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Abstract

The strongest serological correlate for lupus nephritis is antibody to double-stranded DNA 

although the mechanism by which anti-DNA antibodies initiate lupus nephritis is unresolved. 

Most recent reports indicate that anti-DNA must bind chromatin in the glomerular basement 

membrane or mesangial matrix to form glomerular deposits. Here we determined whether direct 

binding of anti-DNA antibody to glomerular basement membrane is critical to initiate glomerular 

binding of anti-DNA in experimental lupus nephritis. Mice were co-injected with IgG monoclonal 

antibodies or hybridomas with similar specificity for DNA and chromatin but different IgG 

subclass and different relative affinity for basement membrane. Only anti-DNA antibodies that 

bound basement membrane bound to glomeruli, activated complement, and induced proteinuria 

whether injected alone or co-injected with a non-basement membrane-binding anti-DNA antibody. 

Basement membrane-binding anti-DNA antibodies co-localized with heparan sulfate proteoglycan 

in glomerular basement membrane and mesangial matrix but not with chromatin. Thus, direct 

binding of anti-DNA antibody to antigens in the glomerular basement membrane or mesangial 

matrix may be critical to initiate glomerular inflammation. This may accelerate and exacerbate 

glomerular immune complex formation in human and murine lupus nephritis.

Introduction

The contribution of anti-DNA antibody to glomerulonephritis in mouse (1) and human (2) 

systemic lupus erythematosus (SLE) is well established. Although anti-double-stranded 

DNA (dsDNA) antibody is the best serological correlate for lupus nephritis (3, 4), the 

frequent lack of correlation between serum anti-dsDNA and glomerulonephritis is a long 
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recognized conundrum in the clinical evaluation of individual SLE patients (3, 5, 6). The 

lack of correlation between anti-dsDNA and lupus nephritis within individual patients may 

be a consequence of how anti-dsDNA antibodies bind in the glomerulus and initiate 

glomerulonephritis (6), a process not yet fully resolved (7). Mechanisms proposed to explain 

glomerular deposition of anti-DNA antibody include glomerular binding of soluble immune 

complexes of nucleosomes and IgG anti-DNA (2, 8–10), in situ formation of immune 

complexes when anti-DNA antibody binds to chromatin that has bound to glomerular 

basement membrane (GBM) or mesangial matrix (MM) (11–17), and direct binding of anti-

DNA antibody that cross-reacts with GBM or cell surface antigens (18–25). Recent 

morphologic studies (12–14, 16) have identified chromatin and IgG within the glomerular 

subendothelial and subepithelial electron dense deposits (EDS) in nephritic kidneys from 

lupus patients (26) and lupus-prone mice (27). The recent results were interpreted to indicate 

that anti-DNA antibody could form glomerular deposits only when bound to chromatin or 

nucleosomes (28–30).

The present experiments were designed to test the hypothesis that initial glomerular binding 

of anti-DNA antibody in lupus nephritis is a function of direct, cross-reactive binding to 

glomerular antigens, particularly in GBM or MM, and independent of DNA, nucleosomes, 

or chromatin. The experiments took advantage of a panel of anti-DNA monoclonal 

antibodies (mAbs) with similar relative affinities for DNA and chromatin but different 

relative affinities for basement membrane (BM) antigens in GBM and MM. Only anti-DNA 

mAbs that also bound BM antigens bound glomeruli in vivo and induced proteinuria. 

Glomerular binding of the anti-DNA mAbs was independent of DNA, nucleosomes, or 

chromatin. The results may explain why some anti-DNA mAbs are very effective at 

inducing lupus nephritis, but others are not. Similarly, the results may help to explain why 

SLE patients with similar serum anti-dsDNA antibody may have different susceptibility for 

lupus nephritis.

Results

In vitro binding of anti-DNA mAb to BM

Culture supernatants from 69 autoimmune anti-DNA mAbs from eight different (NZB × 

NZW)F1 mice (BWF1) were randomly selected for analysis (Table 1). Total IgG and 

relative affinity for binding to ssDNA, dsDNA, chromatin, and BM were quantified for each 

supernatant. The mAbs were stratified by relative affinity for BM into four different 

specificity groups (Table 1). There is a significant difference among the four specificity 

groups for competitive binding to ssDNA and dsDNA and direct binding to BM but not for 

direct binding to chromatin. There is a strong and highly significant correlation between 

binding to BM and binding to dsDNA and a moderate, highly significant inverse correlation 

between binding to BM and binding to ssDNA. Anti-DNA mAbs that bound best to dsDNA 

are generally the mAbs that also bound best to BM. The correlation between BM and 

chromatin binding, although significant, was low compared to that for BM and dsDNA. The 

results indicate that mAbs with high relative affinity for dsDNA are more likely to bind BM 

than mAbs with high relative affinity for ssDNA. The results also indicate that anti-DNA 

mAb binding to BM is unrelated to relative affinity for chromatin.
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The correlations between mAb binding to DNA and chromatin versus their potential to bind 

BM were further confirmed with purified mAbs (Table 2). BM binding by purified mAbs 

was independent of relative binding affinity for dsDNA, chromatin, or nucleosomes since 

163p.132, 452s.160, DNA3, and 3H9 mAbs bound nucleosomes and/or chromatin with high 

relative affinity but bound poorly or not at all to BM. MAb 452s.46 bound dsDNA with high 

relative affinity but did not bind BM. DNA6 mAb bound chromatin similarly to 163p.132 

and DNA3 but unlike 163p.132 and DNA3, DNA6 also bound to BM. MAbs 163p.64, 163p.

77, and 163p.124 had 20–650 fold higher relative affinity for BM than for nucleosomes. 

Binding to BM was also independent of mAb pI. These results further indicate that anti-

DNA mAb binding to BM is correlated with dsDNA binding and to lesser extent chromatin 

binding, but is independent of both for binding to BM.

Since previous investigators had concluded that anti-dsDNA mAb binding to BM was 

consequential to nucleosome contamination of hybridoma supernatants and purified mAbs 

(10), we performed co-incubation assays to insure that differential binding of anti-dsDNA 

mAbs to BM was not simply a consequence of contaminating chromatin in some but not all 

hybridoma supernatants. When hybridoma supernatants of mAb pairs 163p.132 and 163p.

124, 452s.46 and 163p.64, 163p.77 and DNA3, and 163p.77 and 452s.160 were assayed for 

binding to BM, only the mAb that bound to BM in the individual assays, 163p.124, 163p.64, 

and 163p.77, bound to BM when co-incubated with a non BM-binding mAb (Fig. 1 and 

Table 2). MAb 163p132 does bind BM but with 100–500-fold less relative affinity than 

mAbs 163p.64, 77, and 124. The results in Fig 1 corroborate the conclusion that anti-DNA 

mAb binding to BM is independent of dsDNA or chromatin.

MAb 163p.64 was tested by direct ELISA for binding to individual components of BM, 

including laminin, perlecan, entactin, and agrin. The mAb bound perlecan, entactin, and 

agrin (59, 250, and 220 ng IgG/ml, respectively, for 50% maximum binding) but not 

laminin. The recombinant agrin did not include the amino-terminal extracellular matrix 

interaction domains (R&D Systems). Binding to collagen IV was not tested. The results 

indicate that a BM binding mAb may also bind to some but not all of the individual 

components of GBM.

In vivo glomerular binding of anti-DNA mAbs

Six purified mAbs were further tested for glomerular binding when injected into non 

autoimmune-prone BALB/c mice alone or co-injected with a mAb with different BM 

binding potential and different IgG subclass. The co-injected pairs were 163p.77, IgG2b with 

452s.160, IgG2a; 163p.64, IgG2a with 452s.46, IgG2b; and 163p.124, IgG2a with 163p.132, 

IgG2b (Table 2). The co-injection experiments were included to exclude the possibility that 

co-purified chromatin or nucleosomes influenced glomerular binding (10). Only mAbs that 

bound BM by ELISA, 163p77, 16p.64, and 163p.124, bound glomeruli in vivo when 

injected either alone or co-injected with a mAb of different IgG subclass (Table 2 and Fig. 

2). Glomerular binding was unrelated to relative affinity of the mAbs for DNA, chromatin, 

or mononucleosomes or to IgG subclass.

Confocal microscopy indicated that 163p.64 mAb chronically injected over a 3-month 

period was co-localized with heparan sulfate proteoglycan (HSPG) in GBM and MM but 
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minimally with chromatin (Fig. 3a). Glomerular IgG was also co-localized with HSPG and 

minimally with chromatin in autoimmune BWF1 kidneys (Fig. 3b). As expected, there was 

no glomerular binding of anti-DNA mAb 452s.46 after similar 3-months chronic injection 

(Fig. 3c). Complement C3 was co-localized with mAb 163p.64 in glomeruli from 

chronically injected mice (Fig. 3e). These results indicate that BM-binding anti-DNA 

antibodies also bind directly to MM and GBM antigens independently of DNA, chromatin, 

or nucleosomes and initiate complement activation. The small regions of chromatin and IgG 

co-localization and perlecan, chromatin, and IgG co-localization in the kidneys from 

BALB/c mice chronically injected with 163p.64 mAb (Fig. 3a) were more numerous in 

kidneys from autoimmune BWF1 (Fig. 3b). Those regions of co-localization may be the 

glomerular EDS identified by electron microscopy in kidneys from autoimmune BWF1 (13) 

and anti-DNA mAb-injected mice (11).

Only BM-binding anti-DNA mAbs induce proteinuria in non autoimmune-prone mice

Ascites tumors were induced in non-autoimmune BALB/c mice by injecting hybridoma cells 

either individually or as co-injected pairs, one producing IgG2a and the other, IgG2b (Table 

3). Only mice injected with hybridomas producing mAbs that bound BM, 163p.64, 77, or 

124 or DNA 5 or 6, had glomerular-bound IgG of the expected IgG subclass and moderate 

to severe proteinuria 5 days after hybridoma injection. Mice injected with 163p.64 or 163p.

124, IgG2a hybridoma cells with either 452s.46 or 163p.132, IgG2b hybridoma cells had 

only glomerular-bound IgG2a. Glomerular IgG binding was not IgG2 subclass dependent, 

nor was glomerular binding simply a correlate of circulating mAb titers. The average serum 

anti-DNA titer after 5 days was 25,568 (range 12,000 – 36,000) for glomerular-bound mAbs 

and 31,272 (range 14,000 – 41,000) for mAbs that did not bind in glomeruli. Only BM-

binding mAbs initiated glomerular disease detected as proteinuria.

Gilkeson et al. (31) observed that mice injected with163p.77 and 163p.132 hybridoma cells 

developed glomerular IgG deposits and proteinuria after the injected mice developed 

pronounced ascites. The results with 163p.77 are similar to those in Fig. 2 and Table 3. We 

extended the time before euthanasia of mice injected with 163p.132 from 5 days to 8 days 

and observed similar results to those of Gilkeson et al. After 8 days mice injected with 163p.

132 cells had glomerular IgG deposits (Fig. 3f) and moderate proteinuria (Table 3). The 

difference between 163p.132 injected mice at 5 and 8 days is likely a consequence of much 

higher mAb serum titer after 8 days. MAb 163p.132 does bind to BM but with 300-fold less 

relative affinity than mAb 163p.64 (Table 2). Alternatively 163p.132 mAb deposition after 8 

days may have been due to circulating immune complexes. There was co-localization of 

162p.132 mAb with DNA (yellow pixels in Fig. 3f) although most of the glomerular 163p.

132 IgG was not co-localized with DNA.

Discussion

The present results demonstrate that some but not all anti-DNA mAbs bind directly to BM 

antigens and that direct binding of anti-dsDNA antibody to GBM or MM is critical for the 

initiation of experimental lupus nephritis. Glomerular binding of IgG and complement and 

the initiation of glomerular disease, identified as proteinuria, were independent of mAb 
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binding to DNA or chromatin whether the mAbs were injected or produced in situ. MAb 

binding to GBM and MM was correlated with relative affinity for dsDNA but independent 

of binding to DNA or chromatin. Only anti-dsDNA mAbs that bound BM antigens bound to 

GBM and MM in vivo. These results and conclusion are consistent with previous reports that 

anti-dsDNA antibodies may initiate glomerulonephritis after binding directly to glomerular 

antigens (18–24). The results and conclusion contrast with results (10–14, 16, 17, 32) 

interpreted to indicate that anti-DNA antibodies can only bind to GBM or MM as immune 

complexes of anti-DNA antibody and nucleosomes or by binding to chromatin already 

bound to GBM or MM (28–30). The results from co-injection of mice with a hybridoma 

producing a BM-binding anti-DNA mAb with a hybridoma producing a non BM-binding 

anti-DNA mAb are difficult to reconcile with the previous interpretation. MAbs produced by 

the co-injected hybridomas had similar relative affinity for DNA, nucleosomes, or 

chromatin, but only the mAbs that bound BM also bound glomeruli in vivo. The results 

cannot be explained by potential absence of circulating nucleosomes or chromatin in non 

autoimmune-prone BALB/c mice. Circulating or glomerular-bound chromatin or 

nucleosomes, including that released from necrotic or apoptotic hybridomas, would have 

been equally accessible to the two mAbs.

The present results may explain why autoimmune female BWF1 transgenic for VH of the 

3H9 anti-DNA mAb (33, 34) do not develop nephritis (35). 3H9 mAb binds DNA and 

chromatin (36) but does not bind BM. Autoimmune, 3H9 VH transgenic BWF1 had similar 

serum IgG2a/b anti-DNA titers as non-transgenic BWF1 of similar age but did not develop 

proteinuria even after 1 year of age. Similar outcome was reported for D42 VH (37) and 3–

32 μ (38) transgenic BWF1. Non-transgenic, female BWF1 invariably produce anti-DNA 

autoantibody and develop glomerulonephritis with proteinuria by 10 months of age (1). 

BALB/c mice injected with the 3H9 hybridoma had relatively low glomerular 

immunofluorescence and disease scores compared with mice injected with 163p.77 or 163p.

132 hybridomas (31). The majority of anti-DNA hybridomas from VH3H9 transgenic BWF1 

had VH3H9 H chains (39). Likely those mAbs could not bind BM and could not initiate 

disease.

Essentially three experimental systems have described nucleosome-dependent glomerular 

binding of anti-DNA antibodies. Schmiedeke et al. (32) and Termaat et al. (17) allowed 

soluble DNA to bind to histones after the histones were perfused into kidneys or added to 

isolated glomeruli or GBM. Anti-DNA mAb bound to the immobilized DNA but not to 

GBM, histone-coated GBM, or DNA added to GBM. Although interesting, the experiments 

do not accurately reflect the physical chemical properties of intact nucleosomes, nor how 

nucleosomes or chromatin may interact with GBM or MM. Kramers et al. (10) reported that 

purified anti-DNA mAbs perfused into kidneys may only bind in glomeruli as immune 

complexes with histones or nucleosomes, presenting as example mAb 32. Nucleosomes in 

the immune complexes were presumed to promote binding to GBM through histone-

dependent charge interaction. Nucleosomes in physiological saline have a net negative 

charge with more exposed acidic than basic regions (40, 41). The basic termini of H2B and 

H3 that protrude from the octamer cores through the DNA superhelix bind with the acidic 

patches on the octamer surface of consecutive nucleosomes and with linker DNA to 
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organize the nucleosomes into chromatin (40, 42). Nucleosomal organization into chromatin 

precludes surface availability of positive charge contributed by histones (41). The net charge 

of the GBM lamina rara interna and externa initially accessible to chromatin or nucleosomes 

is anionic (43, 44) and unlikely to promote binding. Although nucleosomes bound isolated 

collagen IV, laminin (15), and agrin (16) on laboratory sensor chips, radiolabeled 

nucleosomes (45, 46) were rapidly cleared from blood into the liver with insignificant 

localization to kidneys unless nucleosome injections were preceded by injection of soluble 

histones (45). DNA-anti-DNA immune complexes were likewise rapidly cleared from the 

circulation (47, 48). Perfusion into the renal artery (10) would bypass initial circulation to 

the liver. An alternative explanation for why mAb 32-nucleosome immune complexes 

bound GBM, but mAb alone did not, might be that the mAb 32 in nucleosome immune 

complexes had increased relative avidity for GBM. The mAb 32-nucleosome immune 

complexes were created at a 15:1 molar ratio of mAb to mononucleosome (10). Multiple 

unbound antibody combining sites in mAb 32-nucleosome immune complexes prepared in 

antibody excess may have created higher avidity of the complexes for GBM than mAb 32 

alone. The DNA, nucleosome, and BM binding characteristics of mAb 32 were similar to 

those for mAb 163p.132 in the present study. MAb 163p.132 bound glomeruli only after 

reaching a serum concentration of ~10 mg/ml. MAbs 163p.64 and 163p.77 that bind with 

high relative affinity to BM, both bound glomeruli at serum concentrations of ≤720 μg/ml. 

MAb 163p.132 binds BM but with low relative affinity. Alternatively, the additional 3 days 

of 163p.132 hybridoma growth from 5 to 8 days may have produced sufficient chromatin or 

nucleosomes from dying cells to produce immune complexes, likely in mAb excess. There 

was more glomerular co-localization of DNA with 163p.132 mAb than with the BM-binding 

163p.64 mAb.

GBM-associated EDS in kidneys from nephritic BWF1 (13), nephritic lupus patients (12), 

and BALB/c mice chronically injected with an anti-DNA mAb (11) contained both 

chromatin and IgG. The EDS chromatin was presumed to have originated from mesangial 

cells undergoing apoptosis (13). The released chromatin was presumed to bind GBM and 

present target antigens to chromatin-binding antibody. Caspace 3-positive mesangial cells 

were detected in kidneys from nephritic but not pre-nephritic BWF1 (13), and chromatin 

was never detected in EDS that did not also contain IgG (11, 13). Direct binding of 

nucleosomes or chromatin to GBM was not tested. If chromatin binding to GBM determines 

when and where anti-DNA antibody binds GBM to initiate EDS, mAbs with similar relative 

affinity for chromatin should have similar potential to initiate nephritis, which our results 

show not to be true. Nucleosomes do not bind GBM as discussed above. The recent 

morphologic studies have elegantly refined our understanding of glomerular EDS in 

nephritic kidneys (12–14, 16, 49) but fail to clarify how EDS are initiated in lupus nephritis.

Earlier experiments determined that small lattice immune complexes prepared with a 

cationized antibody were retained within glomerular subendothelial EDS but persisted only 

when they were able to form larger lattice immune complexes (50). Glomerular mAb 

deposition in the present study was independent of mAb pI or immune complexes. Immune 

complex deposition in GBM can also be initiated by GBM-binding antibody that also binds 

circulating free antigen to produce immune complexes and EDS (51). Our results are most 

consistent with this latter mechanism to explain how anti-DNA antibody can initiate 
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glomerular EDS (illustrated in Fig. 4). The initial event toward glomerular IgG binding and 

initiation of EDS is direct binding of anti-DNA antibody to GBM or MM (Fig. 4I). 

Complement activation and the ensuing inflammation could provide a source for locally 

released oligonucleosomes. If the locally released oligonucleosomes are bound by GBM or 

MM-bound antibody (Fig. 4II) (51), both BM-binding and non BM-binding anti-DNA 

antibodies could bind the progressively accumulating complex and induce more complement 

activation, inflammation, and oligonucleosome release (Fig. 4III). Reduced glomerular 

DNase I would contribute to and accelerate stage III (Fig. 4) (52). The progressive 

accumulation of immune complexes would eventually produce chronic inflammation and 

lupus nephritis. BM-binding and non BM-binding anti-DNA mAbs were not co-localized in 

mice 5 days after co-injection with respective hybridomas. There may have been insufficient 

circulating oligonucleosomes or chromatin from the ascites tumors to generate the 

glomerular complexes depicted in Fig. 4II. Similarly, 3H9 transgenic BWF1 may fail to 

develop glomerulonephritis not only because the transgenic anti-DNA antibody cannot bind 

glomerular antigens, but also because locally released oligonucleosomes are unavailable to 

create large lattice immune complexes.

Anti-DNA antibodies that bind directly to glomerular endothelial, mesangial, or other cell 

surface antigens can function similarly to anti-DNA antibodies that bind GBM or MM(19–

21, 23, 53–55). Cell-bound anti-DNA antibodies can initiate inflammation by directly 

altering cell function, inducing apoptosis or necrosis, or interrupting cell-cell or cell-matrix 

interactions (6, 56). Oligonucleosomes released from apoptotic or necrotic cells as a 

consequence of the induced inflammation can form large lattice immune complexes locally 

(50) that persist as subendothelial EDS (34).

Our results do not exclude the potential for GBM binding of circulating nucleosome-

antibody immune complexes (10) or antibody binding to GBM chromatin, but they do 

indicate that neither is necessary for BM-binding anti-DNA antibody to bind GBM or MM.

We did not directly test whether injected anti-DNA mAbs would bind differently in 

nephritic or pre-nephritic BWF1 kidneys compared to BALB/c mouse kidneys. Confocal 

images of IgG co-localization with GBM and MM in kidneys from 9 month-old BWF1 were 

similar to those from BALB/c mice chronically injected with BM-binding anti-DNA mAb.

The present results provide additional insight to explain why lupus patients with similar 

serum antibody to dsDNA or nucleosomes can have different antibody-dependent disease 

outcomes (6).

Methods

Mice

BALB/c mice were purchased from Harlan Sprague-Dawley (Indianapolis, IN) and 

maintained within the UTHSC Laboratory Animal Care Unit. All experimental protocols 

were approved by IACUC.
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Antibodies and antigens

The generation, DNA specificity, and V-region sequences for the mAbs used in these studies 

have been described (34, 57–59). All hybridomas were derived from autoimmune (NZB × 

NZW)F1 mice (BWF1) except 3H9 (34) provided by Drs. M. Weigert and M. Radic 

(Chicago, IL and Memphis, TN). Matrigel® (BM) (BD Biosciences, Bedford, MA) is a 

soluble basement membrane matrix of laminin, collagen IV, HSPG, and entactin (nidogen 

1). Only high molecular weight bands corresponding to laminin, collagen IV, entactin, and 

HSPG were detected after high sensitivity staining of an SDS-PAGE of 12.5 μg of 

Matrigel®. DNA, ssDNA, and dsDNA were prepared as described (58). Chromatin and 

mononucleosomes were isolated from mouse liver or cultured P3x63-Ag8.653 cells as 

described (60). Perlecan (HSPG2) and heparan sulfate were purchased from Sigma-Aldrich 

(St. Louis, MO), and recombinant human nidogen (entactin) and C-terminal recombinant rat 

agrin, from R&D Systems, (Minneapolis, MN). Agrin is a heparin sulfate proteoglycan in 

GBM (61). Biotinylated goat anti-mouse IgG, IgG2a, and IgG2b; FITC-goat anti-mouse IgG; 

and FITC-streptavidin were purchased from Southern Biotechnology (Birmingham, AL); 

alkaline phosphatase-streptavidin, from Jackson Immunoresearch Laboratories (West Grove, 

PA); biotinylated rat anti-perlecan mAb (clone A7L6), from Lab Vision (Thermo Fisher 

Scientific, Fremont, CA); Alexa 546-strepatavidin and TO-PRO3® DNA dye, from 

Molecular Probes (Invitrogen, Carlsbad, CA); and anti-C3-FITC, from BD Bioscience.

MAb isolation

MAbs were isolated from hybridoma supernatants by affinity chromatography on protein G-

Sepharose 4B (Invitrogen) essentially as described (10). MAbs were eluted with glycine-

HCl, pH 2.8 and immediately neutralized. SDS-PAGE of eluted mAbs stained with a high 

sensitivity Coomassie (Biorad, Hercules, CA) yielded bands corresponding only to 

immunoglobulin H and L polypeptides. DNA was not detected in purified mAbs by 

ethidium bromide staining after agarose electrophoresis but was detected in the high salt 

eluate.

ELISA for DNA, chromatin, nucleosome, and BM binding

Direct and competitive ELISAs for DNA binding were performed as described (59). ELISAs 

for mAb binding to chromatin, nucleosomes, BM, and the BM constituents HSPG, heparan 

sulfate, and entactin were performed identically to the direct DNA ELISA. Plates (Immulon 

I, Thermo-Fisher) were coated with DNA, chromatin or mononucleosomes at 1 μg/well 

DNA; 1/250 dilution of Matrigel®, ~5 μg/well, estimated as 2.8 μg/well laminin, 1.5 μg/well 

collagen IV, 0.4 μg/well entactin, and 0.25 μg/well HSPG (BD Bioscience assay); or 0.2 μg/

well of purified BM proteins. Bound IgG from serially diluted supernatant, purified mAb, or 

serum antibody were detected as described (59). A biotinylated rat anti-laminin mAb (clone 

A5) (Neomarkers) was used as a positive control for the anti-BM ELISA. Statistical 

analyses were performed with PASW Statistics 18 (SPSS Statistics, IBM, Armonk, NY).

In vivo glomerular binding of anti-DNA mAb and measurement of proteinuria

BALB/c mice, eight-to-twelve weeks old, were injected once intravenously with 1 mg of a 

single, purified mAb or 1 mg each of two purified mAbs, one IgG2a, the other IgG2b. 
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Twenty-four hours later injected mice were euthanized and their kidneys removed and snap 

frozen in OCT embedding medium (Tissue-Tek, Miles Laboratories, Elkhart, IN). Serial one 

μm cryosections were fluorescently stained with biotinylated goat anti-mouse IgG2a or 

IgG2b and FITC-streptavidin. In separate experiments, mice were chronically injected with 

100 μg per intraperitoneal (ip) injection of a single mAb twice weekly for 3 months or 

injected ip with hybridoma cells 5–7 days after ip injection with 0.5 ml pristane (Sigma). 

The hybridoma injection consisted of 107 cells from one hybridoma or 107 cells each from 

two hybridomas, one producing IgG2a and the other, IgG2b. Kidneys were removed and 

embedded for cryosection after 3 months chronic injection of purified mAb or 1–5 days after 

hybridoma injection. Serial cryosections from the same kidney were stained for detection of 

mouse IgG2a or IgG2b. For confocal microscopy 4–12 μm cryosections were stained with 

TO-PRO3 for DNA, goat anti-mouse IgG-FITC, and rat anti-perlecan and streptavidin Alexa 

546 or anti-C3-FITC and biotinylated goat anti-mouse IgG and streptavidin-Alexa 546. 

Confocal images were collected with a Zeiss LSM510 confocal microscope (Carl Zeiss 

Microimaging, Thornwood, NY). Proteinuria was measured with Ames Uristix (Miles) 

according to manufacturer’s instructions.
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Abbreviations

BWF1 (NZB × NZW)F1 mice

dsDNA native, double-stranded DNA

ssDNA denatured, single-stranded DNA

BM basement membrane

GBM glomerular basement membrane

mAb monoclonal antibody

MM glomerular mesangial matrix

EDS electron dense substance, electron dense region, electron dense deposit

HSPG heparan sulfate proteoglycan
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Figure 1. 
Supernatant mAbs that do not bind BM when assayed alone do not bind BM when combined 

with supernatant mAbs that do bind BM. Supernatant mAbs from the indicated hybridoma 

pairs were assayed by direct ELISA for BM binding. Titration curves represent serial 

dilution of supernatants assayed independently for IgG2a or IgG2b binding to BM: solid 

circles, IgG2a; open squares, IgG2b; solid lines, IgG2a and IgG2b mAbs co-incubated; and 

broken lines, IgG2a or IgG2b mAb incubated alone. Supernatant concentrations of mAbs: 

163p.124, 12.1 μg/ml; 163p.132, 34.7 μg/ml; DNA3, 29.1 μg/ml; 163p.77, 23.5 μg/ml; 163p.

64, 10.0 μg/ml; 452s.46, 6.4 μg/ml; and 452s.160, 18.7 μg/ml. Maximum OD405 = 2.600.
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Figure 2. 
Detection of glomerular (a) IgG2b, 163p.77 but not (b) IgG2a, 452s.160 in kidney serial 

cryosections 24 hours after co-injecting 1 mg of each purified mAb into a BALB/c mouse. 

Serial cryosections had granular IgG2b but no IgG2a within MM. Mice injected with 163p.

64, IgG2a and 452s.46, IgG2b (see Fig. 3a and c) and 163p.124, IgG2a and 163p.132, IgG2b 

had IgG2a but no IgG2b staining. Results were similar in replicate mice.
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Figure 3. 
Confocal micrographs of kidney cryosections from an autoimmune BWF1 mouse or 

BALB/c mice injected with purified anti-DNA mAb. a and e) 100 μg 163p.64 mAb twice 

weekly for 3 months; b) uninjected BWF1, c) 100 μg 452s.46 mAb twice weekly for 3 

months; d) uninjected BALB/c; and f) BALB/c with 163p.132 hybridoma-induced ascites 8 

days after hybridoma injection. Images a and b show chromatin as red, perlecan in GBM and 

MM as dark blue, and IgG as green. Co-localization of IgG with HSPG is clearly identified 

as turquoise; co-localization of IgG with chromatin, yellow; and co-localization of IgG and 

chromatin with HSPG, white. The large white arrowheads in a and b indicate areas of IgG, 

chromatin, and perlecan co-localization. Small arrowheads indicate IgG and chromatin co-

localization. Image e shows IgG as red and C3 as green with co-localization of 163p.64 

mAb and C3 as yellow. Confocal images a and b: 512 pxels2, 180 nm/pixel (92 μm2), 

optical sections collected at 0.6 μm intervals; c–f: 512 pixels2, 450 nm/pixel (230 μm2), 

optical sections collected at 0.8 μm intervals (c–e) and 0.5 μm (f). All images are from 

optical sections near the center of respective z-stacks. Replicate mice yielded similar results.
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Figure 4. 
Hypothetical mechanism for the initiation of lupus nephritis by BM-binding anti-dsDNA 

antibody. The stage I to II transition is likely to be reversible (62). The stage II to III 

transition associated with the progressive accumulation of antibody and chromatin into 

immune complexes will eventually reach a threshold for which the immune complex 

deposition is no longer reversible. This stage would yield chronic inflammation and lupus 

nephritis. EDS (11, 12, 27) are predicted to be formed by the stage II into III transition.

, GBM or MM; , chromatin; , BM-binding anti-dsDNA; , non BM-binding 

anti-dsDNA; , activated complement.
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