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Abstract

Background: MicroRNAs (miRNAs) are short non-coding RNA molecules participating in post-
transcriptional regulation of gene expression. There have been many efforts to discover miRNA
precursors (pre-miRNAs) over the years. Recently, ab initio approaches obtain more attention
because that they can discover species-specific pre-miRNAs. Most ab initio approaches proposed
novel features to characterize RNA molecules. However, there were fewer discussions on the

associated classification mechanism in a miRNA predictor.

Results: This study focuses on the classification algorithm for miRNA prediction. We develop a
novel ab initio method, miR-KDE, in which most of the features are collected from previous works.
The classification mechanism in miR-KDE is the relaxed variable kernel density estimator (RVKDE)
that we have recently proposed. When compared to the famous support vector machine (SVM),
RVKDE exploits more local information of the training dataset. MiR-KDE is evaluated using a
training set consisted of only human pre-miRNAs to predict a benchmark collected from 40
species. The experimental results show that miR-KDE delivers favorable performance in predicting
human pre-miRNAs and has advantages for pre-miRNAs from the genera taxonomically distant to

humans.

Conclusion: We use a novel classifier of which the characteristic of exploiting local information
is particularly suitable to predict species-specific pre-miRNAs. This study also provides a
comprehensive analysis from the view of classification mechanism. The good performance of miR-
KDE encourages more efforts on the classification methodology as well as the feature extraction

in miRNA prediction.

Background translational repression [1-3]. The discovery of miRNA
MicroRNAs are short RNAs (~20-22 nt) that can regulate ~ shows that RNA is not only a carrier of gene information,
target genes by binding to the mRNAs for cleavage or  but also a mediator of gene expression. The first studied

Page 1 of 10

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/9/S12/S2
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9(Suppl 12):S2

miRNAs are lin-4 and let-7, which have been found during
studies of genetic defects in early larval Caenorhabditis ele-
gans [4,5]. To date, 6396 miRNAs have been identified [6].
The rapid growth results from the development of not
only the experiment techniques but also the computa-
tional methods [7].

One of the most extensively developed computational
methods for miRNA detection is the comparative
approach. The most straightforward method is to align
unknown RNA sequences to known pre-miRNAs through
NCBI BlastN [8]. Advanced comparative approaches to
discover pre-miRNAs strongly rely on sequence similarity
[9] or on sequence profiles [10]. One drawback of homol-
ogy search is the generation of many false positives (RNAs
containing no mature miRNA predicted to be pre-miR-
NAs). Subsequently, cross-species evolutionary conserva-
tion has been widely used to eliminate these false
positives [11-19]. Another well known method to identify
novel pre-miRNAs is using conservation patterns based on
a set of homology sequences [20-22].

Comparative approaches heavily rely on sequence simi-
larity to known pre-miRNAs, and suffer lower sensitivity
in detecting novel pre-miRNAs without known homology
pre-miRNAs [22,23]. To overcome this problem, many ab
initio algorithms, requiring no sequence or structure align-
ment, have recently been developed to detect complete
new pre-miRNAs for which no close homology are known
[24-28]. Brameier and Wiuf [29] proposed a motif-based
ab initio method, miRPred, yielded 90% sensitivity and
99.1% specificity for human miRNAs. These ab initio
methods are suitable to predict species-specific and non-
conserved pre-miRNAs, which occupy the majority of
undiscovered pre-miRNAs [18]. Other methods improved
the miRNA prediction by first predicting some miRNA-
related motifs such as the conserved 7-mers in 3'-UTRs
[30] and Drosha processing sites [31].

Among these ab initio methods, Sewer et al. [24] used base
pair frequencies and quantifying certain pre-miRNA struc-
ture elements as the characteristic features and detected
71% of pre-miRNAs with a low false positive rate of ~3%
for virus. Triplet-SVM [25] used the frequencies of struc-
ture-sequence triplets as the characteristic features and
yielded an overall accuracy of 90.9% for 11 species. Baye-
sMiRfind [26] used sequence and structure features with
comparative post-filtering and delivered >80% sensitivity
and >90% specificity for C. elegans and Mouse. RNAmicro
[27] introduced the thermodynamic properties with mul-
tiple sequence alignment and yielded >90% sensitivity
and >99% specificity for C. elegans and C. briggsae. MiPred
[28] used dinucleotide frequencies, six folding measures
and five normalized folding quantities as the characteris-
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tic features and yielded an overall accuracy of 95.6% for
40 species.

With the development of ab initio approaches, the charac-
teristic features for describing RNA molecules have been
extensively studied in recent years. However, there were
fewer discussions on the associated classification mecha-
nism. Most ab initio approaches proposed novel character-
istic features, but adopted an off-the-shelf machine
learning tool. Furthermore, most of them incorporated
with the same classifier, support vector machine (SVM),
because of its prevailing success in diverse bioinformatics
problems [32-34].

In this study, we focus on the classification methodology
for pre-miRNAs prediction. A novel ab initio method, miR-
KDE, for identifying pre-miRNAs from other hairpin
sequences with similar stem-loop features (we call them
pseudo hairpins) is developed. The feature set comprises
several sequence and structure characteristics collected
from previous works. We incorporate the relaxed variable
kernel density estimator (RVKDE) [35] to classify RNA
sequences based on the feature set. RVKDE is an instance-
based classifier that exploits more local information from
the dataset than SVM. An analysis based on the decision
boundary of classifiers is conducted in this study to elab-
orate this characteristic of RVKDE. The performance of
miR-KDE is evaluated using a training set consisted of
only human pre-miRNAs to predict a benchmark col-
lected from 40 species. Experimental results show that
miR-KDE delivers favorable performance in predicting
human pre-miRNAs and has advantages for pre-miRNAs
from the genera taxonomically distant to humans.

Results and discussion

Experimental results on human pre-miRNAs

The performances of triplet-SVM, miPred and the present
miR-KDE in predicting human pre-miRNAs are shown in
Table 1. The %SE, %SP, %ACC, %Fm and %MCC of miR-
KDE of five-fold cross-validation on the HU400 dataset
are 90.5%, 97.5%, 94.0%, 93.8% and 88.2%, respectively.

Table I: Performances of triplet-SVM, miPred and miR-KDE in
predicting human pre-miRNAs.

%SE %SP %ACC  %Fm %MCC

Five-fold cross-validation on HU400

triplet-SVM 86.5%  91.5%  89.0% 88.7% 78.1%

miPred 87.5% 98.0% 92.8% 92.3%  86.0%

miR-KDE 90.5% 97.5% 94.0% 93.8% 88.2%
Using HU400 to predict HU216

triplet-SVM 833% 86.1% 84.7% 84.5%  69.5%

miPred 88.0% 88.0% 88.0% 88.0%  75.9%

miR-KDE 88.9% 92.6% 90.7% 90.6% 81.5%

The best performance among each dataset is highlighted in bold.
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Table 2: Performances of triplet-SVM, miPred and miR-KDE in
predicting non-human pre-miRNAs.

%SE ~ %SP  %ACC %Fm %MCC
triplet-SVM 91.5% 887% 90.1%  90.2% 80.2%
miPred 96.7% 90.4% 93.6%  93.7% 87.3%
miR-KDE 95.8% 93.5% 94.7% 94.7% 89.3%
with miPred's %SP  97.4% 90.4% 93.9%  94.1% 88.1%

The best performance among each dataset is highlighted in bold.

Most of the five measures are superior to triplet-SVM and
miPred, except that miPred delivers a higher %SP. The
comparison based on HU400 must be taken carefully, of
course, because the parameters of alternative predictors
are determined to maximize the performance for this
dataset. Next, the three predictors are evaluated using
HU400 to predict the HU216 dataset. The %SE, %SP,
%ACC, %Fm and %MCC of miR-KDE are 88.9%, 92.6%,
90.7%, 90.6% and 81.5%. These results demonstrate the
good performance of miR-KDE in identifying human pre-
miRNAs from pseudo hairpins.

Experimental results on non-human pre-miRNAs

Table 2 extends the evaluation to the NH3350 dataset,
which includes 1675 non-human pre-miRNAs from 39
species and 1675 human pseudo hairpins. The %SE, %SP,
%ACC, %Fm and %MCC of miR-KDE are 95.8%, 93.5%,
94.7%, 94.7% and 89.3%. Most of these results are supe-
rior to triplet-SVM and miPred except that miPred delivers
a higher %SE. We thus provide a sensitivity of miR-KDE
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under the condition of having the same specificity as
miPred in the last row of Table 2.

A further analysis is conducted to compare miPred and
miR-KDE because of their comparable performance in
Table 2. Table 3 shows the performance of miPred and
miR-KDE for the NH3350 dataset in terms of genus. This
experiment divides the NH3350 dataset into five sub-
datasets based on genus, where each sub-dataset contains
equal number of pre-miRNAs and pseudo hairpins. The
1675 pseudo hairpins are randomly assigned to each sub-
dataset without replacement. Table 4 shows the size of
these sub-datasets.

In this experiment, miR-KDE yields superior performance
to miPred in terms of %SP, %ACC, %Fm and %MCC for
all the genera. With respect to the %SE, miR-KDE per-
forms better in Arthropoda, Viridiplantae and Nematoda,
but worse in Vertebrata and Viruses than miPred. This is
particularly of interest since Vertebrata is the closest genus
taxonomically to humans, while Viruses is the most dis-
tant genus taxonomically to humans, among the five gen-
era. One reasonable explanation is that viruses lack
miRNA processing proteins such as Drosha, Dicer and
RISC [36]. Viral miRNAs utilize such processing proteins
from their hosts to regulate viral expression after infecting
[37,38]. Thus, viral-encoded pre-miRNAs are likely to
have very similar characteristics to those pre-miRNAs
from the host (i.e., human). As a result, the good perform-
ance of using human pre-miRNAs to predict Arthropoda,

Table 3: Performances of miPred and miR-KDE for the NH3350 dataset in terms of genus.

%SE %SP %ACC %Fm %MCC

Vertebrata

miPred 95.3% 88.8% 92.1% 92.3% 84.3%

miR-KDE 93.4% 92.8% 93.1% 93.2% 86.3%

with miPred's %SP 96.1% 88.8% 92.5% 92.7% 85.2%

Arthropoda

miPred 98.8% 89.0% 93.9% 94.2% 88.2%

miR-KDE 100.0% 92.0% 96.0% 96.2% 92.3%
Viridiplantae

miPred 98.2% 93.6% 95.9% 96.0% 91.9%

miR-KDE 98.4% 95.0% 96.7% 96.8% 93.4%
Nematoda

miPred 97.2% 90.4% 93.8% 94.0% 87.8%

miR-KDE 97.2% 92.7% 94.9% 95.0% 89.9%
Viruses

miPred 97.2% 93.1% 95.1% 95.2% 90.4%

miR-KDE 94.4% 97.2% 95.8% 95.8% 91.7%

with miPred's %SP 98.6% 93.1% 95.8% 95.9% 91.8%

Overall

miPred 97.3% + 1.3% 91.0% + 2.3% 94.1% £ 1.5% 94.3% + 1.4% 88.5% + 2.9%

miR-KDE 96.7% + 2.7% 93.9% £ 2.1% 95.3% £ 1.4% 95.4% + 1.4% 90.7% + 2.8%

with miPred's %SP 98.1% + 1.5% 92.3% +2.2%

95.2% *+ 1.6% 95.3% = 1.6% 90.5% * 3.3%

The best performance among each dataset is highlighted in bold.

Page 3 of 10

(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 12):S2

Table 4: Summary of sub-datasets derived from the NH3350 dataset.
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Genus Number of pre-miRNAs! Number of pseudo hairpins?
Vertebrata 824 824

Arthropoda 163 163

Viridiplantae 439 439

Nematoda 177 177

Viruses 72 72

Overall 1675 1675

IEach sub-dataset contains pre-miRNAs from the corresponding genus. 2All sub-datasets contain pseudo hairpins collected from human genome.

Viridiplantae and Nematoda ones indicates that miR-KDE
is suitable for detecting species-specific pre-miRNAs.

Contribution of the classification mechanism

We next investigate the effect of using RVKDE by separat-
ing two differences of miR-KDE to miPred: 1) introducing
the four stem-loop features and 2) using RVKDE instead
of SVM. Table 5 shows the performance of four possible
predictors by individually enabling/disabling the two dif-
ferences. The best %SE, %SP, %ACC, %Fm and %MCC in
Table 5 are achieved by predictors with the four stem-loop
features, regardless of the classification mechanism and
the testing set. This observation indicates that the four
stem-loop features are helpful in identifying pre-miRNAs.
In another respect, SVM delivers better %SE, while RVKDE
delivers better %SP, regardless of the feature set and the
testing set. With respect to the three overall measures,
RVKDE performs almost identically to SVM for the
HU216 dataset, and has some advantages for the NH3350
dataset. This reveals that the advantage of miR-KDE for
specific-species miRNA prediction in Table 3 benefits
mainly from the classification mechanism.

Decision boundaries of SYM and RVKDE

To explain the characteristic of RVKDE in miRNA predic-
tion, four cases are selected to demonstrate its difference
to SVM from the view of decision boundary. For the four
selected testing samples, miPred and miR-KDE make dif-

ferent predictions. In this analysis, miR-KDE adopts only
29 features derived from miPred to exclude the effect by
introducing the four stem-loop features. Figure 1 shows a
testing pre-miRNA, Caenorhabditis elegans miR-260, and
the training samples from HU400 on the decision bound-
ary plots. The black circle represents the testing sample,
red circles represent the training pre-miRNAs and blue cir-
cles represent the training pseudo hairpins. The back-
ground color indicates the predictor's decision. The details
of generating the decision boundary plots can be found in
the 'Materials and methods' section.

In Figure 1(a) and 1(b), most the training samples locate
at the top-left part in the plane. In this region, both SVM
and RVKDE conclude that samples with larger y-axis tend
to be pre-miRNAs and samples with smaller y-axis tend to
be pseudo hairpins. The main inconsistence between the
two classifiers occurs in the region including fewer train-
ing samples. Figure 1(c) and 1(d) hide the training sam-
ples that are not used to construct the decision boundary.
Namely, Figure 1(c) shows only the support vectors, and
Figure 1(d) shows only the kt nearest training samples to
the testing sample (see the 'Materials and methods' sec-
tion for details). In this example, RVKDE exploits more
local information and generates an irregular decision
boundary.

Table 5: Comparison of miPred and miR-KDE in terms of the feature set and the classification mechanism.

Without the four stem-loop features!

With the four stem-loop features?

%SE %SP %BACC %Fm %MCC %SE %SP %ACC %Fm %MCC
HU2163
SVM 88.0% 88.0% 88.0% 88.0% 75.9% 90.7% 90.7% 90.7% 90.7% 81.5%
RVKDE 85.2% 90.7% 88.0% 87.6% 76.0% 88.9% 92.6% 90.7% 90.6% 81.5%
NH33504
SVM 96.7% 90.4% 93.6% 93.7% 87.3% 97.3% 91.3% 94.3% 94.4% 88.7%
RVKDE 94.8% 93.4% 94.1% 94.1% 88.2% 95.8% 93.5% 94.7% 94.7% 89.3%

The best performance among each dataset is highlighted with bold font. 'Using the 29 features in miPred. 2Using the 33 features in miR-KDE, i.e.,
the 29 features derived from miPred and the four stem-loop features. 3Using the HU400 dataset to predict the HU216 dataset. Using the HU400

dataset to predict the NH3350 dataset.
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Sequence of the testing sample:
CGUACAACAAAAUUAUUGCGAGAGAAUUUUUUAACAUGGCGUUUGCUUUACCAGGUCGAU
AGACUAUCGUGAUGUCGAACUCUUGUAGGACAAUCUGGUAUUU

Figure |

The decision boundary plots, where (a) and (c) are
generated by SVM and (b) and (d) are generated by
RVKDE. The x-axis is frequency of the dinucleotide "UU",
and the y-axis is base pairing propensity[44]. The black circle
is a testing pre-miRNA for the pre-miRNA Caenorhabditis ele-
gans miR-260. The red and blue circles represent positive
and negative training samples. In (c) and (d), training samples
not involved in the decision function of the classifiers are
removed.

Figure 2, Figure 3 and Figure 4 show other three testing
cases classified differently by miPred and miR-KDE. Figure
2 shows a pseudo hairpin classified incorrectly by miPred
and correctly by miR-KDE. Figure 3 shows a pre-miRNA,
Zea mays miR168a, classified correctly by miPred but
incorrectly by miR-KDE. Finally, Figure 4 shows a pseudo
hairpin correctly classified by miPred but incorrectly by
miR-KDE. All these figures have a common characteristic:
the testing sample usually locates at the region with fewer
training samples. In other words, to use global or local
information is less crucial for samples that are very close
to existing samples. SVM is suitable for datasets with a
good consistency among samples. For example, SVM per-
forms well when using HU400 to predict HU216 in Table
5, because both datasets are extracted from the same spe-
cies. RVKDE is suitable for datasets in which information
is stored in local region, i.e., to construct a global model
for all the samples is not applicable. This echoes that
RVKDE has some advantages when using human pre-miR-
NAs to predict pre-miRNAs from the genera taxonomi-
cally distant to humans.

http://www.biomedcentral.com/1471-2105/9/S12/S2

In summary, SVM and RVKDE are two distinct classifica-
tion mechanisms. SVM uses support vectors to model the
global information of training samples and to prevent
being misguided by a few noisy samples. RVKDE is
instance-based and highly dependent on the local infor-
mation of training samples. The variable variance of each
kernel function (see the 'Materials and methods' section
for details) makes RVKDE deliver better performance than
conventional instance-based classifiers and achieve the
same level of performance as SVM [35].

Conclusion

There have been many efforts on discovering pre-miRNAs
over the years. Recently, several ab initio approaches are
especially of interest, because of the ability to discover
species-specific pre-miRNAs that usually evaded by com-
parative approaches. This study develops a novel ab initio
miRNA predictor by focusing on the classification mecha-
nism. The adopted RVKDE exploits more local informa-
tion from the training samples than widely used SVM.
Experimental results show that the characteristic of
exploiting more local information makes miR-KDE more
suitable for species-specific miRNA prediction. The deci-
sion boundary analysis shows that alternative machine
learning algorithms feature different advantages. These

| . | .
| . | .
Sequence of the testing sample:
AGCACCAUUUGCUGGAACCAGCAGCCUCCUCCUCUGAGACCCUUCAGCUUCUGCCGGUCC
CCAGCAGACACUGUGCC

Figure 2

The decision boundary plots, where (a) and (c) are
generated by SVM and (b) and (d) are generated by
RVKDE. The x-axis is frequency of the dinucleotide "CC",
and the y-axis is frequency of the dinucleotide "GG". The
black circle is a testing pseudo hairpin. The red and blue cir-
cles represent positive and negative training samples. In (c)

and (d), training samples not involved in the decision function
of the classifiers are removed.
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Sequence of the testing sample:
GAAGCCGCGCCGCCUCGGGCUCGCUUGGUGCAGAUCGGGACCCGCCGCCCGGCCGACGGG
ACGGAUCCCGCCUUGCACCAAGUGAAUCGGAGCCGGCGGAGCGA

Figure 3

The decision boundary plots, where (a) and (c) are
generated by SVM and (b) and (d) are generated by
RVKDE. The x-axis is frequency of the dinucleotide "CG",
and the y-axis is ratio of the minimum free energy to the
sequence length[46]. The black circle is a testing pre-miRNA
for the pre-miRNA Zea mays miR168a. The red and blue cir-
cles represent positive and negative training samples. In (c)
and (d), training samples not involved in the decision function
of the classifiers are removed.

results encourage more efforts on the classification meth-
odology as well as the feature extraction in miRNA predic-
tion.

Materials and methods

Datasets

4039 miRNA precursors spanning across 45 species are
downloaded from the miRBase registry database [39]
(release 8.2). The CD-HIT clustering algorithm [40] with
the similarity threshold set to 0.9 is then invoked to
exclude homology sequences [25,28]. Pre-miRNAs whose
secondary structures contain multiple loops are excluded.
The resultant positive set contains 1983 non-redundant
pre-miRNAs from 40 species, including 308 human pre-
miRNAs.

For the negative set, we analyze 8494 pseudo hairpins
from the protein-coding regions (CDSs) according to Ref-
Seq [41] and UCSC refGene [42] annotations. These RNA
sequences are extracted from genomic regions where no
experimentally validated splicing event has been reported
[25]. For each of the 8494 RNA sequences, we first predict
its secondary structure by RNAfold [43]. RNA sequences
with <18 base pairs on the stem, minimum free energy > -

http://www.biomedcentral.com/1471-2105/9/S12/S2
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Sequence of the testing sample:
UCAGGGACCUCCUCCCCAGCCUCUCGCAGCACCAGCUCAGGGGGUGGCUGAAAAUCCACC
AGGUCUGGGACUCCUGGGGUGGGAGGCCCCAGGGGCUGGGGGUCCCAGUC

Figure 4

The decision boundary plots, where (a) and (c) are
generated by SVM and (b) and (d) are generated by
RVKDE. The x-axis is frequency of the dinucleotide "GG",
and the y-axis is ratio of the minimum free energy to the
sequence length[46]. The black circle is a testing pseudo hair-
pin. The red and blue circles represent positive and negative
training samples. In (c) and (d), training samples not involved
in the decision function of the classifiers are removed.

25 kcal/mol and multiple loops of the predicted second-
ary structure are removed. In summary, 3988 pseudo hair-
pins are collected. These pseudo hairpins are sequence
segments similar to genuine pre-miRNAs in terms of
length, stem-loop structure, and number of bulges but not
have been reported as pre-miRNAs.

Based on the positive and negative sets, one training set
and two test sets are built to evaluate the miRNA predic-
tors. The training set, HU400, comprises 200 human pre-
miRNAs and 200 pseudo hairpins randomly selected from
the positive and negative sets, respectively. The HU400
dataset is used for parameter estimation and model con-
struction of the miRNA predictors. The first test set,
HU216, comprises the remaining 108 human pre-miR-
NAs and randomly selected 108 pseudo hairpins. The
HU216 dataset is used to evaluate the prediction perform-
ance for human pre-miRNAs. Another test set, NH3350,
comprises the remaining 1675 non-human pre-miRNAs
and randomly selected 1675 pseudo hairpins. The
NH3350 dataset is used to evaluate the prediction per-
formance for species-specific pre-miRNAs. Table 6 shows
a summary of these sets. Care has been taken to guarantee
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Table 6: Summary of the datasets employed in this study.
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Dataset Number of pre-miRNAs Number of pseudo hairpins Source of pre-miRNAs
HU400 200 200 Homo sapiens

HU216 108 108 Homo sapiens

HU3350 1675 1675 39 non-human species

that no pseudo hairpin is included in the three datasets
more than once.

Feature set

In miR-KDE, each hairpin-like sequence is summarized as
a 33-dimensional feature vector. The first 29 features are
derived from miPred [28], including 17 sequence compo-
sition variables, 6 folding measures, 1 topological descrip-
tor, and 5 normalized variants. The 17 sequence
composition variables comprises of 16 dinucleotide fre-
quencies and the proportion of G and C in the RNA mol-
ecule. Other features including base pairing propensity
[44], Minimum Free Energy (MFE) and its variants [45-
47], base pair distance [46,48], Shannon entropy [46] and
degree of compactness [49,50] have been shown useful in
miRNA prediction.

In addition, we introduce four additional features that
focus on the continuously paired nucleotides on the stem
and the loop length of hairpin structures. The four "stem-
loop" features are based on the RNA secondary structures
predicted with the RNAfold program [43]. Figure 5 shows
an example of the predicted RNA secondary structure in
which each nucleotide has two states, "paired" or
"unpaired", indicated by brackets and dots, respectively. A
left bracket "(" indicates a paired nucleotide located at the
5' strand that would form a pair with another nucleotide
at the 3' strand with a right bracket ")". As shown in Figure
5, the first stem-loop feature is "hairpin length" defined as
the number of nucleotides from the first paired nucleotide
at the 5' strand to its partner, the last paired nucleotide at
the 3' strand. The second stem-loop feature is "loop
length" defined as the number of nucleotides between the
last paired nucleotide at the 5' strand and its partner, the
first paired nucleotide at the 3' strand. The third stem-loop
feature is "consecutive base-pairs" defined as the number
of longest successive base-pairs. The fourth stem-loop fea-
ture is the ratio of loop length to hairpin length.

Relaxed variable kernel density estimator

MiR-KDE transforms samples into feature vectors as
described above and then uses them to construct a relaxed
variable kernel density estimator (RVKDE) [35]. A kernel
density estimator is in fact an approximate probability
density function. Let {s;, s, ...s,} be a set of sampling
instances randomly and independently taken from the
distribution governed by fy in the m-dimensional vector

space. Then, with the RVKDE algorithm, the value of f; at
point v is estimated as follows:

lv=sil]?

] 1 1Y
f(v):MsZ{mcl] exp 202

i

, where

R(si N7

ml(esnyr(1)”

1)o;=p

2) R(s;) is the maximum distance between s; and its ks
nearest training instances;

3) I () is the Gamma function [51];

4) f and ks are parameters to be set either through cross-
validation or by the user.

For prediction of pre-miRNAs, two kernel density estima-
tors are constructed to approximate the distribution of
pre-miRNAs and pseudo hairpins in training set, respec-
tively. As mentioned above, in our implementation, each
RNA sequence is represented as a 33-dimensional feature
vector. Then, a query instance located at v is predicted to

5a

A
A =
AV G \ v
1] A cCG
GGUGAG\I i“cncccc“cuuccAGAcc
i [TTT]]] r
uCUGecGeuc I\
A G Cc A
c¢ — pGgGAGCGUAG
c g — 1 Iy
A 25
o
=
AAAAUGGUGAGAGCGUUGAGGGGAGUUCCAGACGGAGAUGCGAGGACCCCUCGGGGUCUGACCCACA
..... O e e e e e X)) 23 ) ) e
Figure 5

The Homo sapiens miR-611 stem-loop structure. The
RNA sequence and its corresponding secondary structure
sequence predicted by RNAfold [43] are shown. In the sec-
ondary structure sequence, each nucleotide has two states,
"paired" or "unpaired", indicated by brackets and dots,
respectively. A left bracket "(" indicates a paired nucleotide
located at the 5' strand that would form a pair with another
nucleotide at the 3' strand with a right bracket ")". The hair-
pin length of this sample pre-miRNA is 25+8+25 = 58. Its
loop length is 8 and has 8 consecutive base pairs.
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the class that gives the maximum value among the likeli-

hood functions defined as follows:
Sil-fi(v
L= S
%|Sh|'fh(V)

where |§; is the number of class-j training instances, and

f;(v) is the kernel density estimator corresponding to

class-j training instances. In our current implementation,
in order to improve the efficiency of the predictor, we
include only a limited number, denoted by kt, of the near-

est class-j training instances of v while computing f; (v).

kt is also a parameter to be set either through cross-valida-
tion or by the user.

Comparison between RVKDE and SVM

This subsection reveals some characteristics of RVKDE by
comparing it to SVM. RVKDE belongs to the radial basis
function network (RBFN), a special type of neural net-
works with several distinctive features [52,53]. The deci-
sion function of two-class RVKDE can be simplified as
follows:

20

2
1 V-8
fRVKDE(V)zzyl";’eXP —% (1)
Sl l l

where v is a testing sample. y; is the class value as either +1
(positive) or -1 (negative) of a training sample s;. o;is the
local density of the proximity of s;, estimated by the kernel
density estimation algorithm. The testing sample v is clas-
sified as positive if fryxpr(V) = 0, and as negative other-
wise. Interestingly, the decision function in Eq. (1) is very
similar to the one in SVM using the radial basis function
(RBF) kernel:

fSVM(V):ZYi'ai‘eXP(_V||V—Si ||2), (2)

Table 7: Evaluation measures employed in this study.
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where ¢ (corresponds to &' in Eq. (1)) is determined by
a constrained quadratic optimization [54] and y{corre-
sponds to 1/2 67 in Eq. (1)) is a user-specified parameter.

According to Eq. (1) and (2), the mathematical models of
RVKDE and SVM are analogous. The main difference
between RVKDE and SVM is the criteria to determine o;in

Eq. (1) and ¢;in Eq. (2).

SVM uses support vectors to construct a special kind of lin-
ear model, maximum margin hyperplane, that separates
the samples of different classes [54]. The ¢; in SVM is
determined based on the global distribution of samples
by maximizing the separation between the classes. Con-
versely, RVKDE uses only few samples (<10 in this study)
in the proximity of a training instance and thus deter-
mines o; based on local information. As the decision
boundary plots reported in the 'Decision boundaries of
SVM and RVKDE' subsection of this study, the effects of
using global/local information are crucial in predicting
pre-miRNAs.

Experiment design

The proposed miR-KDE is evaluated by three experiments:
1) a five-fold cross-validation on the human pre-miRNA
set HU400, 2) using the model trained by the first experi-
ment to predict another human pre-miRNA set HU216
and 3) using the model trained by the first experiment to
predict the non-human pre-miRNA set NH3350. Two
SVM-based predictors, triplet-SVM and miPred, are
included in these experiments for comparison. Parameters
of alternative predictors are selected to maximize the accu-
racy of the first experiment. Five widely used indices for
binary classification problems are introduced to evaluate
the classifiers. Table 7 lists these performance measures.

Decision boundary plot

Before constructing a two-dimensional decision boundary
plot, two features must be selected from the 29 features as
the x-axis and y-axis. In this study, we want to identify the
two features having most influence on the classification
decision of the testing sample. A heuristic method is used

Measure Abbreviation Equation'

Sensitivity (recall) %SE TP/(TP+FN)

Specificity %SP TN/(TN+FP)

Accuracy %ACC (TP+TN)/(TP+TN+FP+FN)

F-measure %Fm 2TP/(2TP+FP+FN)

Matthews' correlation coefficient %MCC (TP x TN-FP x FN)/sqrt((TP+FP) x (TN+FN) x (TP+FN) x (TN+FP))

IThe definition of the abbreviations used: TP is the number of real pre-miRNAs detected; FN is the number of real pre-miRNAs missed; TN is the
number of pseudo hairpins correctly classified; and FN is the number of pseudo hairpins incorrectly classified as pre-miRNA.
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to estimate the influence of each feature on the classifica-
tion decision. According to Eq. (1) and Eq. (2), the classi-
fication decision is largely influenced by the nearest
training samples to the testing sample, since the influence
of a Gaussian function decreases exponentially as the dis-
tance increases. Furthermore, the distance ||v - s;|| in Eq
(1) and Eq. (2) is more influenced by the dimensions with
larger difference. Thus, the influence of a feature on the
classification is estimated by the average of the differences
of the testing sample to its kt nearest training samples (kt
=37 in this study). For each testing sample selected to gen-
erate a decision boundary plot, we estimate the influences
of all 29 features. The feature with the most influence is
selected as the x-axis, and the feature with the second most
influence is selected as the y-axis.

In the decision boundary plots of this study, the black cir-
cle represents the testing sample, red circles represent the
training pre-miRNAs and blue circles represent the train-
ing pseudo hairpins. The background color indicates the
predictor's decision for a sample of which the two features
equal to the x-axis and y-axis and the remaining 27 fea-
tures equal to the testing sample. The boundary between
red and blue background is the decision boundary of the
classifier on the xy-plane. Notice that a blue circle over a
red background, or vice versa, does not indicate that the
predictor misclassifies that training sample. The training
samples are projected onto this plane and have the
remaining 27 features different to the samples represented
by the background. Namely, these decision boundary
plots show a slice near the testing sample of the vector
space.
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