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Abstract: Lysine succinylation is an important post-translational modification, whose abnormalities
are closely related to the occurrence and development of many diseases. Therefore, exploring
effective methods to identify succinylation sites is helpful for disease treatment and research of
related drugs. However, most existing computational methods for the prediction of succinylation
sites are still based on machine learning. With the increasing volume of data and complexity of
feature representations, it is necessary to explore effective deep learning methods to recognize
succinylation sites. In this paper, we propose a multilane dense convolutional attention network,
MDCAN-Lys. MDCAN-Lys extracts sequence information, physicochemical properties of amino
acids, and structural properties of proteins using a three-way network, and it constructs feature
space. For each sub-network, MDCAN-Lys uses the cascading model of dense convolutional block
and convolutional block attention module to capture feature information at different levels and
improve the abstraction ability of the network. The experimental results of 10-fold cross-validation
and independent testing show that MDCAN-Lys can recognize more succinylation sites, which is
consistent with the conclusion of the case study. Thus, it is worthwhile to explore deep learning-based
methods for the recognition of succinylation sites.

Keywords: lysine succinylation; feature combination; deep learning; dense convolutional block;
convolutional block attention module

1. Introduction

Post-translational modification of proteins (PTM) is the process of covalent modifi-
cation on individual amino-acid residues after mRNA is translated into proteins. There
are hundreds of known PTMs, mainly including methylation, acetylation, ubiquitination,
and succinylation [1]. As a newly discovered PTM [2], succinylation is the process in
which a succinyl donor covalently binds succinyl to amino-acid residues by enzymatic or
nonenzymatic means. It mainly happens on lysine residues and participates in multiple life
activities through regulating the protease activity and gene expression [3]. After succinyla-
tion, protein structure is significantly changed due to the combination of lysine residues
and succinyl group with large molecular weight. Furthermore, the charge of lysine residues
changes from +1 to −1, resulting in a large charge change and further causing changes in
the physicochemical properties of amino acids and the functions of proteins [2,4]. Rele-
vant studies have shown that succinylation can regulate various metabolic processes [5,6],
whose abnormalities are closely related to the occurrence and development of multiple
diseases, including tumors, cardiometabolic diseases, hepatometabolic diseases, and ner-
vous system diseases [7,8]. Therefore, exploring an effective computational method for
predicting succinylation sites can help to reveal the differences of succinylation regulatory
mechanisms in normal physiological and pathological mechanisms, thus providing certain
theoretical support for disease treatment and the research of related drugs.
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At present, more and more researchers have applied computational methods to the
prediction of protein PTMs [9–17], RNA pseudouridine sites [18], and DNA methylation
sites [19]. Machine learning-based methods have been widely used in the prediction of
succinylation sites. Xu et al. proposed a predictor, iSuc-PseAAC, which incorporated the
peptide position-specific propensity into the general form of pseudo amino-acid compo-
sition and used support vector machine (SVM) to predict succinylation sites [9]. Hasan
et al. developed a computational tool, Succinsite. It distinguished succinylated and
non-succinylated lysine residues using k-spaced amino-acid pairs, binary encoding, and
amino-acid index property to represent protein sequences. For classification, a random
forest classifier was then applied [10]. The predictor Success, proposed by Lopez et al., ef-
fectively utilized the structural and evolutionary information to classify original sequences
and used SVM to distinguish succinylation from non-succinylation [11]. Jia et al. incorpo-
rated the sequence-coupled information into the general pseudo amino-acid composition
to represent original sequences, predicted succinylation sites by fusing a series of indi-
vidual random forest classifiers, and developed a web server, pSuc-Lys [12]. Ning et al.
proposed PSuccE using a combination of binary coding, physicochemical properties, and
other characteristics. It used information gain for feature selection and ensemble SVM for
the detection of succinylation sites [13]. Dehzangi et al. mapped the protein sequences
into position-specific scoring matrix profiles as input and adopted the C4.5 decision tree
to predict succinylation sites [14]. These methods have all made contributions to accu-
rately identify succinylation sites. However, traditional machine learning methods require
manual extraction of features and careful designation based on data, resulting in the depen-
dency on the database and weakening the generalization ability of the model. Therefore,
it is very necessary to explore a new deep learning-based method for the recognition of
succinylation sites.

Deep learning technology can automatically learn high-level representations from raw
data, which overcomes the shortcomings mentioned above. Therefore, it has been applied
widely in many fields such as image processing, natural language processing, and bioin-
formatics [20–23]. For predicting succinylation sites, Huang et al. used position-specific
amino-acid composition, the composition of k-spaced amino-acid pairs, and a position-
specific scoring matrix to characterize original sequences [24]. For feature extraction,
two-dimensional convolution was used in their method. Ning et al. merged deep neural
network (DNN) and penalized logistic regression (PLR) into a hybrid learning architecture,
HybridSucc, with 10 features considered [25]. Thapa et al. adopted one-hot encoding
and an embedding layer to encode protein sequences. Two-dimensional convolution was
also applied for feature extraction [26]. Moreover, the team explored other deep learning
frameworks to identify succinylation sites, including recurrent neural network (RNN), long
short-term memory network (LSTM), and a cascading model of LSTM and RNN. These
studies enrich the applications of deep learning methods in predicting succinylation sites.

Existing deep learning methods have verified the possibility of using deep neural
networks to predict succinylation sites. However, these methods adopted traditional
convolutional neural networks (CNNs) to extract features and ignored the information
exchange and transmission between high-level and low-level layers of the networks. As
an improvement of traditional CNNs, the dense convolutional network [27] connects the
inputs of different convolutional layers through dense connection. In this way, the high-
level convolutional layers can contain the complementary information passed from the
low-level ones, which offsets the shortcomings of traditional CNNs. Therefore, considering
the complementarity among the features at different levels, with dense convolutional
blocks being the feature extractor, can reduce information loss and further learn feature
representation with higher quality. Moreover, the max-pooling operation in traditional
CNNs selects the local optimal feature to realize certain feature optimization, which means
that other local features will be directly discarded. However, the discarded local features
also carry important information that helps to predict succinylation sites. Therefore, to
utilize these discarded features adequately, we introduce the convolutional block attention
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module (CBAM) [28]. It learns the differences in importance of different features at both
channel and spatial levels, which can realize adaptive optimization of features and further
improve the representation ability of the network to identify more succinylation sites.

In this paper, we propose a multilane dense convolutional attention network, MDCAN-
Lys, to predict lysine succinylation sites. Considering that succinylation of proteins leads
to changes in protein structures and physicochemical properties of amino acids, dense
convolutional blocks were adopted to extract sequence information, physicochemical
properties of amino acids, and structural properties of proteins to construct feature space.
CBAM was applied to weight feature maps and rank the importance of features to achieve
adaptive refinement. The refined features were then used as input of a softmax classifier
to predict succinylation sites. To verify the predictive performance of MDCAN-Lys, we
divided the dataset into a training set and independent test set for 10-fold cross-validation
and independent testing, respectively. The experimental results show that, compared
with existing methods, the proposed model can effectively learn the abstract pattern of
succinylation and identify more succinylation sites. The case study further demonstrates
that our model MDCAN-Lys can be used as a powerful tool to assist in the identification of
succinylation.

2. Materials and Methods

The prediction of lysine succinylation sites can be abstracted as a binary classification
problem, i.e., each lysine residue can be classified as having or not having succinylation
modification on the residue [29]. In this problem, we took lysine K in the original sequences
as the center and cut them into sequence fragments with length L = 2n + 1, that is, there
were n amino acids on both the left and the right sides of lysine K. For sequence fragments
containing fewer than L amino acids, we filled them with pseudo amino acids (represented
by ‘-’). Each sequence fragment is a piece of data. After numerical vectorization of these se-
quence fragments from three aspects of sequence information, physicochemical properties
of amino acids, and structural properties of proteins, three different characteristics were
obtained as the input of the model, MDCAN-Lys. The training set was then used to train
the model. Finally, the trained model was used for the prediction of the independent test
set and further analysis.

2.1. Dataset Collection and Preprocessing

We collected and downloaded the latest experimentally verified lysine-succinylated
protein data from the Protein Lysine Modification Database (PLMD) [30]. Considering that,
while generating the protein structural property indices, the SPIDER3 server [31] cannot
process protein sequences containing nonstandard amino acids, we manually deleted these
sequences. High sequence homology can cause model deviation and CD-HIT [32] can
be used to remove redundant protein sequences. Therefore, we used CD-HIT with the
threshold of 0.3 to strictly screen the protein sequences to ensure their quality. After that,
we totally retained 3085 protein sequences and randomly selected 10% (309 sequences) of
them as an independent test set. The remaining sequences were used as a training set. The
specific information is shown in Table 1.

Table 1. Number of positive and negative samples for training set and independent test set.

Dataset Type Number of Proteins Positive Samples Negative Samples

Training Set 2776 5885 64,140
Independent Test Set 309 684 6709

2.2. Information Encoding

The appropriate features of protein sequences or samples play very important roles
in the prediction of PTM sites [33]. After the succinylation of proteins, their structures
and the physicochemical properties of their amino acids will be changed. Therefore, after
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extracting sequence information, we further considered physicochemical properties of
amino acids and structural properties of proteins to get more abundant vectorization of
sequence fragments.

2.2.1. Sequence Information

One-of-21 encoding was used to encode sequence information of the peptide chains,
which is a discrete representation with value 1 at the index corresponding to the amino acid
in the peptide and 0 at all other positions [29]. For example, the one-of-21 encoding of a
sequence fragment ‘MKGLTLNCLG’ is [[000000000010000000000][000000001000000000000]
. . . [000001000000000000000]]. Thus, for a sequence fragment with length L, an L × 21-
dimensional vector representation would be obtained after one-of-21 encoding.

2.2.2. Physicochemical Properties

Atchley factors [34] were used to encode the physicochemical properties of amino
acids. Each amino acid was represented by five Atchley factors, namely, polarity, codon
diversity, secondary structure, molecular volume, and electrostatic charge. For pseudo
amino acids, we set the values of all the five factors to 0 (see Table S1, Supplementary
Materials, for details). For motifs of length L, we obtained corresponding values according
to the correspondence between amino acids contained in them and Table S1. As an example,
the corresponding vector representation of a fragment ‘MKGLTLNCLG’ is [[−0.663,−1.524,
2.219, −1.005, 1.212][1.831, −0.561, 0.533, −0.277, 1.648][−0.384, 1.652, 1.330, 1.045, 2.064]
. . . [−1.019, −0.987, −1.505, 1.266, −0.912][−0.384, 1.652, 1.330, 1.045, 2.064]]. Therefore, a
motif of length L can be represented by an L × 5-dimensional vector.

2.2.3. Structure Information

We used SPIDER3 [31] to generate information about protein structural properties,
including secondary structure (α-helix (ph), β-strand (pe), γ-coil (pc)), local backbone
torsion angles (ϕ, ψ, θ and τ), and accessible surface area (ASA, please see Table S2,
Supplementary Materials, for details). As shown in Table S2 (Supplementary Materials),
according to the amino-acid composition of the motifs, the corresponding values were
found to form the structural characteristic vector representation. For example, a sequence
fragment ‘MKGLTLNCLG’ can be represented as [[0.000, 1.000, 0.000, −91.666, 130.708,
113.914, −146.738, 135.508][0.360, 0.594, 0.046, −86.062, 98.634, 109.944, −153.800, 126.646]
. . . [0.132, 0.838, 0.029, 74.432, 7.934, 104.937, −97.450, 40.540]]. Thus, for motifs of length
L, L × 8-dimensional vectors would be obtained to represent structure information.

2.3. MDCAN-Lys Architecture

In this paper, a multilane dense convolutional attention network was proposed to learn
the potential mechanism of lysine succinylation. The direct fusion of various information
before feature learning causes mutual interference, weakens the quality of characteristics,
and further influences the effectiveness of feature extraction. Accordingly, we introduced
the design idea of a multilane network [35–37] and constructed three submodules, i.e.,
sequence module, physicochemical property module, and structure module. Each module
adopted stacked dense convolutional blocks [27] for feature extraction to reduce infor-
mation loss by considering the complementary characteristics between low-level and
high-level convolutional layers. Then, the stacked dense convolutional blocks were fol-
lowed by CBAM [28] to enhance useful information flow and generate advanced features.
Finally, the advanced features obtained from three submodules were fused and fed into
a softmax layer to make the final predictions [38]. The model architecture is shown in
Figure 1.
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Figure 1. The proposed architecture.

2.3.1. Dense Convolutional Network for Feature Extraction

In this part, considering the advantages of multilane network, we constructed a
sequence module, physicochemical property module, and structure module. For each mod-
ule, we applied a dense convolutional network for feature extraction to reduce information
loss during feature propagation. The specific implementation process is described below
(taking the sequence module as an example).

First, before the application of dense convolutional blocks, a one-dimensional con-
volutional layer was used to extract features. It took the one-of-21 encoding vectors of
motifs with length = L as input, and then generated low-level feature maps of sequence
information through the convolution operation, as shown in Equation (1).

X0 = σ(I ∗W + b), (1)

where I denotes the one-of-21 encoding vectors of motifs, and W and b are the weight
matrix and bias, respectively. They are trainable parameters during the model training. σ
is the exponential linear unit (ELU) activation function [39]. X0 represents the low-level
feature maps generated by the one-dimensional convolutional layer.

Then, a dense convolutional block was used to extract information from the low-
level feature maps X0. The dense convolutional block was composed of several one-
dimensional convolutional layers with incrementing number of convolutional kernels. Each
convolutional layer received the information from previous convolutional layers in the
same dense convolutional block as input and generated a high-level feature representation
of the sequence information. Taking the l-th convolutional layer in the dense convolutional
block as an example, its calculative process would be as shown in Equation (2).

Xl = σ
([

X0; X1; . . . ; Xl−1
]
∗W ′ + b′

)
, (2)

where Xl−1 denotes the feature maps generated by the (l − 1)-th convolutional layer in
the dense convolutional block, [.] refers to the concatenation operation along the feature
dimension, W ′ and b′ are weight matrix and bias, which are trainable parameters during
model training, σ is the ELU activation function [39], and Xl refers to the feature maps
generated by the l-th convolutional layer in the dense convolutional block. Thus, the
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output of a dense convolutional block is the concatenation along the feature dimension of
low-level feature maps X0 and feature maps generated by each convolutional layer in the
dense convolutional block, i.e., [X0; X1; . . . ; Xl ].

Finally, we used a transition layer for convolution and activation operation on the
output of the dense convolutional block. The process of the transition layer is shown in
Equation (3).

X = σ([X0; X1; . . . ; Xl ] ∗W ′′ + b′′ ), (3)

where W ′′ and b′′ refer to weight matrix and bias, respectively, σ denotes the ELU activa-
tion function [39], and X denotes the output of the transition layer. Then, to reduce the
dimension of the feature maps and the risk of overfitting, the average-pooling operation
was used on the output of the transition layer.

In the sequence module, stacked dense convolutional blocks were composed of multi-
ple identical dense convolutional blocks in series, so as to extract and generate the advanced
features of sequence information, Xseq. Here, we set the number of dense convolutional
blocks to three (please see Table S3, Supplementary Materials, for details). Similarly, the
physicochemical property module and structure module also generated corresponding
advanced features Xatc and Xstru.

2.3.2. CBAM for Adaptive Feature Optimization

Considering that different features have different importance, we introduced CBAM
after the dense convolutional network of each module to weight feature maps and enhance
useful information flow, thereby further improving the discriminant ability of the net-
work [28]. CBAM is a simple but effective attention module of feedforward convolutional
neural network, which is composed of a channel attention module and spatial attention
module. Given the input feature, CBAM inferred corresponding attention mapping along
two independent dimensions of channel and space to realize adaptive feature optimization.
The implementation process is described below.

The channel attention module highlights important features by setting importance
scores for different channel features. Taking the sequence module as an example, the
channel attention module took the advanced feature Xseq generated by the stacked dense
convolutional blocks as input. Through the average-pooling and max-pooling operations,
the spatial feature information for Xseq was aggregated from global and local perspectives
to generate two different spatial context descriptors. The two descriptors were then
simultaneously fed into a shared fully connected layer to generate channel attention maps.
The channel attention weights were obtained after element-wise summation operation and
activation operation of the two generated channel attention maps, as shown in Figure 2.
The output features of the channel attention module were obtained through element-wise
multiplication between channel attention weights and the input advanced feature Xseq.
The calculative process is shown in Equation (4).

Xseq
c = F(Xseq, σ(MLP(AvgPool(Xseq)) + MLP(MaxPool(Xseq)))), (4)

where AvgPool(Xseq) and MaxPool(Xseq) represent average-pooling and max-pooling oper-
ations on the advanced feature Xseq, respectively, MLP represents the shared fully-connected
layer, σ refers to the sigmoid function, σ(MLP(AvgPool(Xseq)) + MLP(MaxPool(Xseq)))
denotes the channel attention weights obtained by the channel attention module, F(.) refers to
the element-wise multiplication between the input feature Xseq and channel attention weights,
and Xseq

c is the output of channel attention module, which is also the intermediate feature
of CBAM.
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Figure 2. The channel attention module in convolutional block attention module.

The spatial attention module took the output feature Xseq
c of the channel attention

module as input and generated spatial attention maps using interspatial relationship of
features. Unlike the channel attention module, while calculating the spatial attention, the
input feature Xseq

c was compressed first from the channel level. Then, the average-pooling
and max-pooling operations were carried out along the channel axis to generate feature
descriptors. The feature descriptors were concatenated to generate an efficient descriptor.
After that, a convolutional layer was applied to generate spatial attention weights on the
descriptor. The process is shown in Figure 3. The output of the spatial attention module
was obtained through the element-wise multiplication operation between spatial attention
weights and the input feature Xseq

c . The calculative process is shown in Equation (5).

X(seq) = F(Xseq
c , σ( f 7×7([AvgPool(Xseq

c ); MaxPool(Xseq
c )]))), (5)

where [AvgPool(Xseq
c ); MaxPool(Xseq

c )] denotes average-pooling and max-pooling operations
along the channel axis and the concatenate operation, f 7×7 denotes a convolution operation with
the filter size of 7× 7 [28], σ is the sigmoid function, σ( f 7×7([AvgPool(Xseq

c ); MaxPool(Xseq
c )]))

refers to the spatial attention weights obtained by the spatial attention module, F(.) is the
element-wise multiplication between the input feature Xseq

c and the spatial attention weights,
and X(seq) is the output feature of spatial attention module, which is also the final output
of CBAM.

Figure 3. The spatial attention module in convolutional block attention module.

Through the process described above, the sequence module got the weighted ad-
vanced feature, X(seq). Similar to the sequence module, the corresponding weighted
advanced features of the physicochemical property module X(atc) and structure module
X(stru) were also obtained through CBAM. Finally, the weighted advanced features of three
modules were connected in series to obtain a fusion feature X for classification. In this
paper, the softmax classifier was used to predict succinylation sites. The softmax layer
took the fusion feature X as input and obtained the predicted categories of the samples
after weighted summation and activation operations. The specific process is shown in
Equation (6).

P(y = i|x) =
exp(WS

i ∗ X + bS
i )

∑2
i=1 exp(WS

j ∗ X + bS
j )

, (6)

where WS
i and WS

j are weight matrices, bS
i and bS

j are bias terms, and P(y = i|x) denotes
the probability of sample x being predicted to be class i. While predicting succinylation
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sites, it has i ∈ {0, 1}. Moreover, for each sample x, the prediction class of the softmax
classifier is the category with a higher probability value.

2.4. Model Training

In this study, our deep learning model was implemented using Keras 2.1.6 and
TensorFlow 1.12.0. While training the model, we adopted dropout [40], early stopping
strategy, and L2 regularization to prevent overfitting to further ensure the effectiveness of
the model. For solving the data imbalance, we adopted the method of class weight and set
the ratio of positive samples and negative samples to 10.9:1. In this way, the model could
learn the sequence mechanism from succinylated samples, thus increasing the influence
of positive samples and improving the ability of the model to recognize succinylation
sites. Additionally, during model training, we used cross-entropy as the cost function and
the Adam algorithm [41] to optimize the objective function. To ensure the stability of the
training process, we set the learning rate and batch size to 0.0001 and 1000, respectively.

2.5. Performance Evaluation

Several statistical measures were considered to evaluate the performance of the pro-
posed model and other predictors. They were sensitivity (Sn), specificity (Sp), accuracy
(Acc), Matthew’s correlation coefficient (MCC), and geometric mean (Gmean). The defini-
tions are as follows:

Sn =
TP

TP + FN
, (7)

Sp =
TN

TN + FP
, (8)

Acc =
TP + TN

TP + TN + FP + FN
, (9)

MCC =
TP× TN − FP× FN√

(TP + FP)× (TP + FN)× (TN + FN)× (TN + FP)
, (10)

Gmean =

√
TP× TN

(TP + FN)× (TN + FP)
, (11)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively. Sn was used to evaluate the accuracy in identifying succinylation
sites. Sp revealed the predictor’s ability to recognize non-succinylation sites. Acc measured
the number of correctly classified lysine residues. When the positive and negative samples
were unbalanced, MCC could be used to measure the classification quality of a binary
classifier [42]. Gmean is another indicator for measuring the quality of a classifier, which
herein measured the balance between the classification performance of succinylated and
non-succinylated sites [43,44]. We also used the area under the receiver operating charac-
teristic (ROC) curve (AUC) and the area under the precision recall rate (PR) curve (AUPR)
to further access the overall performance of the model.

To accurately evaluate the performance of the proposed model on each statistical
index, k-fold cross-validation and independent testing were adopted. For k-fold cross-
validation, we took k = 4, 6, 8, and 10 for experiments.

3. Results and Discussion
3.1. Selection of Window Size

The choice of window size is closely related to the performance of methods. Different
methods usually have different appropriate window sizes. Jia et al. and Lopez et al. set L
to 31 [12,45]. Thapa et al. proved through experiments that 33 was the optimal length [26].
Hasan et al. set the window size to 41 for their experiments [46]. Ning et al. set L to 21
and 51 [13,47]. To explore the optimal window size of the proposed model in this paper,
we performed 10-fold cross-validation using the training set in Table 1. Considering that
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the sequences with length greater than 40 may form structural domains [48], which may
extract more structural information and potentially cause deviation of the model, we set L
to values from 19 to 39 for experiments and recorded the values of AUC and MCC obtained
using different window sizes. The results are shown in Figure 4. From Figure 4, we can see
that the values of AUC and MCC increased until L = 35. Moreover, when L was 33, the
values both reached the maximum. Thus, a window size of 33 was adopted in this paper.
To verify if MDCAN-Lys was overfitting with L = 33, we drew the training/validation
loss/accuracy curve for the 10-fold cross-validation on the training set shown in Table 1
(for details, please refer to Figure S1, Supplementary Materials). According to the curve
trend, we concluded that the model proposed in this paper was not overfitted. To further
verify the rationality of the selected length, we analyzed the positive and negative samples
with L = 33 using Two Sample Logos [49], as shown in Figure 5. From Figure 5, we can
see that the differences in amino-acid distribution between positive and negative samples
were great at positions greater than −16 or less than 16, which provides certain biological
support for the choice of 33 as the optimal window size [46,47,50].

Figure 4. AUC and MCC values vary with different window sizes for 10-fold cross-validation: (a) the
values of AUC under different window sizes; (b) the values of MCC under different window sizes.

Figure 5. Two Sample Logos of positive and negative samples with L = 33.

3.2. Comparison with Existing Methods

To evaluate the performance of the proposed model, we compared MDCAN-Lys
with other existing methods for predicting succinylation sites. Six representative methods
were considered, namely, iSuc-PseAAC [9], SuccinSite [10], pSuc-Lys [12], HybridSucc [25],
DeepSuccinylSite [26], and iSuc-PseOpt [45]. Among them, iSuc-PseAAC, SuccinSite,
pSuc-Lys, and iSuc-PseOpt are classical traditional machine learning-based methods for
recognizing succinylation sites. The methods they use include SVM, random forest, and
integrated random forest. HybridSucc adopts 10 feature representations, such as position-
specific scoring matrix and accessible surface area, to characterize protein sequences and
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merges DNN and PLR into a hybrid-learning architecture. Since these methods only
provided web servers, we evaluated them only on the independent test set in Table 1.
DeepSuccinylSite is a leading application of the deep learning-based methods to predict
succinylation sites. It performed one-hot encoding and embedding encoding on the protein
sequences and used CNN for feature extraction. For the experiments based on the training
set in Table 1, to compare the performance of multilane dense convolutional attention
network and traditional CNNs, we reproduced DeepSuccinylSite using both one-hot and
embedding encoding to represent sequences and recorded the results of 10-fold cross-
validation, as shown in Table 2. To further evaluate the robustness of the proposed model,
we performed k-fold cross-validation with k = 4, 6, and 8. The results are also shown in
Table 2.

Table 2. The k-fold cross-validation performance of our method vs. DeepSuccinylSite (the data are percentages). DeepSuc-
cinylSite a and DeepSuccinylSite b denote DeepSuccinylSite with one-hot encoding and embedding encoding. The highest
value in each category is shown in italic.

Method Sn Sp Acc MCC Gmean AUC AUPR

DeepSuccinylSite a 69.84 68.11 69.87 38.16 68.77 75.92 72.63
DeepSuccinylSite b 75.69 55.62 65.66 32.03 64.80 71.66 68.93
Our Method (k = 4) 63.69 77.48 76.32 26.11 69.76 79.36 24.28
Our Method (k = 6) 60.58 79.59 77.99 26.48 68.65 79.73 24.96
Our Method (k = 8) 67.26 75.71 74.99 26.80 71.03 79.94 25.33

Our Method (k = 10) 66.81 76.75 75.91 27.36 71.37 80.35 25.88

From Table 2, we can see that our method obtained higher Sp, Acc, Gmean, and
AUC, indicating that our proposed model had a good performance on the training set.
However, the MCC and AUPR of our method were relatively low (the same applies to
the results of k-fold cross-validation when k = 4, 6, and 8 except for the value of Gmean
when k = 6). This is because the class weight adopted in our method focused more on
forcing the model to learn the potential mechanism of positive samples during training.
While preprocessing the dataset, DeepSuccinylSite implemented undersampling on the
benchmark dataset and constructed a balanced subset for model training. However, MCC
and AUPR are usually sensitive to the imbalance of datasets [42,44]. Furthermore, it
is worth noting that, although DeepSuccinylSite b had a higher Sn, its Sp was 55.62%,
indicating that, while DeepSuccinylSite b could recognize most succinylation sites, there
were still many non-succinylated sites identified as succinylated sites. In the same 10-fold
cross-validation, our method achieved Sn of 66.81% with higher Sp, which indicates that
MDCAN-Lys could simultaneously recognize most non-succinylation and succinylation
sites. In addition, for both DeepSuccinylSite b and our method, the values of Sn and Sp were
somewhat confrontational, which is consistent with those described in [44]. On the whole,
our proposed multilane dense convolutional attention network could extract features with
higher quality to learn the differences in potential mechanism between succinylated and
non-succinylated sequences.

To analyze the robustness of the proposed model, we further performed k-fold cross-
validation setting k = 4, 6, and 8, the results of which are shown in Table 2. From Table 2,
we can see that there was no significant fluctuation among the index values in the four
cases, especially for MCC, Gmean, AUC, and AUPR. The congruence of results for k-fold
cross-validation indicates the promising performance of MDCAN-Lys and that our model
is robust.

To further compare the predictive ability of MDCAN-Lys with other methods, we
uploaded the independent test set in Table 1 to the web servers provided by these meth-
ods. According to the prediction results obtained from the web servers, we calculated
corresponding values of Acc, Sn, Sp, MCC, and Gmean (for DeepSuccinylSite, we trained
the model based on the training set and made predictions on the independent test set
in Table 1). For these methods, we were unable to report their AUC and AUPR values,
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because there are no independent tools provided. The experimental results are shown in
Table 3.

Table 3. Comparison of MDCAN-Lys with existing predictors using the independent test set (the data are percentages).
DeepSuccinylSite a and DeepSuccinylSite b represent DeepSuccinylSite with one-hot encoding and embedding encoding.
The highest value in each category is shown in italic.

Method Acc Sn Sp MCC Gmean AUC AUPR

iSuc-PseAAC 82.34 13.29 89.23 2.32 34.44 - -
iSuc-PseOpt 72.33 31.17 76.45 2.32 48.81 - -
SuccinSite 84.20 58.79 86.74 34.51 71.41 - -
pSuc-Lys 78.39 23.22 83.89 5.47 44.14 - -

HybridSucc 63.00 39.00 65.40 2.65 50.50 - -
DeepSuccinylSite a 56.96 68.42 55.79 14.07 61.78 66.75 16.77
DeepSuccinylSite b 62.63 65.35 62.35 16.37 63.83 68.67 17.48

Our Method 72.96 70.32 73.23 27.33 71.76 79.03 25.24

As can be seen from Table 3, for the independent testing, our model MDCAN-Lys
obtained higher values of Sn, Gmean, AUC, and AUPR, which indicates the effectiveness
of our method. This comparison considered four traditional machine learning methods
(iSuc-PseAAC, iSuc-PseOpt, SuccinSite, and pSuc-Lys) and two deep learning methods
(HybridSucc, and DeepSucinylSite); as such, we discuss them independently. Compared
with the deep learning-based methods, MDCAN-Lys achieved the highest values of Acc, Sn,
Sp, MCC, Gmean, AUC, and AUPR. That is, compared to traditional DNNs and CNNs, the
cascading model of dense convolutional blocks and convolutional block attention module
helped to extract more advanced and useful information to recognize succinylation sites.
For methods based on traditional machine learning, iSuc-PseAAC, iSuc-PseOpt, SuccinSite,
and pSuc-Lys all obtained higher Acc (except for iSuc-PseOpt) and Sp values, but lower
Sn, especially for iSuc-PseAAC, iSuc-PseOpt, and pSuc-Lys. However, Sn represents
the percentage of all positive cases that were predicted as positive examples, thereby
measuring the ability of the classifier to identify positive examples [50]. This suggests
that these predictors paid much attention to the negative samples, leading to failure in
accurately identifying more true succinylation sites. Moreover, the higher Acc values
obtained by these methods were partly due to the recognition of more non-succinylation
sites. In contrast, our method obtained the highest Sn (70.32%) among all the methods with
an Sp of 73.23%, indicating that our method could not only identify most non-succinylation
sites, but also had a better ability to identify the true succinylation sites. In the biological
field, the goal is to find as many succinylation sites as possible, which means that predictors
with higher Sn are more suitable for experimental verification [50]. This demonstrates
the effectiveness of our method. Moreover, it is worth noting that the web servers of
these methods were pretrained using most sequences. Therefore, it is possible that some
sequences in our uploaded test set were used to train the predictors and, thus, biased
their results. In this case, the promising results of our method suggest that it is worth
exploring the application of multilane dense convolutional attention network in predicting
succinylation sites.

3.3. Ablation Experiments

To verify the importance of the used three feature representations and the necessity
of each module in MDCAN-Lys, we performed ablation experiments from two aspects
(feature combination and model architecture) by 10-fold cross-validation using the training
set shown in Table 1.

3.3.1. Feature Combination Ablation Experiment

In this paper, we combined sequence information, physicochemical properties of
amino acids, and structural properties of proteins to characterize original sequences. To
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prove that all the three features help to predict succinylation sites, we conducted 10-fold
cross-validation on the basis of different single features or feature combinations. The
results are shown in Table 4. For the first column in Table 4, Feature a denotes sequence
information, Feature b denotes physicochemical properties of amino acids, and Feature c

denotes structural properties of proteins.

Table 4. The 10-fold cross-validation performance with different single features or feature combina-
tions (the data are percentages). The highest value in each category is shown in italic.

Feature a √ √ √ √

Feature b √ √ √ √

Feature c √ √ √ √

Acc 68.93 76.64 76.06 75.59 68.24 77.12 75.91
MCC 26.67 24.85 4.53 26.74 23.43 26.17 27.36
AUC 79.99 78.62 55.55 79.63 77.45 79.04 80.35

AUPR 25.70 23.98 10.36 24.62 22.70 24.46 25.88

Different columns in Table 4 refer to different single features or feature combinations.
The last column is the strategy that adopted three features synchronously, which was the
feature combination used in this paper. We recorded the values of Acc, MCC, AUC, and
AUPR under various cases. As shown in Table 4, the proposed model performed best
overall when all three feature representations were used. Although the value of Acc was
not the highest in this case, it was still higher than that obtained using only the sequence
information. Therefore, on a whole, we chose these three characteristics to characterize
protein sequences. This suggests that, using the sequence information, the quantitative
representation of each amino acid by secondary structure, local backbone torsion angle, and
accessible surface area can characterize the discrete information and important continuous
information of the local structure and properties of amino acids, thus helping the model to
better learn the underlying mechanism of succinylation [17,29].

3.3.2. Model Architecture Ablation Experiment

To verify the necessity of each part in MDCAN-Lys, we designed an ablation experi-
ment based on the model architecture. We defined a benchmark model, which took the
concatenation of sequence information, physicochemical properties of amino acids, and
structural properties of proteins as input and extracted features by traditional CNNs. Then,
other parts were added in turn, including the adoption of the multilane network, the use
of dense convolutional network, and the addition of CBAM. The experimental results are
shown in Figure 6 (for details, please refer to Table S4, Supplementary Materials).

Different colors in Figure 6 represent different model architectures, with the gray one
being the baseline model mentioned above. The yellow one shows the results of multi-
lane CNN, whose MCC, AUC, Gmean, and AUPR were all improved. The improvement
indicates that using a multilane network to extract three features separately can effec-
tively avoid information crosstalk and enable the model to learn feature representations
with higher quality. To verify the advantages of dense convolutional network compared
with traditional CNNs, we further changed the multilane CNN into a multilane dense
convolutional network (the results are shown in blue). From Figure 6, we can see that
MCC, Gmean, AUC, and AUPR were all improved, indicating that the dense convolutional
network can simultaneously use characteristic information at different levels through
dense connection. In this way, it can adequately utilize information flow in the network
to further obtain higher-quality abstract representation. Lastly, CBAM was added after
each dense convolutional network (the proposed model in this paper). All the indicators
were further improved, which shows that, by learning the feature weights on the channel
and spatial levels, CBAM can judge “what” and “where” information of a given input
sequence is meaningful. In addition, average-pooling and max-pooling used in the two
modules of CBAM could consider both the most important local characteristic and the
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global characteristics, which offsets the information loss caused by using the max-pooling
operation only. Furthermore, it enhances the representation ability of the network so that
the model can get better performance.

Figure 6. The 10-fold cross-validation performance with different model architectures. Different
colors represent different model configurations. Red denotes our proposed model.

3.4. Biological Insights into Succinylation Prediction

To further analyze the predictive results of each classifier on the independent test
set, similar to [11,17], we manually counted the predictive results of human proteins in
the independent test set (see Table S5, Supplementary Materials, for detailed results).
Then, according to their Uniprot Accessions, we searched the Uniprot database (https:
//www.uniprot.org/, accessed on 9 February 2021) [51] for their important functions and
pathways. From Table S5, we can see that MDCAN-Lys could predict most proteins with
more than two succinylation sites. These proteins include deoxycytidine kinas (Uniprot
Accession P13667), which is related to protein folding and protein secretion, cyclohydrolase
(Uniprot Accession P13995), which is concerned with folic acid and one-carbon metabolic
processes, peroxisomal multifunctional enzyme type 2 (Uniprot Accession P51659), which
is a bifunctional enzyme acting on the peroxisomal beta-oxidation pathway for fatty acids,
and leucine-rich PPR motif-containing protein (Uniprot Accession P42704), which plays a
role in RNA metabolism in both nuclei and mitochondria. Moreover, MDCAN-Lys showed
accurate identification of proteins with two succinylation sites. Some of these proteins
include N-alpha-acetyltransferase 15 (Uniprot Accession Q9BXJ9), whose activity may be
important for vascular, hematopoietic, and neuronal growth and development, ADP-ribose
glycohydrolase MACROD1 (Uniprot Accession Q9BQ69), which could be involved in
invasive growth by downregulating CDH1 in endometrial cancer cells, methylglutaconyl-
CoA hydratase (Uniprot Accession Q13825), which is related to the leucine catabolic process,
and 40S ribosomal protein S11 (Uniprot Accession P62280), which plays a role in the nuclear-
transcribed mRNA catabolic process. In addition, MDCAN-Lys correctly detected some
proteins with only one succinylation site. A few examples are myristoylated alanine-rich C-
kinase substrate (Uniprot Accession P29966), which can bind calmodulin and synapsin, and
serine/threonine-protein phosphatase PP1-gamma catalytic subunit (Uniprot Accession
P36873), which regulates glycogen metabolism, muscle contractility, and protein synthesis.
Lastly, there are some proteins whose sites can only be detected by one method. Two
of these proteins were phosphatidylethanolamine-binding protein 1 (Uniprot Accession
P30086), which acts as a serine protease inhibitor, and NADH dehydrogenase 1 alpha
subcomplex subunit 7 (Uniprot Accession O95182), which functions in the transfer of
electrons from NADH to the respiratory chain. The results on the independent test set
show that our method could identify a large number of succinylation sites.

https://www.uniprot.org/
https://www.uniprot.org/
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To analyze the predictive performance of each classifier more intuitively, we compared
the predicted results of one succinylated protein (P23847) in the independent test set
visually, as shown in Figure 7 (see Table S6, Supplementary Materials, for the predicted
results). A total of 13 sites were modified with succinylation for the protein. In Figure 7,
mispredicted amino acids are shown in red and correctly predicted amino acids are shown
in green. We note that SuccinSite predicted all sites correctly. Actually, we checked the
training set provided on the web server of SuccinSite and found that protein P23847
was used as one of the training data for model training. Thus, we do not discuss much
about SuccinSite in this case. Beyond this, from Figure 7 we can see that MDCAN-Lys
predicted the most correct sites, and the prediction accuracy was significantly higher than
other predictors, which indicates that the feature combination and model architecture
we adopted were reasonable and effective. It is worth noting that different methods did
not predict exactly the same correct sites. Additionally, there were still some methods
with high accuracy, such as DeepSuccinylSite a and iSuc-PseOpt. That is, although our
method could predict more succinylation sites correctly, all the predictors should be used
in a complementary way to obtain more complete outcomes to identify more potential
succinylation sites.

Figure 7. Visualization comparisons of various classifiers on protein P23847: (a) iSuc-PsaAAC;
(b) pSuc-Lys; (c) HybridSucc; (d) SuccinSite; (e) DeepSuccinylSite a; (f) DeepSuccinylSite b; (g) iSuc-
PseOpt; (h) our method.
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4. Conclusions

In this paper, we proposed a new model based on deep learning for predicting succiny-
lation sites, MDCAN-Lys. Considering sequence information, physicochemical properties
of amino acids, and structural properties of proteins for feature representations, MDCAN-
Lys used a multilane dense convolutional network to extract features and a convolutional
block attention module to further optimize features. The results of k-fold cross-validation
and independent testing showed that MDCAN-Lys can be used as a powerful tool to
assist in the recognition of lysine succinylation modification. In addition, the results of
ablation experiments based on feature combinations and model architecture indicated that
using multilane dense convolutional attention network to extract sequence information,
physicochemical properties of amino acids, and structural properties of proteins can help
to transform the original sequence fragments into meaningful abstract representations,
thereby further helping the model to better complete the lysine succinylation prediction. In
the future, we will try to adopt more feature representations (such as a position-specific
scoring matrix [16,52–54] or protein function features [55]) and explore other deep learn-
ing networks (such as a capsule network [56,57] or improved CNN models [58]) for the
prediction of succinylation sites.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11060872/s1, Table S1. The detailed values of 5 atchley factors for all the amino
acids. ‘-’ means pseudo amino acid; Table S2. An example for the detailed values of structure
information. P(C), P(E), and P(H) are secondary structures. Phi, Psi, Theta, and Tau are local
backbone torsion angles. ASA means accessible surface area; Table S3. The 10-fold cross-validation
performance with different numbers of dense convolutional blocks on the training set in Table 1
(the data are percentages). The largest value for each indicator is highlighted in italic; Table S4. The
10-fold cross-validation performance with different model architectures (the data are percentages).
The largest value for each indicator is highlighted in italic; Table S5. Details on the predictive
results of human proteins for different methods on the independent test set. ‘Total’ means the
total number of succinylated sites of a particular protein. Method a denotes iSuc-PseAAC. Method
b denotes SuccinSite. Method c denotes pSuc-Lys. Method d denotes iSuc-PseOpt. Method e
denotes HybridSucc. Method f denotes DeepSuccinylSite with one-hot encoding. Method g denotes
DeepSuccinylSite with embedding encoding. Method h denotes MDCAN-Lys (our method); Table S6.
Details on the predictive results of protein P23847 in the independent test set for different methods;
Figure S1. The training/validation loss/accuracy curve of the proposed model MDCAN-Lys by
10-fold cross-validation with window size = 33 on the training set described in Table 1. The blue line
is training and the orange line is validation.
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