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Abstract

Aims/Hypothesis: HLA genes, islet autoantibodies and residual C-peptide were studied to determine the independent
association of each exposure with diabetic retinopathy (DR), 15 years after the clinical onset of type 1 diabetes in 15–34 year
old individuals.

Methods: The cohort was identified in 1992 and 1993 by the Diabetes Incidence Study in Sweden (DISS), which investigates
incident cases of diabetes for patients between 15 and 34 years of age. Blood samples at diagnosis were analyzed to
determine HLA genotype, islet autoantibodies and serum C-peptide. In 2009, fundus photographs were obtained from
patient records. Study measures were supplemented with data from the Swedish National Diabetes Registry.

Results: The prevalence of DR was 60.2% (148/246). Autoantibodies against the 65 kD isoform of glutamate decarboxylase
(GADA) at the onset of clinical diabetes increased the risk of DR 15 years later, relative risk 1.12 for each 100 WHO units/ml,
[95% CI 1.02 to 1.23]. This equates to risk estimates of 1.27, [95% CI 1.04 to 1.62] and 1.43, [95% CI 1.06 to 1.94] for
participants in the highest 25th (GADA.233 WHO units/ml) and 5th percentile (GADA.319 WHO units/ml) of GADA,
respectively. These were adjusted for duration of diabetes, HbA1c, treated hypertension, sex, age at diagnosis, HLA and C-
peptide. Islet cell autoantibodies, insulinoma-antigen 2 autoantibodies, residual C-peptide and the type 1 diabetes
associated haplotypes DQ2, DQ8 and DQ6 were not associated with DR.

Conclusions: Increased levels of GADA at the onset of type 1 diabetes were associated with DR 15 years later. These results,
if confirmed, could provide additional insights into the pathogenesis of the most common microvascular complication of
diabetes and lead to better risk stratification for both patient screenings and DR treatment trials.
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Introduction

The World Health Organization estimates that more than 180

million people worldwide have diabetes mellitus and this number

is likely to more than double by 2030; about 10% have type 1

diabetes mellitus [1]. Severe visual impairment develops in 10% of

patients and 2% will be blind within 15 years of diagnosis [1].

Blood glucose control has been identified as a critical risk factor in

the development and progression of diabetic retinopathy (DR)

[2,3] but does not completely explain the pathogenesis [4,5]. In

this study we hypothesize that autoimmune processes resulting

from HLA genotype and the relationship of these genes with islet

autoantibody status and residual C-peptide production at the

clinical onset of diabetes are associated with the risk of DR 15

years later.

Type 1 diabetes begins as an autoimmune process that can be

differentiated from type 2 diabetes by the presence of islet

autoantibodies before [6,7,8] and at the time of clinical onset
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[9,10]. These include islet cell autoantibodies (ICA) [11,12,13] and

autoantibodies against specific autoantigens including the 65 kD

isoform of glutamic acid decarboxylase (GADA) [14,15,16],

insulinoma-antigen 2 (IA-2A) [17,18,19], insulin (IAA) [20], and

the cation efflux transporter ZnT8 (ZnT8A) [21]. The presence of

these islet autoantibodies is associated with genes in the HLA

complex on chromosome 6, whether they occur alone [22] or with

type 1 diabetes [23,24,25]. The two major risk haplotypes include

DQ2 (DRB1*0301-DQA1*0501-B1*0201) and DQ8 (DRB1*04-

DQA1*0301-B1*0302) and before the age of 15 years, DQ6

(DRB1*1501-DQA1*0102-B1*0602) is a protective haplotype

[26]. Insulin secretion, measured by serum C-peptide, is severely

impaired at the time of diagnosis of type 1 diabetes. There is

typically a continuous decline as the disease progress [27] which is

associated with the number and types of islet autoantibodies

present [28].

The HLA gene complex has been repeatedly studied for its

association with DR for the past 30 years with both negative

[29,30,31,32,33,34,35,36] and positive findings [37,38,39,40,41,

42,43,44,45,46,47,48,49]. Two separate properties of the HLA

complex make it difficult to study. It is polygenic as it contains

several different MHC class I and MHC class II genes and it is the

most polymorphic human gene known with hundreds of variants

for some of these genes [50]. These properties make it difficult to

interpret the results of these studies as they are hindered by small

samples sizes in numerous comparison groups or have little

information about other known risk factors for DR such as blood

glucose control and hypertension. Unlike HLA, there have been

few studies of islet autoantibodies or C-peptide and DR. Two

small cross-sectional studies have reported an inverse relationship

between levels of GADA and the severity of DR suggesting that

GADA may inhibit one or more mediators of DR [51,52]. In the

Diabetes Control and Complications Trial, any C-peptide

secretion, but especially higher and sustained levels of stimulated

C-peptide, was associated with reduced incidences of DR [53].

Previous studies have examined the cross-sectional associations

of HLA, islet autoantibodies and residual C-peptide with DR;

however, none of these studies has accounted for the relationships

between these immunologic markers (Figure 1) to determine the

independent association of each exposure with DR. This incident

inception population-based cohort study uniquely uses measures of

islet autoantibodies and C-peptide determined at the clinical onset

of diabetes while limiting the testing of associations between HLA

and DR to the three haplotypes (DQ2, DQ8 and DQ6) most

closely related to type 1 diabetes.

Methods

Study Population
Written consent was obtained from all participants. The

regional Ethics Board of Lund University, Lund, Sweden,

approved the study.

The cohort for the present study was identified by the Diabetes

Incidence Study in Sweden (DISS) during 1992 and 1993 [54].

DISS is an on-going prospective study that attempts to enroll all

incident cases of diabetes for patients between the ages of 15 and

34 years. Ascertainment in the DISS study has been previously

estimated at 86% for type 1 diabetes and 53% for type 2 diabetes

[55]. Starting in 1992, participants provided blood samples at

diagnosis and each year thereafter for 6 years to determine their

levels of serum C-peptide and islet autoantibodies including ICA,

GADA, IA-2A and IAA. ZnT8A were not described until 2007

[21] and were not analyzed.

A control group [56] of subjects without diabetes were matched

by age and sex as cases were identified by DISS. There were

slightly more controls than cases as some cases were later excluded

when it was determined they did not have diabetes or had

gestational diabetes. The control group provided a reference to

determine the distribution of autoantibody and C-peptide levels in

healthy non-diabetic subjects. This study preceded the Diabetes

Autoantibody Standardization Program and World Health

Organization’s (WHO) standardization of diabetes autoantibodies

so these controls provided the means to determine cut-offs for

autoantibody positive status. Levels of autoantibodies in the

present study have been converted to WHO International units

(GADA, IA-2A) or Juvenile Diabetes Foundation Units (ICA). The

control group was not used in analyses for the present study.

In 2008, we contacted 648 individuals to ask them to participate

in this study (Figure 2). Current addresses were obtained from the

Swedish Population and Address Register. The initial mailing

included a questionnaire and a kit to collect a dried capillary blood

spot. Individuals were contacted twice by mail and those who did

not respond to either mailing received a phone call inviting them

to participate in the study. The participation rate was 60% (392/

648), of these, 74% (289/392) were classified with type 1 diabetes.

HLA Genotyping
HLA genotyping for DRB1, DQA1 and DQB1 was carried out by

PCR amplification of the second exon of the IDDM1 genes followed

by dot blot hybridizations of sequence specific oligo probes and by

restriction fragment length polymorphism using DR- and DQ-based

probes to establish haplotypes [24]. In addition, allele specific PCR

amplification of DRB1 alleles was also used [57,58]. The haplotypes

were classified as DQ2 (DRB1*0301-DQA1*0501-B1*0201), DQ8

(DRB1*04-DQA1*0301-B1*0302), DQ6 (DRB1*1501-DQA1*0102-

B1*0602), or ‘other’, where other is not DQ2, DQ8, or DQ6.

Islet Autoantibodies
The determination of autoantibody levels along with the

sensitivity and specificity of our assays have been previously

described [28]. Briefly, positive values for GADA and IA-2A, were

determined using a cutoff of .97K percentile of the values

defined by a matched control group of 829 individuals [56].

GADA and IA-2A levels were measured by radioimmunoassay

[59,60] and expressed as an index [cpm of tested sample - average

cpm of two negative standards] divided by [cpm of positive

standard - average cpm of two negative standards]. IAA levels

Figure 1. Study design showing the relationship between
human leukocyte antigen genes, islet autoantibodies, C-
peptide and diabetic retinopathy.
doi:10.1371/journal.pone.0017569.g001
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were also measured by radiobinding assay [20]. The IAA assay

measures the percentage of displacement of the binding of

radioactive insulin. A participant was considered to have type 1

diabetes if the displacement was .0.7% based on previous results

from healthy individuals [61]. ICA levels were determined by

standard immunofluorescence methods as previously described

[62,63]. Participants were considered to have type 1 diabetes if

they tested positive for any of the four autoantibodies at the

baseline exam; GADA.21.2 WHO units/ml, IA-2A.5.88 WHO

units/ml, IAA.0.7% and ICA.6 Juvenile Diabetes Foundation

Units. In the first Diabetes Autoantibody Standardization

Program, sera from selected individuals were used to compare

assay results from participating labs. This GADA assay had 80%

sensitivity and 96% specificity, and the IA-2A assay had 58%

sensitivity and 100% specificity [64]. The sensitivity of the ICA

assay used in this study was 100% and specificity 88% for the

pancreas when tested in the International Diabetes Workshop for

standardization [65]. For this study, we considered the first

blood draw after diagnosis to represent a baseline measure with

the exception of IAA which needed to be completed within 1

month.

C-peptide
C-peptide levels were determined at the Department of Clinical

Chemistry, Skåne University Hospital SUS, Lund, Sweden using

the EURIA-C-PEPTIDE kit MD315 (EuroDiagnostica, Medeon,

Malmö, Sweden). By this method, the lower detection limit for C-

peptide is 0.13 nmol/l. The 2.5th percentile of C-peptide for the

matched control group was 0.24 nmol/l [56].

Questionnaire
The study questionnaire asked participants for the name of the

clinic they visited during their most recent eye exam. The health

history portion included the following questions: 1) Have you ever

been told you have hypertension (HTN), impaired kidney function

or increased cholesterol or triacylglycerol by a doctor or nurse? 2)

Have you ever been prescribed medication to control HTN or

cholesterol? 3) Are you currently using medication to control HTN

or cholesterol? 4) Have you smoked more than 100 cigarettes since

becoming diabetic?

HbA1c

Each individual was asked to provide a dried capillary blood

spot which was collected using Roche Kit 14040. Blood glucose

control was estimated by the analysis of the dried blood spot to

determine each participant’s current HbA1c and was conducted by

the Department of Clinical Chemistry, Skåne University Hospital

SUS, Malmö, Sweden. There is excellent agreement (r = 0.99)

between HbA1c values from capillary blood on filter paper and

HbA1c values from venous blood [66].

Retinal Photographs
A copy of the most recent fundus photographs were obtained

from existing patient records. Records were collected from 79

Figure 2. Flow diagram of study participants.
doi:10.1371/journal.pone.0017569.g002
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clinics across Sweden. The photographs were graded by an

experienced ophthalmologist [EA], blinded to baseline exposure

status, using the International Clinical Diabetic Retinopathy

Disease Severity Scale [67]. Retinopathy was defined as the

presence of any of the following lesions: microaneurysms, retinal

hemorrhages, hard or soft exudates or intra-retinal microvascular

abnormalities. The primary outcome was the presence of any

retinopathy based on fundus photos. If an individual had DR

graded as questionable or photos were missing, DR classification

from the NDR was used. In general, all the photos were 50u fields,

taken through dilated pupils and stored as a digital image. Photos

for 6 participants were slides, another 6 had either 45u or 60u fields

and only 1 individual did not have their eyes dilated. In cases

where multiple sets of photos were collected the most recent

photos were graded and when both color and red-free photo-

graphs were available only the red-free photographs were used.

Red-free photographs were available for 82% (193/235) of

participants. Less than 7% (15/235) of individuals had photos

with only 1 field centered on the fovea. When 2 fields were

available, 1 was centered on the fovea and the other was either

centered on the optic nerve or nasal to the optic nerve.

National Diabetes Register
Supplemental information on retinopathy, HbA1c and treat-

ment for hypertension was provided by the National Diabetes

Register (NDR). The NDR was implemented in 1996 by the

Swedish Society for Diabetology as a response to the St. Vincent

Declaration for Quality Assurance in Diabetes Care to survey the

treatment and risk factor control in diabetic patients in everyday

clinical practice [68]. Reporting to the NDR is based on

information collected at least once a year during patient visits at

hospital outpatient clinics and primary health centers all over

Sweden. Data is supplied by trained nurses or physicians over the

internet or by a preprinted form. Participation in this register is

voluntary for the clinics and healthcare centers and all patients

must be informed of the register and agree to participate. HbA1c

analyses are quality assured in Sweden. Both clinics and primary

care centers use methods regularly calibrated with the HPLC

Mono-S method.

The percent agreement and kappa of the measures of

medication use for hypertension determined from the study

questionnaire and the data supplied by the NDR was 86.5% and

0.65 respectively. The percent agreement and kappa for the

outcome of the presence of DR in the study photos and the report

supplied in the NDR was 78.0% and 0.55 for all the data and

86.5% and 0.72 for photos taken within 1 year of each other. The

correlation between HbA1c measures collected on filter paper and

those reported in the NDR was 0.80.

Statistical Analysis
Participants with type 2 diabetes were excluded from analyses.

Baseline characteristics were reported for the individuals with type

1 diabetes and a reference group of non-diabetic controls

including the percentage of males and participants initially treated

with insulin; the mean and standard deviation of BMI and age at

clinical diagnosis; and the median and inter-quartile range of C-

peptide and diabetes autoantibody titers. Characteristics of

individuals 15 years after the clinical onset of type 1 diabetes

were also reported including the percentage of participants with

dyslipidemia, kidney disease, treated HTN and who smoked more

than 100 cigarettes since the clinical onset of diabetes. It also

included the mean and standard deviation of glycosylated

hemoglobin.

In the presence of a common outcome, such as DR in our study,

point estimates for exposures associated with an increased risk of

disease will be inflated using logistic regression. To eliminate this

concern, we chose relative risk regression for our analyses. The

Huber-White sandwich estimator of variance [69,70] was

specified.

Our primary analyses was restricted to four models fit to

determine the independent associations of HLA, islet autoanti-

bodies and C-peptide with DR. Model A was used to examine the

crude association between HLA and DR unadjusted for other

covariates except duration of diabetes. Any positive findings here

would not indicate if the association between HLA and DR was

independent or due to HLA’s relationship with islet autoantibodies

and C-peptide, Figure 1. Model B was used to examine the

association between HLA and DR adjusting for precision variables

and potential confounders [HbA1c (%), age at diagnosis (years), sex

and current use of hypertension medication (yes/no)]. In Model C,

islet autoantibodies were added to Model B. This allowed the

determination of the association between islet autoantibodies

whether or not their effects were mediated through C-peptide.

The fully adjusted Model D included HLA (DQ2, DQ8, DQ2/8

and DQ6), islet autoantibodies (GADA, ICA and IA-2A), C-

peptide (nmol/l), age at diagnosis (years), sex, HbA1c (%),

treatment for hypertension (yes/no) and duration of diabetes

(years). This model was used to determine the association of HLA

with DR independent of islet autoantibodies and residual C-

peptide. In addition it established the association of islet

autoantibodies independent of residual C-peptide and adjusted

for the potential confounding by HLA. Lastly this model showed

the association of C-peptide with DR adjusted for confounding by

HLA and islet autoantibodies.

Our secondary analyses examined the risk of retinopathy for

subjects by the rate of change per year in GADA and C-peptide

adjusting for baseline levels. By necessity these analysis were

restricted to subjects with multiple measures. Since a number of

subjects did not have multiple measures, this reduced the sample

size and made comparisons of the risk of retinopathy between the

primary analyses and the secondary analyses difficult. Therefore in

the results from our secondary analysis, we included the findings

from model D restricted to this smaller cohort. In Model E we

looked at the risk of diabetic retinopathy using the last measure of

GADA. In Model F we included the rate of change/year in

GADA & C-peptide adjusting for initial levels. We have previously

reported that GADA levels in GADA positive subjects remained

unchanged after baseline [71] and very few participants with type

1 diabetes had measurable C-peptide by year 4 [28]. Due to the

large confidence intervals for these estimates, particularly the

change in C-peptide, we re-parameterized the model using tertiles

of change in GADA/year and C-peptide/year. The reference

group for the change in GADA/year was the group of subjects

with the fastest decline in GADA/year and the reference group for

C-peptide was the group with the slowest decline in C-peptide/

year. Analyses were performed using Stata 8 (StataCorp. 2003.

Stata Statistical Software: Release 8, StataCorp LP, College

Station, TX).

Results

We had complete data on 85% (246/289) of the participants

with type 1 diabetes (Figure 2). Males comprised 55% (136/246) of

the analytical group, compared to 67% males (219/329) in non-

participants with type 1 diabetes (329/575) from the original

cohort, p,0.01. GADA levels were 18 WHO units/ml higher in

participants than non-participants, p = 0.05 but only 15 WHO

Immunologic Markers and Diabetic Retinopathy
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units/ml higher, p = 0.10, after adjusting for sex differences.

Participants and non-participants did not vary by C-peptide, IA-

2A, ICA, BMI or age at diagnosis and had similar percentages of

individuals who were HLA DQ2, 6 and 8; results not shown.

Most individuals had blood draws within the first month of

diagnosis (89%). Median C-peptide levels were 0.27 nmol/l

(Table 1) which was near the 2.5th percentile of 829 age matched

non-diabetic controls (0.24 nmol/l). Baseline characteristics of

participants at the clinical onset of type 1 diabetes mellitus by HLA

genotype are presented in Table 1 and by islet autoantibody status

in Table 2. About 2/3rd of participants with type 1 diabetes were

DQ2, DQ8 or DQ2/8 while 4.9% (12/246) were DQ6. Mean

Table 1. Characteristics of participants at the clinical onset of type 1 diabetes mellitusa and reference panel of matched controlsb

by HLA genotype.

All
Participants DQ6 DQ8 DQ2 DQ2/8 Other HLA Controls

Number n (%) 246 12 (4.9) 62 (25.2) 39 (15.9) 59 (24.0) 74 (30.0) 837

Males % 55.3 66.7 53.2 38.5 62.7 58.1 55.6

Age (years) Mean (SD) 24.9 (5.4) 27.2 (5.4) 25.6 (5.1) 25.5 (5.4) 22.7 (5.2) 25.2 (5.3) 24.9 (5.9)

GADA (WHO units/ml) Median (IQR) 99 (32–213) 57 (22–262) 95 (28–194) 178 (58–252) 77 (27–170) 90 (44–239) 0 (0 - 0)

ICA (JDF-U) Median (IQR) 54 (0–204) 108 (0–419) 84 (15–204) 54 (0–204) 54 (15–316) 54 (0–204) 0 (0 - 0)

IA-2A(WHO units/ml) Median (IQR) 18 (0–262) 1 (23–214) 200 (0–293) 0 (23–9) 38 (0–235) 16 (0–266) 0 (0 - 0)

C-peptide (nmol/l) Median (IQR) 0.27 (0.18–0.38) 0.29 (0.13–0.55) 0.27 (0.19–0.37) 0.26 (0.16–0.34) 0.29 (0.18–0.48) 0.28 (0.18–0.38) 0.59 (0.44–0.82)

BMI (kg/m2) Mean (SD) 22.1 (3.7) 22.4 (3.7) 22.0 (3.4) 22.4 (4.4) 21.9 (3.2) 22.1 (3.9) missing

Insulin Medication % 88.9 75.0 87.1 89.7 94.7 87.8 0

Non-Diabetic reference n (%) 837 234 (28.0) 141 (16.8) 141 (16.8) 24 (2.9) 297 (35.5)

aPositive for GADA, ICA, IA-2A (first blood draw after diagnosis) or IAA (during the 1st month after diagnosis).
bThese participants are a reference group of non-diabetics and were not used for analyses in the present study.
DQ6: DRB1*1501-DQA1*0102-B1*0602.
DQ8: DRB1*04-DQA1*0301-B1*0302.
DQ2: DRB1*0301-DQA1*0501-B1*0201.
HLA: human leukocyte antigen.
SD: standard deviation.
GADA: glutamic acid decarboxylase autoantibodies.
WHO: World Health Organization.
IQR: Inter-quartile range.
ICA: islet cell autoantibodies.
JDF-U: Juvenile Diabetes Foundation Units.
IA-2A: insulinoma antigen-2 autoantibodies.
BMI: body mass index.
doi:10.1371/journal.pone.0017569.t001

Table 2. Characteristics of participants at the clinical onset of type 1 diabetes mellitusa by islet autoantibody status.

GADA+b ICA+c IA-2A+d

Number n 203 177 141

Males % 53.7 56.5 58.2

Age (years) Mean (SD) 25.1 (5.3) 24.7 (5.5) 24.0 (5.3)

GADA (WHO units/ml) Median (IQR) 130 (64–233) 122 (43–233) 98 (27–212)

ICA (JDF-U) Median (IQR) 84 (0–204) 131 (54–316) 131 (35–316)

IA-2A(WHO units/ml) Median (IQR) 12 (0–262) 144 (0–281) 247 (84–300)

C-peptide (nmol/l) Median (IQR) 0.26 (0.18–0.36) 0.27 (0.18–0.37) 0.28 (0.17–0.42)

BMI (kg/m2) Mean (SD) 21.9 (3.6) 22.2 (3.7) 21.9 (3.4)

Insulin Meds % 91.0 89.7 92.1

aPositive for GADA, ICA, IA-2A (first blood draw after diagnosis) or IAA (during the 1st month after diagnosis).
bglutamic acid decarboxylase autoantibody (GADA) positive .21.2 WHO units/ml.
cislet cell autoantibody (ICA) positive .6 Juvenile Diabetes Foundation Units.
dinsulinoma antigen 2 autoantibody (IA-2A) positive .5.88 WHO units/ml.
SD: standard deviation.
WHO: World Health Organization.
IQR: Inter-quartile Range.
JDF-U: Juvenile Diabetes Foundation Units.
BMI: body mass index.
doi:10.1371/journal.pone.0017569.t002
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HbA1c was 7.0% 15 years later (Table 3). Characteristics of

participants 15 years after the clinical onset of type 1 diabetes

mellitus by HLA genotype are presented in Table 3 and by islet

autoantibody status in Table 4. At that time, 15% reported they

take medication for hypertension, 36% had dyslipidemia and 31%

had been cigarette smokers at some time since developing type 1

diabetes. The median duration of diabetes was 15.2 years

(Interquartile Range (IQR) 14.3–15.8).

The distribution of DR in graded photos was bimodal (Table 5).

Based on the photos collected, 31.5% (74/235) of participants had

no DR, however, 11 participants did not have photos and 24 were

graded as questionable. After incorporating NDR data to classify

these 35 individuals, the prevalence of any DR was 60.2% (148/

246).

Relative risk regression models were used to determine the risk

of retinopathy. The point estimate and 95% confidence intervals

did not vary much between the four regression models (Table 6).

In the fully adjusted Model D, increasing levels of GADA were

associated with an increased risk of DR independent of HLA, C-

peptide and known risk factors for DR including HbA1c and

hypertension, RR 1.12 per 100 WHO units/ml, [95% CI 1.02–

1.23]. This yielded risk estimates of 1.27, [95% CI 1.04 to 1.62]

and 1.43, [95% CI 1.06 to 1.94] for participants in the highest 25th

(GADA.233 WHO units/ml) and 5th percentile (GADA.319

WHO units/ml) of GADA, respectively. In a similar model,

classifying individuals as GADA positive (GADA.21.2 WHO

units/ml) or negative, the risk for GADA positive participants at

baseline was 1.37 [95% CI 0.98 to 1.92] compared to GADA

negative individuals and using a slightly more strict definition for

GADA positive (GADA.30.0 WHO unit/ml) the relative risk was

1.49 (1.10 to 2.01).

The HLA haplotypes, DQ2, RR 0.76, [95% CI 0.54–1.07],

DQ8, RR 1.06, [95% CI 0.84–1.34], DQ2/8, RR 0.92, [95% CI

0.70–1.19] and DQ6, RR 0.71, [95% CI 0.38–1.34], were not

associated with the presence of any DR compared to participants

who were not HLA DQ2, 8, 2/8 or DQ6. Likewise C-peptide, RR

0.95, [95% CI 0.67–1.33], ICA, RR 1.01, [95% CI 0.98–1.04]

and IA-2A, RR 0.94, [95% CI 0.87–1.01] at the clinical onset of

diabetes were not associated with DR.

In our secondary analyses, the risk of diabetic retinopathy was

1.12 (1.00–1.24) based on the last measure of GADA, slightly less

than risk based on the first measure of GADA 1.15 (1.04–1.28) in

the smaller sample size, Table 7. However, neither the rate of

Table 3. Characteristics of participants 15 years after the clinical onset of type 1 diabetes mellitusa by HLA genotype.

All Participants DQ6 DQ8 DQ2 DQ2/8 Other HLA

Number n 246 12 62 39 59 74

HbA1c (%) Mean (SD) 7.0 (1.2) 6.6 (0.9) 7.0 (1.1) 7.2 (1.0) 6.9 (1.1) 7.1 (1.5)

HTN Medsb % 15.0 8.3 21.0 18.0 10.2 13.5

Kidney Diseaseb % 14.5 8.3 21.3 18.4 10.2 13.5

Dyslipidemiab % 36.0 41.7 40.0 21.6 37.9 37.5

Smokerc % 31.1 8.3 41.7 38.5 27.6 25.0

aPositive for GADA, ICA, IA-2A (first blood draw after diagnosis) or IAA (during the 1st month after diagnosis).
bSelf-report, if missing NDR report.
cSmoked more than 100 cigarettes since the onset of diabetes.
HLA: human leukocyte antigen.
DQ6: DRB1*1501-DQA1*0102-B1*0602.
DQ8: DRB1*04-DQA1*0301-B1*0302.
DQ2: DRB1*0301-DQA1*0501-B1*0201.
SD: standard deviation.
HTN: hypertension.
doi:10.1371/journal.pone.0017569.t003

Table 4. Characteristics of participants 15 years after the
clinical onset of type 1 diabetes mellitusa by islet
autoantibody status.

GADA+b ICA+c IA-2A+d

Number n 203 177 141

HbA1c (%) Mean (SD) 7.0 (1.2) 7.0 (1.1) 6.9 (1.1)

HTN Medse % 16.3 17.5 13.5

Kidney Diseasee % 14.1 15.4 13.6

Dyslipidemiae % 34.7 35.3 33.3

Smokerf % 32.8 28.2 31.1

aPositive for GADA, ICA, IA-2A (first blood draw after diagnosis) or IAA (during
the 1st month after diagnosis).

bglutamic acid decarboxylase autoantibody positive .21.2 WHO units/ml.
cislet cell autoantibody positive .6 Juvenile Diabetes Foundation Units.
dinsulinoma antigen 2 autoantibody positive .5.88 WHO units/ml.
eSelf-report, if missing NDR report.
fSmoked more than 100 cigarettes since the onset of diabetes.
doi:10.1371/journal.pone.0017569.t004

Table 5. Grade of retinopathy by eye from 235 participants
with fundus photos.

Right Eye Left Eye Both Eyes

Grade n % n % n %

None 91 38.9 92 39.2 74 31.5

Mild 27 11.5 24 10.2 24 10.2

Moderate 92 39.3 87 37.0 107 45.5

Severe 3 1.3 2 0.9 4 1.7

PDR 2 0.9 2 0.9 2 0.9

Questionable 17 7.3 25 10.6 24 10.2

Unable to grade 2 0.9 3 1.3 0 0.0

Missing 11 11 11

doi:10.1371/journal.pone.0017569.t005
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change of GADA/year (RR = 0.69, 0.16–3.04) or C-peptide/year

(RR = 1.89, 0.20–17.6) was associated with the risk of diabetic

retinopathy after adjusting for initial GADA and C-peptide level

and the other covariates found in model D. Due to the large

confidence intervals for the estimate of the risk of retinopathy for

change in GADA/year and particularly the change in C-peptide,

we re-parameterized the model using tertiles of change in GADA/

year and C-peptide/year. The reference group for the change in

GADA/year was the group of subjects with the fastest decline in

GADA/year and the reference group for C-peptide was the group

with the slowest decline in C-peptide/year. Rate of loss of GADA

and C-peptide over the first six years after the clinical onset of

diabetes was not associated with the risk of diabetic retinopathy 15

years later, Model F, Table 7.

Discussion

This is the first study to report that increasing levels of GADA

measured at the clinical onset of type 1 diabetes is associated

with increased risk of DR after 15 years of follow-up. This

association was independent of C-peptide, other islet autoanti-

bodies, HLA DQ6, DQ2 and DQ8 as well as other major risk

factors for DR including HbA1c and hypertension. It is also of

interest to note that even though GADA levels tend to be higher

in subjects who are DQ2 (Table 1), the HLA haplotype DQ2

was not associated with diabetic retinopathy. This implies that

the autoimmune response is more important in the risk of

diabetic retinopathy than the immunogenetic association. In our

secondary analyses, no associations were found between the

change/year in GADA or C-peptide and the risk of diabetic

retinopathy. The risk of retinopathy based on the last measure

of GADA was 1.12 (1.00–1.24) was slightly attenuated

compared to the risk based on the first measure of GADA

1.15 (1.04–1.28).

There are several strengths of this study. Our prospective study

is composed of an incident inception population-based cohort and

had a larger sample size than almost all other similar studies. We

have much better measures of duration of diabetes than studies

that rely on self-report. Our type 1 diabetes population is defined

from laboratory measures of islet autoantibodies instead of

physician classification. In addition, we have measures of islet

autoantibodies and C-peptide at the clinical onset of diabetes

which are not typically available in cross-sectional studies of DR.

One limitation of our study is that we only have a current

HbA1c which may not adequately reflect blood glucose control

over the course of the study. Another possible limitation of our

study is that the cohort consisted of participants who were between

the ages of 15 and 35 at the time of clinical diagnosis of diabetes.

Nevertheless, the cumulative prevalence of any DR in our cohort

was about 60% after 15 years. This is similar to the prevalence of

DR in other studies in Finland, Sweden and Wisconsin where the

range of prevalence at 8 to 10 years duration of type 1 diabetes

varied between 32 and 59% [72]. We had 2 participants (1%) with

proliferative diabetic retinopathy; however, this estimate is likely

too low. In a separate unpublished analysis of all patients receiving

care at the Department of Ophthalmology in Malmö, Sweden, 8%

(4/52) had PDR. This was among all patients with onset of

diabetes ,30 years of age and current duration of diabetes

between 13 and 16 years. In addition, a previous study of a similar

Swedish cohort [73] found that participants with worse DR were

less likely to participate. This combined with our own unpublished

analysis done in Malmö suggest participants with the worst

retinopathy were less likely to participate in our study.

Table 6. Results of relative risk regression analyses for diabetic retinopathy, primary analysis.

Model A Model B Model C Model D

n = 246 RR 95% CI RR 95% CI RR 95% CI RR 95% CI

DQ2/8 (vs. othera) 0.88 0.67–1.15 0.91 0.70–1.20 0.91 0.70–1.19 0.92 0.70–1.19

DQ6 (vs. othera) 0.66 0.34–1.30 0.73 0.39–1.39 0.71 0.38–1.34 0.71 0.38–1.34

DQ8 (vs. othera) 1.03 0.81–1.31 1.03 0.81–1.30 1.07 0.85–1.34 1.06 0.84–1.34

DQ2 (vs. othera) 0.85 0.61–1.18 0.86 0.62–1.19 0.76 0.54–1.07 0.76 0.54–1.07

GADA (100 WHO units/ml) 1.12 1.02–1.23 1.12 1.02–1.23

log(ICA+0.1) (JDF-U) 1.01 0.98–1.04 1.01 0.98–1.04

IA-2A (100 WHO units/ml) 0.94 0.87–1.01 0.94 0.87–1.01

C-peptide (nmol/l) 0.95 0.67–1.33

HbA1c (%) 1.16 1.07–1.25 1.16 1.07–1.26 1.16 1.07–1.26

HTN meds (yes vs. no) 1.38 1.12–1.70 1.36 1.11–1.67 1.37 1.11–1.68

Age at Diagnosis (years) 1.00 0.98–1.37 0.99 0.98–1.01 0.99 0.98–1.01

Males (vs. Females) 1.12 0.92–1.37 1.16 0.95–1.41 1.16 0.95–1.41

Duration (years) 1.13 1.02–1.26 1.11 1.01–1.22 1.11 1.02–1.22 1.11 1.02–1.22

aOther refers to anyone without DQ2, DQ8 or DQ6.
RR: relative risk.
DQ6: DRB1*1501-DQA1*0102-B1*0602.
DQ8: DRB1*04-DQA1*0301-B1*0302.
DQ2: DRB1*0301-DQA1*0501-B1*0201.
GADA: glutamic acid decarboxylase autoantibodies.
WHO: World Health Organization.
JDF-U: Juvenile Diabetes Foundation Units.
ICA: islet cell autoantibodies.
IA-2A: insulinoma antigen 2 autoantibodies.
doi:10.1371/journal.pone.0017569.t006
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To date, there have been no studies linking islet autoantibodies

with mechanisms leading to microvascular diseases. Of all the islet

autoantibodies it seems more likely GADA may have some effect

on the development of diabetic retinopathy since GAD65 is

expressed in the neural retina as well as the pancreas and the

central nervous system [14,15,16,74]. GADA levels have been

shown to remain elevated for many years after the clinical onset of

diabetes [71,75]. Among the islet autoantibodies only GADA have

been linked to other clinical disease. For example, GADA has

been implicated in differences in peripheral nerve function,

independent of GADA related differences in glycemic control

[76]. GADA is also a marker for Stiff-Person Syndrome [77] and

bipolar disorder [78]. However, cause and effect relationships for

these associations have not been demonstrated.

Two small cross-sectional studies have examined the relation-

ship between GADA and DR. In one study (n = 80) [52],

participants with less severe retinopathy were more likely to be

GADA positive; 50%, 31% & 18% for non-DR, pre-PDR and

PDR respectively. In another study (n = 55) GADA levels were

lower in participants with severe disease compared to those

without [51]. The observed inverse relationship between levels of

GADA and the severity of DR in these two studies suggested that

GADA may inhibit one or more mediators of DR. How GADA

could inhibit DR is not clear. We hypothesize that if GADA is a

factor, it would be in the progression of DR when the blood-retinal

barrier is prominently compromised, allowing GADA access to

antigen in the intra-retinal spaces, possibly modulating the

inflammatory response. Our findings suggest an increased risk of

DR for every 100 WHO units/ml increase in GADA (RR = 1.12)

at the clinical onset of diabetes. However, our lack of participants

with severe NPDR and PDR and different study designs make

comparisons with these two previous studies difficult. One other

study has reported no association between GADA and DR [79].

However the methodology of the study was flawed. Cases and

controls were chosen by exposure status (24 GADA positive and

72 GADA negative subjects) instead of by the presence or absence

of DR. This would severely limit the possibility of a positive

finding.

There is a strong negative association between the DQ6

haplotype and type 1 diabetes among participants younger than 15

years of age [24]. However, the percentage of participants with the

HLA DQ6 haplotype at clinical onset increases with increasing

age and shows no association by 30–34 years of age [24]. In the

present cohort, 4.9% (12/246) of participants were positive for

HLA DQ6 which represents 14.0% (12/86) of participants not

DQ2 or 8, and it is of considerable interest whether these

Table 7. Results of relative risk regression analyses for diabetic retinopathy, secondary analyses.

Model D Model E Model F

n = 204 RR 95% CI RR 95% CI RR 95% CI

DQ2/8 (vs. othera) 0.84 0.61–1.15 0.80 0.59–1.11 0.84 0.62–1.15

DQ6 (vs. othera) 0.49 0.21–1.13 0.50 0.22–1.15 0.48 0.21–1.12

DQ8 (vs. othera) 1.01 0.77–1.32 1.00 0.77–1.31 1.01 0.78–1.32

DQ2 (vs. othera) 0.66 0.44–0.99 0.69 0.46–1.03 0.65 0.43–0.99

GADA (100 WHO units/ml) 1.15 1.04–1.28 1.16 1.04–1.30

Last GADA(100 WHO units/ml) 1.12 1.00–1.24

Tertiles of loss of GADA/year

Moderate loss of GADA vs. fastest 0.99 0.73–1.35

Slowest loss of GADA vs. fastest 0.90 0.69–1.17

log(ICA+0.1) (JDF-U) 1.01 0.98–1.05 1.02 0.98–1.05 1.01 0.98–1.05

IA-2A (100 WHO units/ml) 0.92 0.84–1.00 0.92 0.84–1.00 0.91 0.84–0.99

C-peptide (nmol/l) 0.88 0.62–1.27 0.89 0.60–1.32 0.88 0.62–1.26

Tertiles of loss of C-peptide/year

Moderate loss of C-peptide vs. slowest 0.97 0.72–1.31

Fastest loss of C-peptide vs. slowest 0.99 0.75–1.30

HbA1c (%) 1.20 1.10–1.32 1.20 1.09–1.32 1.21 1.09–1.32

HTN meds (yes vs. no) 1.37 1.08–1.74 1.38 1.08–1.76 1.36 1.06–1.75

Age at Diagnosis (years) 1.00 0.98–1.02 1.00 0.98–1.02 1.00 0.98–1.03

Males (vs. Females) 1.12 0.89–1.41 1.15 0.91–1.45 1.11 0.88–1.41

Duration (years) 1.10 0.99–1.23 1.11 0.99–1.24 1.09 0.98–1.22

aOther refers to anyone without DQ2, DQ8 or DQ6.
RR: relative risk.
DQ6: DRB1*1501-DQA1*0102-B1*0602.
DQ8: DRB1*04-DQA1*0301-B1*0302.
DQ2: DRB1*0301-DQA1*0501-B1*0201.
GADA: glutamic acid decarboxylase autoantibodies.
WHO: World Health Organization.
JDF-U: Juvenile Diabetes Foundation Units.
ICA: islet cell autoantibodies.
IA-2A: insulinoma antigen 2 autoantibodies.
doi:10.1371/journal.pone.0017569.t007
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participants might have a reduced risk for DR. Some researchers

have discounted the HLA genes as a factor in the development

and progression of DR due to the number of negative studies or

the inconsistent results between studies. Previous studies were

often hampered by the use of serologic or cellular typing of the

HLA genes, had limited power, did not correct for multiple testing

or did not adequately control for duration of diabetes, blood

glucose levels and hypertension. However, at least one other study

of individuals with younger-onset type 1 diabetes reported that the

DQ6 haplotype was less common in participants with proliferative

diabetic retinopathy (PDR) [45]. They found DQ6 in 6.7% (2/30)

of participants with PDR compared to 14.0% (7/50) in

participants with non-PDR and 12.0% (6/50) in healthy controls.

In a comparison between the PDR group and the non-DR group

they reported the odds of retinopathy was 0.4 for participants with

DQ6 compared to those without. This is lower than our point

estimate of 0.7, in a cohort consisting of much less severe DR.

We were unable to demonstrate an association between the

amount of C-peptide at the onset of diabetes and the risk of DR 15

years later. We speculated that the patients with less C-peptide

would be at greater risk for DR. In the much larger retrospective

study from the DCCT, uniformly in the intensive and partially in

the conventional treatment groups, any C-peptide secretion, but

especially at higher and sustained levels of stimulated C-peptide,

was associated with reduced incidences of DR, both a single three-

step change and a repeated three-step change on the Early

Treatment of Diabetic Retinopathy Study scale at the next 6-

month visit [53].

It is not clear why our results differ from those seen in the

DCCT. The DCCT did not consider islet autoantibody status.

Another possibility is the difference in participants. To be eligible

for the DCCT, patients were required to have had insulin

dependent diabetes mellitus for one to five years and to have no

retinopathy as detected by 7-field stereoscopic fundus photogra-

phy. This is a more sensitive measure of retinopathy than we were

able to attain in our sample. Their study period was also

considerably shorter and measures of C-peptide more closely

coincided with assessment of retinopathy. It may be possible that

the absolute or nearly absolute loss of C-peptide increases the risk

of diabetic microvascular complications and that the lower

detection limit of our assay, 0.13 nmol/l, was not sensitive enough

to distinguish these participants. The C-peptide binding curve to

cell membranes of renal tubular cells, fibroblasts and endothelial

cells indicate that saturation of binding occurs at very low

concentrations [80,81] possibly indicating very little C-peptide is

needed to have the desired physiologic effect. It could also be that

no C-peptide is a factor for patients with type 1 diabetes who

develop retinopathy much earlier in the course of the disease. In

our study, we do not know when DR first presented. If that

information was available, Cox-regression could have been used to

investigate whether C-peptide had a protective effect during the

first years after the clinical onset of diabetes. Lastly, we cannot

know from the DCCT or this study if C-peptide, endogenous

insulin or both are potentially associated with DR.

Future studies will be needed to replicate these results and

ideally these studies would include time to the onset of DR and a

larger number of participants with more severe disease. Additional

studies are needed to determine to what extent GADA may

contribute to the immunofluorescence induced by serum samples

tested on retinal cells [82,83]. It is also of interest to determine if

GADA interacts with other immunologic or metabolic factors to

increase the risk of DR. Despite the number of previous studies of

HLA and DR, there remains a need for a study with an adequate

sample size to fully investigate these associations.

In conclusion, we have shown that increased levels of GADA at

the time of onset were associated with an increased risk of DR 15

years later. These results, if confirmed, could provide additional

insights into the pathogenesis of the most common microvascular

complication of diabetes and lead to better risk stratification for

both patient screenings and DR treatment trials.
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