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Background
Nowadays, single-cell RNA sequencing is being generally used in biology and iatrology 
related areas. The efficient methods used in COVID-19 researches these days would be 
a good example. Many researchers used single cell RNA sequencing data to determine 
the sensitivity of organs other than the lungs, and found that the heart, esophagus, kid-
ney, and ileum are also munitive organs [1–4]. One of the main advantages of single-cell 
RNA sequencing (scRNA-Seq) is that it can be clustered unsupervised to determine cell 
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types [5]. Normalization and dimension reduction methods are typically used for data 
preprocessing before clustering procedure. The normalization methods are designed to 
eliminate technical noise in scRNA-Seq data. Previously, many advanced normalization 
methods were proposed to preprocess scRNA-Seq data, such as TMM [6], SAMstrt [7], 
Scran [8], BASiCS [9], SCnorm [10] Linnorm [11], ORNA [12] and FSQN [13]. SAMstrt, 
Scran, SCnorm, Linnorm and TMM preprocesses data by calculating the scaling factor 
of the gene expression of each cell.

Most single-cell RNA-seq data is sparse, and almost 90% data is zero measurements. 
so we use dimension reduction methods to convert the high-dimensional data into 
low-dimensional data. Sammon [14] mapping and T-SNE [15] are dimension reduction 
methods that keeps the data manifold unchanged, while principal component analysis 
(PCA) are designed to extract the important information. Methods like LSPCA [16] and 
ESPCA [17] combines traditional PCA with other algorithms to overcome the short-
comings of PCA. In addition, some clustering methods also provide normalization and 
dimensionality reduction methods, such as Seurat [18] and SC3 [5].

Various normalization and dimension reduction methods use different data processing 
algorithms and obtain different clustering results. Ideally, normalization and dimension 
reduction methods should produce high-quality data, and the aggregation results should 
be meaningful. Due to poor clustering trends, completely random data is not conducive 
to clustering [19]. In order to solve this problem, we propose NDRindex (Normaliza-
tion and Dimensionality Reduction index) to evaluate the degree of data aggregation. 
By comparing all combinations of normalization and dimension reduction methods, the 
data with highest NDRindex will be the selected for further clustering.

Implementation
As input, NDRindex requires a gene expression matrix, normalization methods and 
dimension reduction methods. To make this step easier, f NDRindex includes five nor-
malization methods TMM, Linnorm, Scale, Scarn, Seurat and three-dimensional reduc-
tion methods PCA, tSNE and Sammon.

Then NDRindex evaluates the data qualities. The prepossessed data with the highest 
NDRindex score are chose and saved, then outputted.

Finally, clustering techniques (k-menas, hclust, etc.), are applied to the selected data. 
After that, the clustering result is output. The entire workflow can be described as shown 
in Fig. 1.

The key to the NDRindex method is an algorithm for evaluating data quality. Not 
all data is suitable for clustering. If the data set does not contain natural clusters, 
the clustering results will be meaningless, so it is very important to analyze the ten-
dency of data clustering and evaluate its quality [19]. If the data set does not contain 
natural clusters, the clustering results will be meaningless, so it is very important to 
analyze the tendency of data clustering and evaluate its quality [19]. NDRindex algo-
rithm evaluates the cluster tendency by calculating the aggregation degree of data. 
The higher the degree of clustering, the more points are distributed in a relatively 
small area, indicating the existence of natural clusters. However, assessing the degree 
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of aggregation is a difficult problem. For example, given two points with the distance 
50  cm. If we consider points less than 5  cm apart aggregative, the two points will 
be considered as two clusters. If we consider points less than 500 cm apart, the two 
points will probably be considered as one cluster. Thus the degree of aggregation is 
closely related to the distances of the points and the definition of aggregation. Based 
on the above assumptions, the NDR index is designed as follows:

Step 1. Calculate the distance matrix and ‘average scale’ of data.
According to experience, if the data spread over a larger area, the definition of 

‘aggregative’ should be loosened; if there are more data points, the definition of 
‘aggregative’ should be enforced, so it is assumed that the range of data distribution is 
proportional to the definition of ‘close’, and the number of data points is Inversely 
proportional to the definition ‘close’. The ‘average scale’ of data is defined as M

log10 n
 , 

where M is the lower quartile distance of all point pairs and represents the range of 
data distribution, n is the sample number of the database. When the distance of two 
points is smaller than the ‘average scale’, they would be considered ‘close’.

Step 2. Clustering and find the point gathering areas.

Fig. 1  Workflow of NDRindex. First, gene expression matrix, normalization methods
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NDRindex find the point gathering areas by the following step:

(a)	 Select a point A randomly. Let A as an individual cluster and let cluster number 
K = 1.

(b)	 Find the point B closest to geometric center of the cluster that A belongs to, if the 
distance between geometric center and B is smaller than average scale (defined in 
step1), than add B to the cluster of A and update the geometric center. Otherwise, 
let B as a new individual cluster, and increase the cluster number K. Repeat step b 
until all point belongs to a cluster.

After that, NDRindex will find some clusters, each represents a point gathering area.
Step 3. Calculating the final index.
For each cluster, the average of the distances from all points to the geometric center is 

defined as the cluster radius. A smaller cluster radius indicates a smaller and dense point 
collection area and a larger degree of clustering. Therefore, we define the final index as:

where

To reduce randomness, NDRindex runs this algorithm 100 times and takes the average 
value as the final result.

The procedure below can be described as pseudo-code as Fig. 2 described.

Results
To compare the performance of NDRindex, we applied the method to simulated and 
real data sets. The simulation dataset contains data of different quality. Some of them 
have obvious patterns and are suitable for grouping, while others are not. As shown in 
Fig. 3, the results show that our method can clearly distinguish them. For real datasets, 
we select five widely used single-cell RNA-Seq datasets, five normalization methods 
(TMM [6], Linnorm [11], scran [8], Seurat [18], scale)) and three dimension reduction 
methods (tSNE [15], PCA, sammon [14]). We collect the output of each combination 
of methods and subject them all to four typical clustering algorithms and compare the 
clustering results with ARI. As shown in Fig. 4, the result shows that the NDRindex algo-
rithm chooses the data with the highest ARI, which shows that the NDRindex algorithm 
chooses a good combination of methods. We submit the data that NDRindex chosen to 
hierarchical clustering algorithm, and compare the result with other four methods (SC3 
[5], pcaReduce [20], SNN-Cliq [21], SINCERA [22], SRURAT [18]) by ARI. As showed 
in Fig. 5, the performance of NDRindex shows its relatively high accuracy and stability.

NDRindex = 1.0−
R
M

log10 n

R =

∑
i∈set of all clusters

∑
p∈i distance(p,geometric center of i)

size of i

K
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Discussion
For any REA-seq data, if there were at least one combination of normalization method 
and dimensionality reduction method, and the user believed that the optimal combina-
tion exists, NDRindex would be able to process as it is an evaluation to the best com-
binations of existing normalization methods and dimensionality reduction methods. If 
there is neither a defined normalization method nor dimensionality reduction, or the 
user cannot be sure whether at least one of the best combinations processes the data cor-
rectly, NDRindex would not be applicable. For instance, consider a data set consists of a 
homogeneous population of cells. If the user have multiple normalization methods and 

Fig. 2  Pseudo-code of NDRindex
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dimensionality reduction methods, NDRindex would be applicable. Since NDRindex is a 
method for evaluating combinations based on clustering trends and their results, it has 
no effect on the original data, so no new deviations will be introduced. The experiments 
shown by Figs. 4 and 5 have shown its accuracy, effectiveness, and bias are negligible.

Fig. 3  Results of NDRindex on simulative data. Every line shows one type of simulative data we test, line 1 to 
line 4 are two-dimensional normal distribution, square, hexagram, random shape, respectively. For each line, 
column a to column c are four data whose scale are decreased by order, column d is a line graph shows how 
NDRIndex changes with the decrease of data scale. When data become more aggregate, NDRindex always 
become higher
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Fig. 4  Data quality assessment of NDRindex chosen and unchosen. For each database, we test five 
normalization methods (TMM, Linnorm, scran, Seurat, scale) and three dimensionality reduction methods 
(tSNE, PCA, sammon). We select the result of each combination and submit all twelve of them to four typical 
clustering methods and benchmark the clustering results with ARI. Figure 3.a to 3.d shows the results of 
clustering methods kmeans, hclust, adpclust, ap_clust, respectively. Comparing the data NDRindex chosen 
(red rectangular) and the data NDRindex unchosen, we find that most of the chosen combination get the 
highest ARI (orange rectangular) during clustering, nearly all chosen combination get the ARI above upper 
quantile (blue rectangular). That means NDRindex do select high quality data that is suitable for clustering

Fig. 5  Comparison between NDRindex and other RNA-Seq processing methods. We submit the data that 
NDRindex choosen to hclust algorithm, and compare the result with other four methods (SC3, pcaReduce, 
SNN-Cliq, SINCERA, SRURAT) by comparing ARI. We run each method one hundred times, the dots represent 
the ARI between the inferred clusterings and reference labels of each running. and the height of rectangular 
represents the average ARI
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Conclusions
The computational analysis of single cell RNA-seq data is based on clustering models. 
The pre-processed data for normalization and dimensionality reduction have a signifi-
cant impact on the results of the clustering.

In order to select a better combination of standardization and dimensionality reduc-
tion methods for preprocessing single-cell RNA-Seq data, we designed NDRindex to 
evaluate the data quality of preprocessing results by evaluating the clustering trend and 
degree of data aggregation. The result of both simulative data and the real data shows the 
effectiveness of NDRindex.

Availability and requirements

Project name: NDRindex.
Project home page: https​://githu​b.com/zerom​akerl​ovesm​iku/NDRin​dex.
Operating system(s): Platform independent.
Programming language: R.
Other requirements: R 3.4.4 or higher.
License: GPL.

Abbreviations
RNAseq: RNA sequencing; scRNAseq: Single cell RNA sequencing; TMM: Trimmed mean of M-values; t-SNE: t-distributed 
stochastic neighbor embedding.
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