In particular, we discuss the potential of BA estimation

based on blood biomarkers, which likely represents the easiest and most immediate

way to compute organismal BA. Similarly, we describe ML methods for the estimation of

brain age based on structural neuroimaging features. For each method, we discuss the

relation with epidemiological variables (e.g., mortality), genetic and environmental factors,

and common age-related diseases (e.g., Alzheimer disease), to examine the potential as

aging biomarker in the general population. Finally, we hypothesize new approaches for

BA estimation, both at the single organ and at the whole organism level. Overall, here we

trace the road ahead in the Big Data era for our and other prospective general population

cohorts, presenting ways to exploit the notable amount of data available nowadays.

Keywords: biological age, aging, blood, brain, big data, machine learning, neuroimaging, neurological diseases

INTRODUCTION

By 2050, over 21% of the global population will be over 60 years of age (1), with an increase in
age-related diseases burden. In this context, in the last years scientists have developed estimators of
Biological Age (BA), i.e., the hypothetical underlying age of an organism, which can be computed
through a number of circulating and non-circulating biomarkers (2, 3). Therefore, identifying
the biomarkers that are representative of BA or have a prominent influence on this parameter,
and developing reliable models for its estimation, is of fundamental importance for monitoring
healthy aging, which includes different concepts like avoiding disease and disability, maintaining
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good cognitive and physical function, and remaining actively
engaged in life activities (4) (see Supplementary Materials). BA
biomarkers could provide new tools to screen this status and the
risk of clinical events in the general population (5).

To this end, scientists have investigated different variables,
some of which show a typical decline with increasing age, and
are therefore considered suitable biomarkers of aging [reviewed
in Cole et al. (6)]. Such aging biomarkers are mostly based
on univariate or multivariate regression methods, where BA
is a function of one or few bodily measures. These include
instrumental parameters such as spirometry measures (7, 8)
and heart rate variability (9), circulating blood biomarkers (10),
and molecular genetics measures like telomere length (11),
transcriptomics of peripheral blood cells (12, 13) and DNA
methylation patterns (14, 15). Although it would be interesting to
review thesemeasures [as in Cole et al. (6)], this perspective paper
is aimed at briefly reviewing recent supervised machine learning
(ML) approaches for the estimation of BA in population-based
studies. Supervised ML covers different algorithms which learn
to identify patterns and relations among many input variables
(features) in order to estimate as accurately and as robustly as
possible one or more output variables (labels) [see Fabris et al.
(16) and Supplementary Materials]. Here we will present the
potential of supervised ML methods for the estimation of BA
compared to the above mentioned “classical” methods, focusing
on the most recent advances which allow computing a systemic
(blood-based) and a brain-specific age. These showed the best
performances in terms of accuracy and prediction of mortality
risk, and can be more easily applied within large longitudinal
population studies, thanks to the availability of blood test and
brain imaging data, and of clinical events. We will analyse
the potential of these algorithms in the Moli-sani study, a
population-based cohort of 24,325 citizens (age≥35 years; 51.5%
women) from theMolise region, Italy (17). This paper is aimed at
pointing the way for our and other groups facing the complexity
of large population cohorts characterized by a high number of
epidemiological, biological, and medical variables.

BLOOD-BASED BIOLOGICAL AGE

Common blood tests usually allow to check up the general health
of subjects and possibly detect the first signs of disease. Moreover,
specific markers often tend to increase (e.g., glucose) or decline
(e.g., hemoglobin) as the age of an organism progresses (18).
For these reasons, the estimation of BA based on sets of blood
biomarkers has always been a hotspot of investigation in aging
research (2, 10, 18–20).

Recently, an innovative and relatively accurate method based
on deep learning has been proposed to estimate BA, using
circulating biomarkers as input features and chronological age
(CA) as label (2, 20). Deep learning represents a specific branch of
ML, aimed at identifying patterns andmodels to explain relations
among a number of variables in a big data scenario. One of
the most prominent examples of deep learning techniques is
represented by Deep Neural Networks, which recognize patterns
in large amounts of data by imitating the architecture and

functionality of the brain, in which we have an input layer, one
or many hidden “decision” layers and an output layer (21). This
way, for each vector of input features provided (i.e., the blood
test of a given subject), the algorithm returns a predicted BA
value (20). These algorithms are capable of capturing hidden
underlying features and learning complex representations of
highly multidimensional data (22).

Properties and Characteristics of
Biological Age
In the first pioneering study, Putin and colleagues (20) used
anonymized blood biochemistry records from 62,419 subjects
from the general Russian population to estimate BA through
a ML approach, based on 41 standardized blood markers,
age and sex of subjects. Deep Neural Networks showed the
best performance in predicting BA, when compared to other
algorithms, with a standard coefficient of determination (R2,
the fraction of variance in CA explained by the model) of 0.8,
a Pearson correlation coefficient between CA and BA (r) of
0.9, and a Mean Absolute Error (MAE, indicating the average
disagreement between CA and BA) of 6.07 years. Based on this
evidence, the authors tested 40 different networks on the same
input data, with varying hyperparameters (such as number of
layers and number of neurons in each layer), and finally built
an ensemble of the 21 most predictive models. This raised the
performance of the model to R2 = 0.83, r = 0.91, and MAE
= 5.55 (Table 1), reaching accuracy values higher than blood
transcriptomic biomarkers of aging [R2 = 0.6; (12)], but lower
than epigenetic biomarkers previously published [Pearson r =

0.91 and 0.96, (14, 15); R2 = 0.93 and 0.89, (20)]. When a core
set of the 10 most predictive circulating biomarkers—based on
a Permutation Feature Importance analysis—were included in
the networks, accuracy statistics were still good (R2 = 0.63),
supporting a substantial robustness of the model (20).

Mamoshina et al. (2) exploited these models to train similar
algorithms on population-specific datasets. In this work, samples
from three ethnically different populations were used, including
a South Korean (N = 65,760), an Eastern European (N = 55,920)
and a Canadian dataset (N = 20,699). Networks were trained
within each population and tested on independent test sets of
all the populations available, based on sex and 19 circulating
markers. Such models showed good predictive values across the
three datasets, when they were trained and tested on the same
population (R2 ranging from 0.49 to 0.69, and MAE ranging
between 5.59 and 6.36 years). However, accuracy values dropped
when the models trained in a given population were tested on a
different ethnicity (R2 = [0.24; 0.34]; MAE = [7.1; 9.77] years).
In line with this evidence, when networks were trained on a
combination of the three datasets, including the population label
as additional feature, this resulted in an increased accuracy,
both when the model was tested on single populations (R2 =

[0.49; 0.70]; MAE = [5.60; 6.22] years) and when tested on a
combination of them (R2 = 0.65; MAE = 5.94). This evidence
suggested a substantial population-specificity of these models (2),
which may be due to different exposure of these populations to
environmental factors or, to a lesser extent, to distinct genetic
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TABLE 1 | Main accuracy metrics of the biological age estimates described here.

Tissue type Input features ML algorithm N

(training:test)

Population Pearson

r

R2 MAE

(years)

Reference

Blood 41 haemochrome markers DNN 62,419

(90:10)

Russian 0.9 0.8 6.07 (20)

19 haemochrome markers DNN 65,760

(80:20)

South Korean 0.7 0.49 5.59 (2)

55,920

(80:20)

Eastern

European

0.84 0.69 6.25

20,699

(80:20)

Canadian 0.7 0.52 6.36

142,379

(80:20)

All 0.8 0.65 5.94

Brain Structural MRI (normalized GM volumes) GPR 2,001 (90:10) different

ancestries

0.95 0.89 4.66 (23)

Structural MRI (normalized WM volumes) 0.92 0.84 5.88

Structural MRI (normalized GM + WM

volumes)

0.96 0.91 4.41

Structural MRI (raw data) 0.57 0.32 11.81

Structural MRI (normalized GM volumes) CNN 0.96 0.92 4.16

Structural MRI (normalized WM volumes) 0.94 0.88 5.14

Structural MRI (normalized GM + WM

volumes)

0.96 0.91 4.34

Structural MRI (raw data) 0.94 0.88 4.65

Structural MRI (normalized GM + WM

volumes)

GPR 2,001

(80:10:10)

different

ancestries

0.94 0.88 5.02 (5)

ML, Machine Learning; MAE, Mean Absolute Error; DNN, Deep Neural Networks; GPR, Gaussian Process Regressions; CNN, Convolutional Neural Networks; MRI, Magnetic Resonance

Imaging; GM/WM, gray/white matter.

ancestry. A Permutation Feature Importance analysis detected
five important features in age prediction, concordantly across
the three populations: sex, albumin, glucose, hemoglobin and
urea levels. Of note, women showed more accurate predictions
than men (2), and variation in the levels of these circulating
biomarkers was associated with physiological aging, as well as
with age-related conditions (18).

More recently, Mamoshina et al. (24) reported the first
evidence of a positive association between tobacco smoking and
BA estimates, with smoking females and males being twice and
one and a half times as old as their non-smoking counterparts,
respectively. This significant difference was prominent under the
age of 40 and held for all age ranges up to 55 years, after which the
discrepancy disappeared, probably due to the increasing survival
of subjects resilient to smoke effects after this age (24).

Biological Age Predicts All-Cause Mortality
One of the most important characteristics of aging clocks is
the ability to predict mortality (2). The deep hematological
age (BA) described above was tested through a survival
analysis in two general population cohorts, the Canadian
dataset and the National Health and Nutrition Examination
Survey (NHANES), from US (N = 2,768). For each sample,
authors computed the difference between BA and CA (1BA
= BA–CA), and carried out a Cox proportional hazards
regression model on all-cause mortality events, adjusted for
age and sex. They observed that subjects with slowed aging

(1BA<-5) showed a decreased mortality risk compared to
the normal group (−5<= 1BA<=5) (from 30.4 to 24%
in the NHANES and from 49.2 to 31.5% in the Canadian
cohort). Accordingly, subjects with accelerated aging (1BA>5)
had a higher mortality risk compared to the normal group,
although Hazard Ratios were not always significant across
all the trained models (2). This supported 1BA as a robust
marker of public health in the general population, suggesting
it could be used to screen health status and mortality risk in
populations, through the use of cheap and easy-to-obtainmedical
health records.

BRAIN-BASED BIOLOGICAL AGE

An independent focus of investigation in the field of aging has
pointed to the estimation of Brain Age (BrA), based on multi-
modal brain imaging data [(5, 23, 25–30), reviewed in Cole
et al. (6)]. Here, we will focus on the most recent and accurate
developments, which use structuralMagnetic Resonance Imaging
(MRI) data (5, 6, 23, 27, 28, 31, 32). This method is based on
Gaussian Process Regressions, an algorithm which, starting from
an NxN similarity matrix of normalized gray and white matter
images, computes a predicted BA value through a regression task,
extending, and combining multivariate Gaussian distributions
over a high number of features. This allows to reflect local
patterns of covariance between individual data points (23).
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Properties and Characteristics of
Brain Age
A recent methodological work reported BrA to be relatively
accurate in predicting CA in a large dataset of healthy controls
(N = 2,001), showing R2≥0.91 and MAE = 4.16 years (23).
Convolutional Neural Networks—feed-forward neural networks
in which the inputs are grouped spatially into hidden nodes
(21)—had comparable results in terms of accuracy, which was
preserved also when themodel was fed with raw (non-parcelated)
data (R2 = 0.88, MAE= 4.65 years). Interestingly, both methods
reached the best performance when they were fed with both
gray and white matter neuroimaging data (23). BrA estimates
show high levels of within scanner and between-scanner
reliability, with Intraclass Correlations Coefficients ≥0.92 for
Gaussian Process Regressions and ≥0.85 for Convolutional
Neural Networks, when applied to gray and white matter data
together (23). Moreover, BrA is moderately heritable, after
correcting for CA (h2 ≥ 0.5) (23). Although this preliminary
finding is based on a small sample of monozygotic and dizygotic
twins (N = 62) and needs further support from larger analyses,
it suggests that genetic factors may have an important influence
on BrA (33), as already reported for a number of structural and
functional brain measures [reviewed in Jansen et al. (34)].

Environmental Effects on Brain Age
Environmental exposures such as diet, physical activity, and
educational attainment have been positively associated with
important component measures of BrA, like cortical thickness
(35–37), total brain, gray and white matter volume (38, 39).
In line with this evidence, years of education and self-reported
physical activity were found to be positively associated with
the discrepancy between BrA and CA (hereafter called 1BrA)
in healthy adults, where BrA was based on cortical/subcortical
gray matter measures (40). Of note, these associations were all
observed in cross-sectional studies, underlining the need for
longitudinal analyses to identify causal trajectories. Similarly,
cross-sectional studies reported a positive association of younger
BrA with meditation activity (−7.5 years) (41), and with long-
term amateur music-playing (−4.03 years) (42).

Interestingly, the effect of dietary patterns on BrA has been
also investigated, but only in baboons: a premature brain
aging (+2.7 years) was observed in young female adults who
had experienced moderate fetal undernutrition, compared to
healthy controls (43). More recently, Hatton and colleagues (44)
reported an association between negative fateful life events and
advanced brain aging (+2.3 years), after controlling for physical,
psychological, and lifestyle factors.

Brain Age in Health Conditions
A number of structural MRI measures which are considered
as proxies of brain aging –such as cortical thickness and white
matter integrity- have been used to test associations with several
health conditions, including obesity, diabetes, mild cognitive
impairment, and Alzheimer disease. However, only a few works
have explicitly tested association of BrA with such disorders
[see Cole and Franke (3) for a comprehensive review]. Studies
reported an accelerated brain aging for subjects affected by

HIV (+2.2 years) (32), Down Syndrome (+2.5 years) (28) and
medically refractory focal epilepsy (+4.5 years) (45), as well as for
subjects who had previously experienced traumatic brain injury
(+4.66 and+5.79 years for gray- and white matter-basedmodels,
respectively) (27) (Table 2).

Much of the research on health conditions focused on
disorders and physiological processes strictly related with aging,
such as cognitive decline, Alzheimer disease and cognitive
impairment. Along with direct associations with Alzheimer
disease [+10 years, (26); +6.7 years, (30)], associations with
progressive cognitive impairment [+6.2 years; (46)] and with
cognitive decline in traumatic brain injury (27) and HIV patients
(32) have been reported. Interestingly, also links with biomarkers
of dementia were detected: in Down Syndrome patients, 1BrA
was associated with cerebral beta amyloid deposition -which
represents a critical event in Alzheimer pathology- in addition
to cognitive performance (28). Similarly, in progressive cognitive
impaired and Alzheimer subjects, carriers of theAPOE ε4 allele—
coding for a specific isoform of apolipoprotein E which increases
the risk of late onset dementia—showed a sharper increase of
1BrA along a 3-years follow-up, compared to non-carriers (47).
In spite of these findings, BrA has been scarcely investigated in
relation to cognitive functions in the general population, with a
single association with lower fluid intelligence reported (5).

Of note, in longitudinal studies, subjects affected by some
of the conditions mentioned above showed an increased
discrepancy between BrA and CA along the observation period.
As an example, Alzheimer cases showed an increase of 1BrA of
2.3 years after 2 years of follow up (30).

Overall, these findings are in line with evidence that age and
disease share common biological mechanisms (48), in addition to
neuro-anatomical signs (33).

Brain Age Is Associated With Frailty and
Predicts Mortality
As with the discrepancy between (blood-based) BA and CA
(1BA), also the difference with BrA (1BrA) warrants further
validation as a public health marker. In a recent study on
the general British population (N = 669), Cole et al. (5)
supported this hypothesis, reporting a 6.1% increase in the
relative risk of all-cause mortality between the age of 72 and
80, for each year of increase in 1BrA (after correction for age
and sex). This effect remained substantially unaffected when
the analysis was further adjusted for additional variables related
with mortality, including IQ, paternal social class, years of
education, APOE ε4 carrier status, smoking status and self-
reported hypertension/diabetes/cardiovascular disease (5.1% risk
increase) (5). Interestingly, 1BrA explained more variance than
long-established markers of BA like global DNA methylation
and telomere length, and represented an independent survival
predictor from these genetic biomarkers of aging. Prominently,
when BrA was combined with epigenetic age (15), the global
predictor showed an improved performance over all previous
BA estimates (5), suggesting that combining estimators based on
different biomedical sourcesmay help improvemortalitymarkers
in the general population.
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TABLE 2 | Associations of biological age estimates described here with health conditions, mortality risk, frailty measures, and environmental factors.

Tissue

type

Mortality risk: Test

Cohort, N, HR

Reference Health conditions

(1age, years)

Reference Healthy aging

measures (β, p)a
Reference Environmental

influences

(AR/1age/β)b

Reference

Blood NHANES (US), N =

2,768, HR = 1.71

(2) None reported NA None reported NA Tobacco smoking

(Age <30: AR

∼1.62; Age

31–40: AR ∼1.32;

Age 41–50:

AR ∼1.15)

(24)

Canada, N = 20,699,

HR = 1.66

Brain LBC1936 (Scotland),

N = 669, HR = 1.06

(5) HIV (+2.2) (32) Fluid cognitive

performance (β =

−0.12, p = 0.007)

(5) Meditation (1age

= −7.5 years)

(41)

Down Syndrome

(+2.5)

(28) Grip strength (β =

−0.06, p = 0.020)

Physical activity (β

= −0.58 years per

flights of stairs

climbed)

(40)

Focal Epilepsy

(medically refractory:

+4.5; newly

diagnosed: +0.9)

Lung function (β =

−0.072, p =

0.020)

Education (β =

−0.95 yrs per

school year)

(45) Music playing

(amateur: 1age

= −4.03;

professional: 1age

= −3.22 years)

(42)

Malnutrition

(females: 1age =

+2.74; males:

1age = +0.03)

(43)

TBI (GM: +4.66; WM:

+5.79)

(27) Walking speed (β

= 0.13, p = 0.004)

Negative life

events (β = +0.37

yrs per event)

(44)

NHANES, National Health and Nutrition Examination Survey; LBC1936, Lothian Birth Cohort 1936; HIV, Human Immunodeficiency Virus; TBI, traumatic brain injury; HR, Hazard Ratio;

∆Age, difference between biological and chronological age; AR, aging ratio between biological and chronological age.
aHealthy aging (frailty) measures: cognitive function, fluid-type intelligence; grip strength, right-hand grip strength (measured by a dynamometer); lung function, forced expiratory volume

in 1 second (FEV1 ); walking speed, time to walk 6 meters. Beta and p-value of linear association between 1age and frailty measures are reported.
b
1age (years) are reported where available, unless otherwise stated. For blood-based BA, we report inferred Aging Ratios (24) up to the age of 50, after which the ratio reaches a

plateau. For physical activity, education and negative life events, we report the resulting change in 1age per unitary increase of the independent variable.

In the same study, authors investigated also the relation
of 1BrA with frailty, observing significant associations with
weaker grip strength, poorer lung function, slower walking
speed, and lower fluid intelligence (Table 2). Moreover, they
observed a positive association with allostatic load, a composite
measure of physiological and biological parameters which
reflects the accumulation of “wear and tear” signs during
lifespan (5).

FUTURE PERSPECTIVES

The discoveries reviewed above support the use of age
discrepancies based on blood tests and neuroimaging data as
sensible markers of public health in the general population.

However, these algorithms still present some limitations.
First, the “black box” effect associated to many ML algorithms
often does not allow to completely understand the relationships
among features and labels and how they are estimated. Classical

statistical methods and the knowledge of the medical/biological
problem are of great help in this case. Second, the difference
between BA and CA is basically a measure of prediction
error of CA, which includes not only the discrepancy due
to actual biological aging, but also errors associated to the
input parameters used. This extends to any instrumental,
biochemical or biometric measure potentially used as input
feature. Moreover, these aging markers may be further improved
at the methodological level and require validation in independent
populations (2, 6). To reach this goal, in the present paper we
would like to draw a strategy to further develop and test such
markers in our population-based cohort, the Moli-sani study. A
summary of all the variables and observations available in our
cohort is reported in Table S1.

Thanks to the availability of instrumental measures, additional

organ- or system-specific BA estimates could be developed and
tested in our cohort (Figure S1). As an example, spirometry

variables could help us compute a lung age which better
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predicts the pulmonary function of subjects, compared to models
developed so far, which exploited one (7) or few variables
(8). Similarly, we could exploit instrumental measures from
electrocardiogram to compute a heart age, or better try to
include blood- and vessels-related variables to build a more
comprehensive model which predicts BA of the cardiovascular
system. Another ambitious project consists of developing a
comprehensive model for the estimation of BA, based on
all the features available at baseline, and test the predictivity
of this “holistic BA” in terms of mortality, frailty and other
variables of public health interest (e.g., hospitalizations). Given
the availability of DNA samples in our biobank, these approaches
could possibly include also genetic and epigenetic data. This
would allow us to implement new models for the estimation
of BA, which may be more accurate and robust, in light of
the complementarity of epigenetic clocks with independent BA
measures (5), of their strong correlation with CA (14, 15),
and of the number of genetic associations already detected
with longevity (49). To the best of our knowledge, the above
mentioned approaches have never been attempted before, hence
they would represent a notable improvement compared to
models currently available.

Overall, the novel scenarios opened up by the availability of
massive volumes of data in health research and by the possibility
to link them with biological and environmental variables from
different sources will hopefully allow us to take part to the “Big
Data revolution.”
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