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IDH-wild type (wt) glioblastoma (GB) accounts for approximately 90%of all GB and has a poor
outcome. Surgery and adjuvant therapy with temozolomide and radiotherapy is the main
therapeutic approach. Unfortunately, after relapse and progression, which occurs in most
cases, there are very limited therapeutic options available. BRAF which plays a role in the
oncogenesis of several malignant tumors, is also involved in a small proportion of IDH-wt GB.
Previous successes with anti-B-Raf targeted therapy in tumors with V600E BRAF mutation
like melanoma, combined with the poor prognosis and paucity of therapeutic options for GB
patients is leading to a growing interest in the potential efficacy of this approach. This review is
thus focused on dissecting the state of the art and future perspectives on BRAF pathway
inhibition in IDH-wt GB. Overall, clinical efficacy is mostly described within case reports and
umbrella trials, with promising but still insufficient results to draw more definitive conclusions.
Further studies are needed to better define themolecular and phenotypic features that predict
for a favorable response to treatment. In addition, limitations of B-Raf-inhibitors, in
monotherapy or in combination with other therapeutic partners, to penetrate the blood-
brain barrier and the development of acquired resistance mechanisms responsible for tumor
progression need to be addressed.

Keywords: glioblastoma, BRAF V600E, targeted therapy, BRAF-inhibitors, MEK-inhibitors, IDH,
epithelioid glioblastoma
INTRODUCTION

Glioblastoma (GB) is themost frequent primary central nervous system (CNS) tumor, characterized by its
aggressiveness and poor prognosis, with a median overall survival of only 14-20 months (1). Despite
increasing knowledge of GB biology, the standard of care is still represented by radical surgical resection, if
feasible, followed by adjuvant radiotherapy (RT) and chemotherapy (CT) with temozolomide (TMZ) (2).
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Unfortunately, relapse and progression occur in most cases and
average overall survival (OS) is of no more than 5-7 months after
relapse, due to the very limited therapeutic options available (2, 3).

The raf murine sarcoma viral oncogene homolog B (BRAF)
proto-oncogene is located in the long arm of chromosome 7
(7q34) and encodes for the B-Raf protein, a serine/threonine
kinase belonging to the RAF protein family, which also includes
A-Raf and C-Raf (4). Raf proteins participate in the MAP kinase
(MAPK) signaling pathway, that regulates some of the main
cellular functions, including proliferation, differentiation, cell
motility and apoptosis (4, 5).

Under normal conditions, the MAPK pathway is activated by
several distinct stimuli, including growth factors, cytokines, and
ceramides and is downregulated by physiological negative feedbacks
(6). In the most characterized MAPK signaling cascade, ligand-
induced extracellular binding to cognate receptors (usually a
tyrosine kinase receptor [RTK]), induce activation of the Ras
GTPase protein that binds to a Raf protein family member,
which, in turn, leads to homo- or hetero-dimerize and triggering
of a phosphorylation cascade resulting in cell proliferation and
survival (Supplementary Figure 1) (4, 6).

However, aberrant activation of the MAPK pathway is
implicated in the development of many tumors. The most
frequent mechanism is represented by BRAF gene activating
mutations, which are present in ~7% of human cancers,
including melanoma (40%), colorectal adenocarcinoma (15%),
non-small cell lung cancer (NSCLC) (4%) and GB (8%) (7–9),

Following impressive beneficial effects obtained in BRAF-
mutant melanomas with B-Raf-inhibitors and their subsequent
approval, and considering the lack of therapeutic options for
resistant/relapsing GB, there has been a growing interest in using
this therapeutic approach has been rising in the last few years.
This review of the literature focuses on the biological
mechanisms that link BRAF mutations with cancer, the role of
such mutations in the context of GB, along with potential
therapeutic opportunities, pitfalls and challenges.
BRAF MUTATIONS: A BRIEF OVERVIEW

BRAFmutations can be divided into three classes (10, 11). Class I
mutations are related to codon 600, a segment of the BRAF
activating domain, and lead to the encoding of a constitutively
activated protein. The amino acid substitution of glutamic acid
with valine at codon 600 (V600E) accounts for more than 90% of
cases. The V600E mutation induces a stabilization of the B-Raf
protein, resulting in its activation without the need for
dimerization. A smaller percentage of mutations includes other
aminoacidic substitutions of codon 600, i.e. V600M, V600K,
V600R, V600D (9, 12).

Class II mutations induce the constitutive activation of B-Raf
through a Ras-independent dimerization. They are mostly caused
by the K601E, K601N, K601T and L597Q substitutions at the BRAF
activation segment and the G464, G469A, G469V, G469R
substitutions within the P-loop. This class also includes BRAF
gene fusions, the most common of which is the KIAA1549-BRAF
(11–13).
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Class III mutations are characterized by a reduced or absent
kinase activity that leads to an alteration of both Ras and B-Raf
heterodimers and enhancement of C-Raf-mediated MAPK
activation. The main class III mutations are: D954N, N581S,
G466V, D594G, G466E, G596D (11–13).
BRAF MUTATIONS IN GB

Class I mutations, especially the V600E are present in ~7% of all
CNS tumors; the frequency of class II and III mutations in CNS
tumors has not been sufficiently documented. BRAF mutations are
more prevalent in specific histotypes, with up to 60% of
pleomorphic anaplastic xanthoastrocytomas, 20-70% of
gangliogliomas, up to 10% of pilocytic astrocytoma and
approximately 8% of GB (15-20% in pediatric cases and 3% of
adult cases) harboring mutations (9, 14). Indeed, IDH-wild type
(wt) GB, which are considered as primary tumors, have a higher
prevalence of the V600E mutation compared with IDH-mutant GB,
that develop from astrocytomas and are considered as secondary
GB (15, 16). The correlation with specific GB histotypes has also
been evaluated. More in detail, a study analyzing the characteristics
of mutated GB in pediatric patients showed that all V600E-positive
tumors were primary GB with no mutation in IDH1 (17).
Additionally, 2/3 of these mutated tumors presented with the
giant cells histotypic variant, showing a heterogeneous
distribution of the mutation, mostly present in the giant cells (17).
Nevertheless, another study in giant cell GB failed to identify the
mutation (18). Conversely, the mutations were observed in 50-93%
of the rare GB epithelioid variant (18, 19). In fact, several studies
have suggested that epithelioid GB is related both histologically and
molecularly to anaplastic pleomorphic xanthoastrocytoma, which is
frequently enriched in V600E B-Raf mutations, as already
mentioned (20). The epithelioid GB is a rare and molecularly
heterogenous subtype that, differently from classic GB, usually
occurs in pediatric and young adult patients and is characterized
by large epithelioid cells which vaguely remind of melanoma cells
(Supplementary Figure 2). This histotype is also associated with a
higher frequency of hemorrhage and leptomeningeal dissemination
(21, 22). Nonetheless, no differences in the qualitative and
quantitative histological features or any radiologic imaging
features between mutated and wild-type epithelioid GB have been
identified (18). Importantly, the presence of V600E mutation
seemed to be associated with a relatively favorable prognosis (18).
Yet, a cohort of epithelioid GB in older patients with frequent BRAF
mutation and a molecular signature similar to IDH-wt GB has been
characterized by having a highly aggressive behavior (20).
B-RAF-INHIBITORS IN GB: CLINICAL
EVIDENCES

The B-Raf-inhibitors vemurafenib, dabrafenib and encorafenib
entered the Oncology clinical practice few years ago, after
demonstrating significant and profound survival improvements
in V600E-mutant melanoma (23, 24). These molecules pertain to
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the second generation of selective B-Raf-inhibitors. These orally
available, small molecules are effective on constitutively active
mutant B-Raf monomers. Their main mechanism of action is
based on the competitive occupation of the ATP binding pocket
that stabilizes the Raf kinase in its active conformation, so to
force the protein to take an inactive one (25). This results in the
disruption of the downstream MAPK signaling pathway, leading
to G1 cell-cycle arrest and apoptosis (25). Vemurafenib shows
activity against V600E, V600D and V600R BRAF mutations and
dabrafenib against the V600E, V600D, V600R and V600K, but
both drugs are not capable of inhibiting wild-type BRAF or non-
V600 mutations. Encorafenib is not only capable of targeting
V600E and V600K BRAF mutantions, but also displays some
inhibitory effect on wild-type BRAF (25).

Although the rates of BRAFmutation in GB are far lower than
in melanoma (8% vs 40%, approximately), in light of the limited
therapeutic options available for refractory/relapsing GB and
following the success of these drugs in other settings, there is a
growing interest in establishing a potential role for B-Raf-
inhibitors in this scenario.

To date, studies have shown promising results with second-
generation B-Raf-inhibitors essentially in V600E-mutant CNS
tumors, although data for the rarer variants (V600D, V600K,
V600R) are still sparse.

Sporadic cases of impressive treatment responses with
vemurafenib have been reported, including cases of complete
radiological regression of the disease, with prolonged
symptomatic control (26–28).

Remarkable therapeutic effects have also been documented with
dabrafenib, resulting in disease stabilization for several months or
years (29–31). Several studies in patients with brain metastases from
BRAF-mutant melanoma showed higher response rates with
dabrafenib compared to vemurafenib, suggesting that the former
might better penetrate the blood-brain barrier (BBB) with respect to
the latter, thanks to its smaller size (13).

Higher-quality evidence on the therapeutic efficacy of B-Raf-
inhibitors in GB recently came from the VE-BASKET trial, a
phase 2 study of non-melanoma tumors harboring BRAF V600E
mutation (32). Patients were divided into seven cohorts. The first
six included patients with prespecified tumors (NSCLC, ovarian,
colorectal, and breast cancers, cholangiocarcinoma, and multiple
myeloma), while the seventh cohort included other BRAF V600-
mutant cancers. Among them, 24 patients with different mutant
gliomas of any grade (6 properly affected by GB), received
vemurafenib after tumor progression with standard therapy (32,
33). Patients >16 years old who had not received previous
treatment with B-Raf or MEK-inhibitors were recruited,
including some requiring minimal dosing of vemurafenib (480
mg twice daily) because of poor tolerance. Patients continued
vemurafenib until tumor progression or intolerable toxicity. Key
end-points included confirmed objective response rate (ORR) by
RECIST version 1.1, progression-free survival (PFS), OS, and
safety (32). Malignant diffuse gliomas (GB and anaplastic
astrocytomas, 11 patients in total) showed an ORR of 9.1%
(95% confidence interval [CI]: 0.2 – 41.3%) and a confirmed
clinical benefit rate (CBR) of 27.3% (95%CI: 6.0 – 61.0%). Median
PFS was 5.3 months (95% CI: 1.8 - 12.9 months), with a median
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OS of 11.9 months (95% CI: 8.3 - 40.1 months) (32). However,
results were extremely heterogeneous depending on gliomas
grade/histotypes. In fact, low-grade IDH-wt gliomas provided
the most encouraging data, with the highest ORR, CBR, PFS and
OS (32). Unfortunately, the trial did not provide an extensive
molecular characterization of these tumors, nor patients were
tested for the V600 BRAFmutations immediately before entering
the trial. Therefore, possible reasons explaining these differential
results might be either that some tumors might have been the
result of the evolution of subclones with no BRAF alterations, or
the intratumoral mutational heterogeneity, with BRAF being only
one of multiple mutations that promoted tumor mass formation
and growth (32). A phase I/II clinical trial also showed promising
activity for dabrafenib in V600-mutant high-grade and low-grade
gliomas (34). However, detailed results regarding the 2 included
GB patients were not reported.

Current clinical data on pediatric/adult BRAF-mutant GB
treated with B-Raf-inhibitors (alone or combined with other
treatments) are provided in Table 1.
B-RAF INHIBITION PITFALLS,
MECHANISMS OF RESISTANCE AND
OVERCOMING STRATEGIES

Second-generation B-Raf-inhibitors present some limitations.
Firstly, they can effectively inhibit B-Raf monomers but not
dimers, which make them ineffective in case of class III
mutations. Secondly, as observed in melanoma, the efficacy of the
monotherapy with B-Raf-inhibitors is ultimately impaired by the
development of acquired (secondary) resistance, usually consisting
in the reactivation of MAPK by alternative pathways (35). It is
estimated that more than 90% of patients with BRAF mutated
melanoma develop resistance within 1 year of monotherapy. Several
trials demonstrated that an effective way of overcoming this issue,
was to combine B-Raf-inhibitors with MEK-inhibitors. This drug
class (binimetinib, cobimetinib, trametinib) is able to prevent the
activation of the protein ERK by inhibiting the downstream effector
of B-Raf. When used alone they have not been found to be
sufficiently effective, however in combination with B-Raf-
inhibitors rapidly became the novel standard of care, replacing
anti-B-Raf monotherapy, following significant improvements in
ORR, PFS and OS obtained in phase III pivotal trials (36–38). A
recent phase II study in BRAF-mutant NSCLC also showed positive
ORR and survival outcomes, leading to the approval of such
combinations also in this context (39). Currently US Food and
Drug Administration (FDA)-approved combinations are
vemurafenib+cobimetinib in melanoma, encorafenib+binimetinib
in melanoma, dabrafenib+trametinib in melanoma and NSCLC.
There is emerging evidence supporting the hypothesis of a synergic
effect of this combination therapy also in CNS tumors, which are
not exempt from the development of resistance (40).

A case report from Kushnirsky et al. demonstrated prolonged
complete response with the combination of dabrafenib and
trametinib after B-Raf inhibition failure in BRAF-mutant GB
(40). Another study reporting the clinical history of a patient
November 2021 | Volume 11 | Article 772052
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with an IDH-wt epithelioid GB, showed an impressive disease
regression with dabrafenib+trametinib therapy administered
after the development of spinal metastases, a severe condition
usually associated with a 3-month prognosis (21). Other reports
also showed rapid and clinically meaningfully responses to
dabrafenib+trametinib combinations, though highlighting the
development of a rapidly evolving disease after the insurgence
of resistance (41, 42).

There are currently many active phase I and/or II clinical
trials evaluating the tolerability, activity and efficacy of targeted
therapies with B-Raf-inhibitors, with or without MEK-inhibitors,
in patients with IDH-wt gliomas of both low and high grade,
whose results will be important for a more comprehensive and
clearer overview of the real potential of this therapeutic strategy
in the next future (Table 2).

Some of the most characterized mechanisms of resistance to
second-generation B-Raf-inhibitors include Raf isoform
switching, activation of RTKs, like IGF-1R or EGFR, and the
activation of the PI3K pathway (e.g. through PTEN loss or
activating mutation in PIK3CA) to promote cell survival (35).
Still, many mechanisms of resistance have yet to be fully
understood. Most of this knowledge is currently coming from
different tumor settings.

With respect to isoform switching, B-Raf inhibition that
blocks the phosphorylation of ERK also inhibits the negative
Frontiers in Oncology | www.frontiersin.org 4
feedback control on the Ras/Raf/MAPK pathway and may result
in a reactivation of MAPK through C-Raf-mediated
dimerization. Second-generation B-Raf-inhibitors are not
effective in this case (35, 43). To overcome this issue, several
molecules are currently under different stages of development in
largely non-CNS context and include: 1) dual B-Raf and Src
inhibition; 2) selective disruption of the B-Raf-mediated
signaling in mutant cells without affecting normal MAPK
pathway activation, so to reduce on-target toxicities and
development of second tumors (so-called paradox breakers);
3) binding to the DFG-OUT (inactive) conformation of the B-
Raf kinase; 4) pan-Raf inhibition; 5) inhibition of both Raf’s
dimeric and monomeric forms, so to potentially overcome the
resistance resulting from Raf dimerization (43).

Another potential cause of resistance to B-Raf-inhibitors is the
previously mentioned reactivation of the MAPK pathways via
hyperactivation of RTK. In this perspective, the amplification of
EGFR has been observed as a common alteration in GB that can
reactivate MAPK through alternative mediators such as C-Raf,
resulting in the formation of C-Raf/B-Raf heterodimers. Notably,
this mechanism of resistance can affect not only the B-Raf
monotherapy but also anti-B-Raf and MEK combinations, as
observed in patients with mutant EGFR (35, 43). These mutational
profiles have prompted the need to evaluate triple combination
therapies: currently, triple therapy with dabrafenib+trametinib
TABLE 1 | Available clinical data on pediatric/adult BRAF-mutant glioblastoma treated with B-Raf-inhibitors.

First
Author

Journal and
Year

Study
Type

CNS Tumor
Type

N.
Patients

Drug Best Response Treatment
Duration/PFS

Final Outcome/OS

Burger MC Oncology
Reports 2017

Case
Report

V600E GB 1 dabrafenib Nearly CR 3 months On treatment

Ceccon G Int J Mol Sci
2018

Case
Report

V600E eGB 1 dabrafenib SD 10 months PD

Qin C Front Oncol
2020

Case
Report

V600E GB 1 vemurafenib PR >2 years On treatment

Robinson
GW

BMC Cancer
2014

Case
Report

V600E GB 1 vemurafenib CR 6 months On treatment

Beba
Abadal K

JCO Precision
Oncology 2017

Case
Report

V600E GB 1 vemurafenib PR 11 months On treatment

Meletath
SK

JNCCN 2016 Case
Report

V600E HGG
(GB/AGG)

1 dabrafenib +
TTFields

CR >2 years On treatment

Schreck
KC

JNCCN 2018 Case
Report

V600E eGB 1 dabrafenib +
trametinib

SD 16 months On treatment

Kushnirsky
M

JCO Precision
Oncology 2020

Case
Report

V600E GB 1 dabrafenib +
trametinib

CR 11 months On treatment

Kanemaru
Y

Acta
Neuropathol
Commun 2019

Case
Report

V600E eGB 1 dabrafenib +
trametinib

PR 4 weeks PD (after treatment
suspension for lack of
funding)

Johanns
TM

J Natl Compr
Canc Netw
2018

Case
Report

Mixed V600E
PXA/eGB

1 dabrafenib +
trametinib +
bevacizumab

PR Approx. 4 months PD

V600E eGB 1 dabrafenib +
trametinib

PR 11 months PD

Kaley T J Clin Oncol
2018

Basket
Trial

V600E
Malignant
Diffuse Glioma

11* vemurafenib ORR 9.1% (95%CI: 0.2% -
41.3%); CBR 27.3% (95%CI:

6.0% - 61.0%)

mPFS 5.3
months (95% CI:
1.8 - 12.9)

mOS 11.9 months
(95% CI: 8.3 - 40.1)

Kieran MW Clin Can Res
2019

Phase I V600 HGG
and LGG

10° dabrafenib – 71.7 (5.7–130.4)
weeks#

PD
No
vember 2021 | Volu
CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; CI, confidence interval; mPFS, median progression-free survival; mOS, median overall survival;
ORR, overall response rates; CBR, clinical benefit rate; eGB, epithelioid glioblastoma; HGG, high-grade glioma; LGG, low-grade glioma; PXA, anaplastic pleomorphic xanthoastrocytoma;
AGG, anaplastic ganglioglioma; GB, glioblastoma; TTFields, Tumor-treating electromagnetic fields. *6 glioblastoma and 5 anaplastic astrocytoma; °2 glioblastomas; #HGG + LGG.
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TABLE 2 | Current clinical trials of B-Raf and/or MEK inhibitors in different grade BRAF-mutated gliomas.

STUDY PHASE AND PURPOSE RECRUITMENT
STATUS

TREATMENT DISEASE

PHASE I STUDY Active, not
recruiting

Vemurafenib ▪ Pediatric Recurrent/Refractory
BRAFV600E-mutant GliomasVemurafenib in Children With Recurrent/Refractory BRAF Gene V600E

(BRAFV600E)-Mutant Gliomas
PHASE I STUDY Recruiting ABM-1310

Cobimetinib
▪ Advanced Solid Tumor

▪ BRAF V600 MutationSafety of ABM-1310 in Patients With Advanced Solid Tumors

PHASE I, II STUDY Recruiting Dabrafenib ▪ Low Grade Glioma (LGG) of Brain With
BRAF Aberration

▪ High Grade Glioma (HGG) of the Brain
With BRAF Aberration

▪ Low Grade Glioma of Brain With
Neurofibromatosis Type 1

A Trial of Dabrafenib, Trametinib and Hydroxychloroquine for Patients With
Recurrent LGG or HGG With a BRAF Aberration

Trametinib
Hydroxychloroquine

PHASE I, II STUDY Completed Trametinib ▪ Cancer
Study to Investigate Safety, Pharmacokinetic (PK), Pharmacodynamic (PD)
and Clinical Activity of Trametinib in Subjects With Cancer or Plexiform
Neurofibromas and Trametinib in Combination With Dabrafenib in Subjects
With Cancers Harboring V600 Mutations

Dabrafenib

PHASE I, II STUDY Active, not
recruiting

Selumetinib ▪ Low Grade Glioma

▪ Recurrent Childhood Pilocytic
Astrocytoma

▪ Recurrent Neurofibromatosis Type 1

▪ Recurrent Visual Pathway Glioma

▪ Refractory Neurofibromatosis Type 1

▪ Refractory Visual Pathway Glioma

Selumetinib in Treating Young Patients With Recurrent or Refractory Low
Grade Glioma

PHASE II STUDY Recruiting Encorafenib ▪ High Grade Glioma

▪ BRAF V600E

▪ BRAF V600K

▪ Anaplastic Astrocytoma

▪ Anaplastic Pleomorphic
Xanthoastrocytoma

▪ Gliosarcoma

▪ Glioblastoma

Study of Binimetinib With Encorafenib in Adults With Recurrent BRAF
V600-Mutated HGG (BRAF)

Binimetinib

PHASE II STUDY Recruiting Dabrafenib Mesylate ▪ Anaplastic Astrocytoma

▪ Anaplastic Ganglioglioma

▪ Anaplastic Pleomorphic
Xanthoastrocytoma

▪ Glioblastoma

▪ Malignant Glioma

▪ WHO Grade III Glioma

Dabrafenib Combined With Trametinib After Radiation Therapy in Treating
Patients With Newly-Diagnosed High-Grade Glioma

Radiation Therapy
Trametinib Dimethyl
Sulfoxide

PHASE II STUDY Recruiting Trametinib ▪ Low-grade Glioma

▪ Plexiform Neurofibroma

▪ Central Nervous System Glioma

Trametinib for Pediatric Neuro-oncology Patients With Refractory Tumor
and Activation of the MAPK/ERK Pathway

PHASE II STUDY Recruiting Vemurafenib ▪ Advanced Malignant Solid Neoplasm

▪ Ann Arbor Stage III Childhood Non-
Hodgkin Lymphoma

▪ Ann Arbor Stage IV Childhood Non-
Hodgkin Lymphoma

▪ Ependymoma

▪ Ewing Sarcoma

▪ Hepatoblastoma

▪ Langerhans Cell Histiocytosis

▪ Malignant Germ Cell Tumor

▪ Malignant Glioma

▪ Osteosarcoma

▪ Peripheral Primitive Neuroectodermal
Tumor

Vemurafenib in Treating Patients With Relapsed or Refractory Advanced
Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With
BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)

(Continued)
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+panitumumab (anti-EGFR) is being evaluated in colorectal cancer
with EGFR mutation (35, 43).

As above, mutations in the PI3K/AKT pathway can cause the
reactivation of MAPK. As a consequence, a potential strategy to
overcome this form of acquired resistance is to use a therapeutic
regimen including a PI3K-inhibitor. In this perspective, a phase Ib/
II study with encorafenib+cetuximab (an EGFR-inhibitor) with or
Frontiers in Oncology | www.frontiersin.org 6
without alpelisib (a PI3K-inhibitor) in BRAF-mutant colorectal
cancer was conducted. It showed promising clinical activity with
increased toxicity but also a slight PFS benefit related to the addition
of alpelisib, opening up to the possibility of further exploring this
therapeutic strategy in other BRAF-mutant tumors (44).

In addition to the problem of acquired resistance, some
intrinsic constitutive characteristics of IDH-wt GB might be
TABLE 2 | Continued

STUDY PHASE AND PURPOSE RECRUITMENT
STATUS

TREATMENT DISEASE

▪ Recurrent Childhood Central Nervous
System Neoplasm

▪ Recurrent Childhood Non-Hodgkin
Lymphoma

▪ Recurrent Malignant Solid Neoplasm

▪ Recurrent Neuroblastoma

▪ Refractory Malignant Solid Neoplasm

▪ Refractory Neuroblastoma

▪ Refractory Non-Hodgkin Lymphoma

▪ Refractory Primary Central Nervous
System Neoplasm

▪ Rhabdoid Tumor

▪ Rhabdomyosarcoma

▪ Soft Tissue Sarcoma

▪ Wilms Tumor
PHASE II STUDY Active, not

recruiting
Dabrafenib
Trametinib
Carboplatin with
vincristine

▪ Diffuse Astrocytoma

▪ Anaplastic Astrocytoma

▪ Astrocytoma

▪ Oligodendroglioma, Childhood

▪ Anaplastic Oligodendroglioma

▪ Glioblastoma

▪ Pilocytic Astrocytoma

▪ Giant Cell Astrocytoma

▪ Pleomorphic Xanthoastrocytoma

▪ Anaplastic Pleomorphic
Xanthoastrocytoma

▪ Angiocentric Glioma

▪ Chordoid Glioma of Third Ventricle

▪ Gangliocytoma

▪ Ganglioglioma

▪ Anaplastic Ganglioglioma

▪ Dysplastic Gangliocytoma of Cerebrellum

▪ Desmoplastic Infantile Astrocytoma and
Ganglioglioma

▪ Papillary Glioneuronal Tumor

▪ Rosette-forming Glioneurona Tumor

▪ Central Neurocytoma

▪ Extraventricular Neurocytoma

▪ Cerebellar Iponeurocytoma

Phase II Pediatric Study With Dabrafenib in Combination With Trametinib in
Patients With HGG and LGG

PHASE IV STUDY Recruiting Dabrafenib ▪ Melanoma

▪ Non-Small Cell Lung Cancer

▪ Solid Tumor

▪ Rare Cancers

▪ High Grade Glioma

Dabrafenib and/or Trametinib Rollover Study Trametinib
N

HGG, high-grade gliomas; LGG, low-grade gliomas.
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responsible for de novo (primary) resistance, which might
explain the conflicting results observed up to now. In this
perspective a relevant issue is represented by the frequent
intratumoral histological and molecular heterogeneity of GB
(18, 19, 42, 45, 46). Mixed histologies or differential
distribution of B-Raf mutation within different tumor areas
may lead only to partial regressions, without counteracting the
entire tumor growth, potentially determining also a selection of
resistant areas (18, 19, 42, 45, 46).

Another important treatment limitation is represented by the
reduced capabilities of many drugs to cross the BBB. In this
regard we can extrapolate evidences from studies that evaluated
this issue in melanoma brain metastases. An interesting study
carried out by Sakji-Dupré et al. demonstrated not only that
vemurafenib has a limited ability to cross the BBB but also that
concentrations in the cerebro-spinal fluid (CSF) and plasma are
not strictly correlated. This leads to the hypothesis that there are
several interindividual factors that might influence the BBB
permeability to BRAF inhibitors (47). For example, 99% of B-
Raf-inhibitors bind to albumin in the bloodstream (48, 49), with
only the remaining free unbound portion being able to cross the
BBB. Consequently, the proportion of an administered inhibitor
effectively passing the BBB might vary depending on albumin
levels from patient to patient. In this context, hypoalbuminemia
might determine higher concentration of B-Raf-inhibitors in the
CNS, as well as hyperalbuminemia might cause the opposite
effect. Nevertheless, there are no studies currently supporting this
hypothesis, nor its potential therapeutic implications and it
should be considered as highly speculative.

The integrity of the BBB is another crucial factor influencing
drug capability of penetrating into the CNS. Following this
assumption, Narayana et al. combined B-Raf-inhibitors to
brain RT so to test if temporary destruction of the BBB
induced by RT in melanoma patients with brain metastases
might favor CNS penetration of anti-B-Raf (50). Although
results seem to support this hypothesis, further studies are
needed, especially in the context of primary CNS tumors.

Another determinant factor seems to be the action of two
proteins that work as efflux transporters and actively extrude
vemurafenib out of the brain compartment, namely the
glycoprotein P (Pgp) and the breast cancer resistance protein
(BCRP). Durmus et al. administered to mice the Pgp and BCRP
inhibitor elacridar, in combination to vemurafenib to observe if
this strategy might improve the penetration of the latter in the
CNS. After the administration of elacridar, vemurafenib
concentration increased by 2.5 times in serum and by 9.4 times
in the CSF (51). The therapeutic implications of this preclinical
study have to be further explored in clinical trials.

Finally, different targeted drugs might have distinct BBB
penetration capabilities, rather limited in the case of anti-MEK
drugs (52). This might concur to impair the therapeutic efficacy
of B-Raf-inhibitors+MEK-inhibitors combination. For this
reason, the development of brain penetrant B-Raf- and MEK-
inhibitors is currently underway (13, 53). One of the most
promising molecule is the potent brain-penetrant B-Raf
inhibitor PF-07284890, whose pharmacokinetics, safety and
efficacy are under evaluation in a first-in-human trial, in
Frontiers in Oncology | www.frontiersin.org 7
combination or not with binimetinib, in patients with V600-
mutant solid tumors (54).
DISCUSSION

Overall, B-Raf mutation occurs mostly in the rare epithelioid
variant of IDH-wt GB and hence appear to be more frequent in
GB of patients <30 years old. Evidence mostly coming from case
reports or experiences in other solid tumors (especially
melanoma and NSCLC) suggest that B-Raf-inhibitors,
potentially in combination with MEK-inhibitors, might be a
valuable therapeutic option for this rare cancer. In any case, the
mainstay of treatment remains surgery followed by RT and TMZ,
which, at present, provides better outcomes than B-Raf
inhibition, which should be pursued only in a refractory/
relapsing setting, or in case of ineligibility for standard therapy.
In this perspective, the screening of GB patients for the detection
of V600 BRAF mutations, especially when under 30 years of age,
should be undertaken. Results from ongoing clinical trials are
also of utmost importance to draw definitive conclusions
regarding whether, when and to whom administer B-Raf-
inhibitors, combined or not with MEK-inhibitors.

In conclusion, although the evidence at our disposal are still
quantitatively few and qualitatively scarce, the potential for B-
Raf inhibition in the context of BRAF-mutant GB merit further
investigation, since it might represent a valuable therapeutic
opportunity for at least a proportion of patients affected by this
lethal disease.
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