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Clash of the Cytokine Titans: counter-regulation
of interleukin-1 and type I interferon-mediated
inflammatory responses

Katrin D Mayer-Barber and Bo Yan

Over the past decades the notion of ‘inflammation’ has been extended beyond the original hallmarks of rubor (redness),
calor (heat), tumor (swelling) and dolor (pain) described by Celsus. We have gained a more detailed understanding of
the cellular players and molecular mediators of inflammation which is now being applied and extended to areas of
biomedical research such as cancer, obesity, heart disease, metabolism, auto-inflammatory disorders, autoimmunity and
infectious diseases. Innate cytokines are often central components of inflammatory responses. Here, we discuss how the
type I interferon and interleukin-1 cytokine pathways represent distinct and specialized categories of inflammatory
responses and how these key mediators of inflammation counter-regulate each other.
Cellular & Molecular Immunology (2017) 14, 22–35; doi:10.1038/cmi.2016.25; published online 6 June 2016

Keywords: cytokines; infection; inflammation; interleukin-1; tuberculosis; type-1 interferons

INTRODUCTION

Inflammation is a highly complex response initiated by the host
to a large variety of stimuli such as damaged and dying cells,
chemical irritants, injuries and pathogens. Inflammatory
responses are critical because they not only alert cells to mount
effective immune responses during infections but also initiate
wound repair and healing programs.1 In contrast, excessive un-
resolved inflammation can lead to tissue damage and disease.2

Therefore, understanding the unique properties of a given
inflammatory response is paramount to gain new perspectives
on disease pathogenesis and novel treatment strategies.

Given the diversity of inflammation-inducing insults and
variations in both exposure route and duration, qualitatively
and quantitatively distinct inflammatory responses must be
generated that are fine-tuned to achieve the optimal response
to a given stimuli. Thus, each type of inflammatory response is
comprised of unique sets of molecular events, lipid mediators,
cytokines and specialized cell types that nucleate inflammation,
followed by equally tuned steps to ensure resolution of
inflammation. We suggest here that depending on the type of
insult and the ensuing inflammatory response, distinct classes
of inflammatory pathways can be delineated. Moreover, we

propose that the innate cytokines interleukin-1 (IL-1) and type
I interferons (IFNs) are the pillars of two major types of
inflammatory responses. We discuss how the type I IFNs and
IL-1 cytokine pathways represent distinct and specialized
classes of innate inflammatory responses and how these
mediators antagonize each other. Moreover, we highlight
how studies on the innate inflammatory response to Mycobac-
terium tuberculosis (Mtb) infection, a major global health threat,
uncovered key-aspects of this special antagonistic relationship
between IL-1 and type I IFNs.

INTERLEUKIN-1 DRIVEN INFLAMMATORY RESPONSES

IL-1 is the prototypic pro-inflammatory cytokine and the
classic fever-inducing endogenous pyrogen.3 IL-1 mediates
highly inflammatory responses via two cytokine species, IL-1α
and IL-1β, respectively, which can be expressed by most cell
types and signals on cells of both hematopoietic and non-
hematopoietic in origin. IL-1α and IL-1β generate a vast
spectrum of biological responses spanning from effects on
the central nervous, hematologic and metabolic systems, and
are extensively reviewed elsewhere.4,5 Although IL-1 signaling
plays pivotal roles in immunity, sterile inflammation and
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metabolism1,6–8 excessive overproduction of IL-1 is highly
detrimental and contributes to auto-inflammatory diseases,
autoimmune encephalomyelitis, rheumatoid arthritis and
gout.4,9–13 IL-1 production is therefore extensively regulated
and the margin between clinical benefit and undesirable
pathogenic effects for IL-1 is exceedingly narrow.

IL-1R1 cytokine system
IL-1α and IL-1β share little amino acid homology (26%) yet
display similar secondary structures.14–16 In both human and
mouse, the IL-1α and IL-1β genes are located next to each
other on chromosome 2, and have conserved synteny in this
region.17 IL-1α and IL-1β also appear to carry out similar
biological functions by binding to a common receptor com-
prised of the IL-1 receptor type I (IL-1RI) and IL-1 receptor
accessory protein (IL-1RAcP) chains.18 The third ligand for
IL-1R1, IL-1 receptor antagonist (IL-1Ra), is a naturally
occurring specific IL-1R1 antagonist and prevents IL-1α
and IL-1β mediated signaling. Such endogenous antagonism
in form of a dedicated soluble secreted protein appears to be
a unique feature of IL-1 cytokine family members and high-
lights the extraordinary tight regulation of the biological activity
of IL-1. In addition, a second IL-1R chain, the IL-1RII, is both
a surface and soluble receptor that lacks a signaling-competent
cytosolic domain and therefore functions as an additional
decoy receptor in limiting IL-1 driven responses.18–22 Finally,
both IL-1α and IL-1β are regulated at the post-transcriptional
and translational level as outlined below. Thus, expression,
generation and signaling of IL-1 are among the most highly
and complex regulated checkpoints of any cytokine system.

Post-transcriptional and -translational regulation of IL-1α
and IL-1β
A key feature in the regulation of IL-1α and IL-1β is that they
are both translated as pro-proteins without leader sequences that
require further proteolytic cleavage to gain optimal biological
activity.5,23 Processing of the IL-1α precursor is accomplished by
calpain II, a membrane-associated, calcium-dependent cysteine
protease,24 and calcium influx induces IL-1α secretion of the
processed form.25,26 Pro-IL-1β is typically cleaved following
activation of intracellular cysteine protease caspase-1 or caspase-
11 via aggregation of intracellular multiprotein complexes called
inflammasomes.27 IL-1 release by inflammasomes is a two-step
process. A Signal 1 event typically represents pro-IL-1β protein
transcription and translation often as a result of nuclear-factor-
kb (NF-κb) activation by toll-like receptor (TLR) ligands or IL-1
itself.28,29 Signal 2, in contrast, is an activation step that differs
for the respective inflammasome sensors such as NOD-like
receptors (NLRs) and AIM2-like receptors (ALRs), and ulti-
mately leads to the assembly of inflammasome complexes which
are comprised of the NLR/ALR and adapter molecules such as
apoptosis-associated speck-like protein containing a caspase
recruitment domain (ASC) or NLRC4.30,31 The inflammasome
platform recruits and activates caspase-1, the enzyme that in
turn coverts the 31 kD immature pro-IL-1β polypeptide to a 17-
kD mature IL-1β.32,33 The cleavage of IL-1β has been suggested

to be required for its active secretion via unconventional,
endoplasmatic reticulum–Golgi independent, ill-defined pro-
cesses thought to involve secretory autophagosomes, cytolysis,
multi-vesicular body formation and micro-vesicle shedding.34–40

Increasing evidence suggests that inflammasomes and cas-
pase-1/11 are not the only mechanism for processing IL-1
cytokines. Several studies have identified neutrophil- and
macrophage-derived serine proteases such as proteinase 3,
elastase and cathepsin-G, as enzymes that can process pro-
IL-1β into the 17-kDa bioactive fragment.18,41,42 In addition,
two other serine proteinases, chymase and chymotrypsin, can
also cleave pro-IL-1β into bioactive IL-1β. Apart from serine
proteases, metalloproteinases such as Meprin can process pro-
IL-1β as well as proteases released by invading pathogens.43–46

Alternatively, it has also been suggested that inflammasome-
mediated IL-1β release can be a strictly cytolysis-driven event,
through necrosis or pyroptosis.47 Pyroptosis is a form of
caspase-1-dependent programmed cell death that is initiated
downstream of inflammasome activation and can contribute
to IL-1β release. Moreover, immature pro-IL-1 is often released
by cells undergoing cytolysis and present in vast excess of
mature IL-1 from cells undergoing inflammasome activation.
Although the biological activity of mature IL-1β is 600 times
that of pro-IL-1β, pro-IL-1β can still bind to its receptor and
it remains unclear what the relative contribution of pro-IL-1β
is to IL-1R1 mediated signals in vivo.19,48,49

IL-1 signaling pathway
Once IL-1α or IL-1β binds to the IL-1R1 chain, a ligand-induced
conformational change facilitates recruitment of IL-1RAcP, the
receptor chain required to form a functioning signaling IL-1 R
complex.50–52 Subsequently, the trimeric IL-1 R complex recruits
the myeloid differentiation primary response gene 88 (Myd88)
via its C-terminal Toll-and IL-1 R-like (TIR) domains.53,54

MyD88 oligomerizes via its death domain (DD) and TIR
domain, and interacts with the interleukin-1 receptor-associated
kinase 4 (IRAK4) to form the Myddosome complex that serves
as a platform to phosphorylate IRAK4, as well as IRAK2 and
IRAK1.55–57 IRAK phosphorylation is then followed by the
recruitment and oligomerization with tumor-necrosis factor-
associated factor (TRAF) TRAF6.58 IRAK1 and IRAK2 serve as
both adapters and protein kinases to propagate downstream
signals with TRAF6 resulting in NF-κB activation.56,58,59

Role of IL-1 in host resistance to infection
IL-1 is most widely studied and implicated in host resistance to
acute bacterial infections, such as Staphylococcus aureus, where
rapid inflammatory responses and IL-1-induced chemokines
are required for optimal neutrophil-dependent control60,61

(also see Table 1). Indeed, this is the classic scenario for IL-1-
mediated host control of acute bacterial infections and mice
deficient in caspase-1 or IL-1 display increased susceptibility
and mortality to infections with Francisella tularensis, Legionella
pneumonia, Shigella, Salmonella typhimurium, Bacillus anthracis
or Pseudomonas aeruginosa.62–69 For instance, Gram-negative
bacteria, such as Legionella pneumophila and Salmonella
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Table 1 Comparison of IL-1 vs type I IFN-mediated signals in host resistance to infections and disease

Pathogen Phenotype of mice deficient in IL-1R1 signaling Phenotype of mice deficient in IFNAR1 signaling

Extracellular bacteria
Pseudomonas aeruginosa Il1r1− /− mice have decreased number of CFU during

pulmonary infection62
Ifnar1− /− mice are more resistant to Pseudomonas
aeruginosa infection148

Klebsiella spp. No significant differences in survival rates and viable
bacterial counts between WT and Il1a,b− /− mice188

–

Staphylococcus aureus Higher mortality in Il1r1− /− mice68 Ifnar1− /− mice are more resistant to lethal infection of
S. aureus147,189

Streptococcus spp. Il1b− /− , Il1a,b− /− and Il1r1− /− mice are hypersus-
ceptible to Streptococcus Spp. infection190–192

Ifnar1− /− mice are more susceptible to Streptococcus
Spp. infection157,193,194

Intracellular bacteria
Mycobacterium tuberculosis Il1a− /− , Il1b− /− and Il1r1− /− mice were more

susceptible to pulmonary tuberculosis73–75,77–80
Ifnar1− /− mice show significantly reduced bacterial
loads and type I IFN hyperinduction exacerbates disease
and bacterial growth139,141

Mycobacterium avium No significant differences in CFU between WT and
Il1r1− /− mice195

The continuous infusion of IFN-β leads to increased
resistance to M. avium infection196

Listeria monocytogenes IL-1 neutralization antibody treated mice show decreased
anti-Listeria response197,198

Ifnar1− /− mice are more resistant to L. monocytogenes
infection144–146

Legionella pneumophila Il1r1− /− mice are more susceptible to L. pneumophila
infection66

Ifnar1− /− mice have increased number of CFU132

Salmonella enterica IL-1β neutralizing-antibody treated mice show increased
CFU. Il1b− /− mice are more susceptible to Salmonella
enterica infection199,200

Ifnar1− /− and Ifnb− /−mice have reduced number of
CFU and increased survival194,199

Francisella tularensis Il1r1− /− or Il1b− /− mice are more susceptible to
infection201

Ifnar− /− mice are more resistant to intradermal infec-
tion with F. Novicida158

Bacillus anthracis Il1b− /− and Il1r1− /− mice are more susceptible to
lethal infection69,202

The type I IFN inducer, poly-ICLC, strongly and rapidly
protects mice135

Fungi
Cryptococcus No difference between WT and Il1r1− /− mice203 Ifnar1− /− and Ifnb− /− are more susceptible to Cryp-

tococcus infection126

Aspergillus fumigatus Il1r1− /− mice displayed slightly increased survival
during Aspergillus infection. Il1r1− /− mice have
recently been described to be highly susceptible to
Aspergillus infection99,204

PolyI:C induced Type I IFN protects mice from Asper-
gillus fumigatus infection128,129

Coccidioides Il1r1− /− mice have higher CFU after Coccidioides
infection205

–

Candida albicans Il1a− /− and Il1b− /− mice are more susceptible to C.
albicans infection98

Ifnar1− /− mice are more resistant to C. albicans
infections125,164

Histoplasma capsulatum Il1r1− /− and IL-1β neutralization treated mice are more
susceptible to Histoplasma infection206

Ifnar1− /− mice are extremely resistant to Histoplasma
infections130

Parasites
Leishmania major The course of high-dose infection in Il1r1− /− mice is

not different from controls. In low-dose infections,
Il1r1− /− mice develop smaller lesions. Il1r1− /− mice
are more resistant to a non-healing strain.207–209

IFNα/β is important for in inducing iNOS expression
during
L. major infection. However, high levels of IFNα/β
actually impaired iNOS induction210–212

Plasmodium spp. Low dosages of IL-1 protects mice against lethal cerebral
malaria213

Ifna/b can have either a host protective or detrimental
effect, depending on both the stage of infection and the
species of infecting Plasmodium214–218

Trypanosoma cruzi – Complicated outcome dependent on the route of
infection219–222
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typhimurium, trigger IL-1 responses required for host resistance
by injecting virulence factors into the host cell cytosol with a
specialized type III secretion system.70–72

In the context of chronic bacterial infections, such as with
the intracellular pathogen Mtb, IL-1α and IL-1β are each
critically required for host resistance.73–81 Il1a,b− /− doubly
deficient mice and Il1r1− /− mice develop significantly larger
granulomatous lesions with neutrophil infiltration in their
lungs compared with wild-type (WT) mice. Mice deficient in
IL-1 signaling are more susceptible to pulmonary tuberculosis,
as reflected by an increased mortality and an enhanced
mycobacterial growth in lungs and spleens.73–75,80 However,
consistent with the detrimental effects of uncontrolled IL-1β
production, mice deficient in inducible nitric oxide synthase
(iNOS) have dysregulated inflammasome activation and IL-1
production leading to increased pathology and mortality during
Mtb infection.82 On the opposing role, the exact mechanisms
by which IL-1 mediates protection against bacterial pathogens
have only recently been studied. In the case of Mtb, the major
protective role of IL-1 during Mtb infection was shown to be
linked to its ability to trigger arachidonic acid derived lipid
mediator prostaglandin E2 (PGE2) synthesis and COX-2
activation.78 Thus, mice deficient in IL-1 or IL-1 signaling
display major defects in PGE2 production in the lungs and
increased extracellular bacteria and necrosis. Add-back of PGE2
reduces pulmonary Mtb loads and extends survival78 indicating
that IL-1-induced PGE2 is required for bacterial containment
and control inside Mtb-infected macrophages.

Despite the importance of inflammasome activation in
certain experimental models of inflammation in vitro, certain
bacterial infection models in mice deficient in inflamma-
some components show intriguing results that question the
importance of inflammasome-mediated processing of IL-1β
in vivo.43,83 For example, Mtb-infected Il1r1− /− or Il1b− /−
deficient mice both display significantly increased mortality
with highly increased pulmonary bacterial burden, suggesting
a major role for IL-1β signaling in determining the MyD88-
dependent phenotype.77,81 However, Mtb-infected mice defi-
cient in caspase-1/11, ASC or NLRP3, which have critical
functions in inflammasome-mediated IL-1βmaturation in vitro,
showed unimpaired IL-1β production and importantly, were
considerably less susceptible to infection than IL-1β-deficient
mice.77,84–86 The exact mechanisms of IL-1β activation in vivo
during Mtb infection remain to be elucidated. Similarly,
caspase-1 appears to be dispensable in host resistance against
Chlamydia trachomatis, although IL-1β is critical for host
defense against this pathogen.87,88 Together these findings
suggest that the production of mature host protective IL-1β
during infections in vivo can occur independently of caspase-
1/11 activation and ASC-containing inflammasomes. Possible
mechanisms could involve inflammasome and caspase-1/11-
independent processing of pro-IL-1β by innate immune cells
derived serine proteases as mentioned above.18,41–44

Although IL-1 mediates host resistance most commonly
in bacterial infections, IL-1 signaling can also protect against
certain viral infections, including Influenza. Il1r1− /− deficient

Table 1 (Continued )

Pathogen Phenotype of mice deficient in IL-1R1 signaling Phenotype of mice deficient in IFNAR1 signaling

Viruses
RSV Il1r1− /− mice show similar immune response to RSV

infection as compared with WT mice223
Ifnar1− /− mice have less RSV induced antiviral mono-
cyte chemoattractants224

LCMV LCMV is not cleared in Il1r1− /− mice, and yet the
infected mice develop neither splenomegaly nor
hepatitis225,226

IFN-I blockade both before and following establishment
of persistent LCMV infection results in enhanced virus
clearance186

Influenza A virus Il1r1− /− mice show significantly increased mortality to
Influenza A infection89

Ifnar1 total KO mice are slightly more susceptible to
Influena A infection compared with WT, but chimeric
mice, in which both types I and III IFN-mediated
signaling is deficient only in epithelial cells, are signifi-
cantly more susceptible227,228

HIV HIV-1 expression in HIV transgenic mice is decreased in
Il1a,b− /− mice229

Enhanced HIV 1 expression in Ifnar1 knockout HIV
transgenic mice230

Autoimmune disease
Gout Il1r1− /− mice have decreased gouty inflammation, and

anti-interleukin-1 therapy works in the management of
gout10,231

–

MS (EAE) Il1r1− /− mice have less IL-17 cells and lower incidence
of EAE compared with WT mice11,12

Ifnb− /− and Ifnar1− /− mice are more sensitive to
EAE232,233

SLE Il1b− /− mice are resistant to induction of experimental
SLE13,234–236

Ifnar1− /− mice are protected from experimental
lupus237

Abbreviations: CFU, colony-forming unit; EAE, experimental autoimmune encephalomyelitis; HIV, human immunodeficiency virus; IFN, interferon; Ifnar1, interferon
(alpha and beta) receptor 1; IFN-β, interferon-β; IL-1, interleukin-1; IL-1R1, IL-1 receptor type I; LCMV, lymphocytic choriomeningits virus; MS, multiple sclerosis; RSV,
respiratory syncytial virus; SLE, systemic lupus erythematosus; WT, wild type.
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mice show significantly increased mortality but markedly
reduced inflammatory pathology in the lung after Influenza
virus infection.89 IL-1α/β appears not to influence the killing of
virus infected cells per se but to enhance antibody responses
and recruitment of CD4+ T cells and neutrophils to the site of
infection.89 Interestingly, data from genome-wide association
studies show that genetic variants in IL-1α and IL-1β con-
tributed to the susceptibility to 2009 pandemic H1N1 influenza
A virus.90 A more recent study using human pulmonary
microvascular endothelial cells showed that IL-1β secreted by
the endothelial cells contributes to influenza-induced inflam-
mation, and blockade of IL-1β signaling is a potential treatment
or therapeutic target for influenza-induced inflammation and
pathology.91 Furthermore, human immunodeficiency virus
(HIV) infection IL-1 induces viral gene expression in chroni-
cally infected U1 cells and viral replication is inhibited by
addition of IL-1RA.92,93 IL-1RA gene polymorphisms have also
been reported to be linked with circulating levels of HIV viral
titers in Brazilian women,94 while caspase-1-dependent
pyroptosis has been suggested to play a detrimental role during
HIV infection.95,96

During fungal infections, both IL-1α and IL-1β have been
shown to play critical roles in host resistance.23,97 Both IL-1
species are necessary for host resistance against Candida albicans
and in the absence of IL-1α or IL-1β growth of C. albicans in
the kidneys as well as mortality is significantly increased.98

During pulmonary Aspergillus fumigatus infection, it is IL-1α
rather than IL-1β that is crucial for optimal leukocyte recruit-
ment after challenge with the fungal pathogen.99

TYPE I IFN DRIVEN INFLAMMATORY RESPONSES

Although IL-1 protects most commonly against bacterial
infections, type I IFNs belong to a family of cytokines that
are specialized to be highly protective against viral infections. In
1957 Isaacs and Lindenmann100 observed that heat-inactivated
influenza virus interfered with subsequent viral replication and
identified a secreted factor responsible for this phenomenon
that they called interferon. Interferons can be separated into
three sub-families designated as types 1− 3 IFNs. In humans and
mice, the type I IFN family is composed of 13 IFNα subtypes,
IFNβ, IFNε, IFNκ and IFNω.101 The type II IFN group is
comprised of one cytokine, IFNγ. The third type of IFNs are
members of the IFNλ family, which includes IFNλ1 (also known
as IL-29), IFNλ2 (also known as IL-28 A) and IFNλ3 (also
known as IL-28B).102

Type I IFN induction
Most cell types express type I IFNs after detection of pathogen-
associated molecular patterns by membrane bound or cytosolic
pattern recognition receptors.103 Cytosolic receptors are mainly
responsible for triggering type I IFN secretion, through recognition
of viral RNA or DNA. Such receptors include the retinoic acid–
inducible gene I (RIG-I), melanoma differentiation-associated
gene 5 (MDA5), NOD1, NOD2 receptors, interferon gamma-
inducible protein 16, DEAD-box helicase 41 and RNA polymerase
III amongst others.104–108 Cytosolic nucleotidyltransferase

GAMP synthase (cGAS) detects cytosolic DNA and stimulates
cyclic GAMP (cGAMP) synthesis.109 cGAMP engages stimu-
lator of interferon genes (STING) as a secondary receptor and
further stimulates STING-dependent inflammatory cytokine
production including type 1 IFNs.109 In addition to cytosolic
signaling events, type I IFNs can also be produced in response to
TLR signaling in macrophages and dendritic cells (DCs). TLR3
and TLR4 sense double-stranded (ds) RNA and lipopolysacchar-
ide (LPS), respectively, and via TIR-domain-containing adapter-
inducing interferon-b and TANK-binding kinase 1 (TBK1)
activate interferon regulatory transcription factor 3 to trigger
type I IFN inductions.103 Although most cell types can produce
type I IFN, plasmacytoid DCs (pDCs) represent a major source
of type I IFNs in mice110 and men.111,112 pDCs abundantly
express the TLR9 subfamily members TLR7, TLR8 and TLR9
which recognize viral single-stranded RNA (TLR7,8) or ds CpG-
rich DNA (TLR9), respectively.113

Type I IFN signaling pathway
Type 1 IFNs bind to a heterodimeric transmembrane receptor
interferon (alpha and beta) receptor 1 (IFNAR), comprised of
two chains, IFNAR1 and IFNAR2. Once bound IFNAR
activates Tyk2 and Jak1, which results in signal transducer
and activator of transcription (STAT) STAT1-STAT2 hetero-
dimer formation and subsequent translocation to the nucleus. In
the nucleus, dimeric STATs recruit an additional transcriptional
factor, IFN regulatory factor 9, forming a trimeric complex
called IFN-stimulated gene factor 3 (ISGF3).114 ISGF3 then
binds to interferon-stimulated response elements, inducing
hundreds of IFN-stimulated genes (ISGs).115,116 Depending on
the cell type, IFNAR-mediated activation of Tyk2 and Jak1 can
promote homo-dimerization of other STATs including the
formation of STAT1 and STAT3 dimers that bind to IFNγ
-activated site (GAS) enhancer elements and STAT3-biding
elements, respectively. It can also result in STAT4 activation,
leading to IFNγ production during viral infection.117 In addi-
tion, type I IFN can activate mitogen-activated protein kinases
and phosphatidylinositol-3 kinase (MAPK) signaling pathways
that contribute to antiviral effects.102 Type I IFNs also signal
through other STATs, including STAT3, STAT4, STAT5A and
STAT5B.118 The phosphoinositide 3-kinase (PI3K)–mammalian
target of rapamycin (mTOR) and MAPK pathways can also
be activated by IFNAR1 signaling. This large diversity of
signaling pathways may contribute to the pleiotropic effects of
type I IFN-driven responses, as it allows transcription of a broad
range of genes besides those intended for viral restriction, such
as cytokines, chemokines, pro-apoptotic and anti-apoptotic
molecules, and molecules involved in lipid metabolism.118,119

Role of type I IFNs in host resistance
Type I IFNs are the prototypical cytokines associated with
control of viral infections as they successfully restrict viral
replication by an acute induction of specific sets of several
hundreds of ISGs inside infected cells that can directly interrupt
viral gene transcription and translation.120 These genes are
induced by type I IFNs in response to innate viral recognition

Interleukin-1 and type I IFN

KD Mayer-Barber and B Yan

26

Cellular & Molecular Immunology



and also promote an antiviral state in bystander cells that limits
viral spread. In fact, most viruses devote a significant part of
their limited genome to mechanisms that modulate type I IFNs
pathways so ISG induction is limited, highlighting the impor-
tance of IFNα/β in host cell protection from viral infection.121

In most pathogenic virus infections, early and rapid production
of type I IFN is required to limit initial viral replication before
effective humoral or cellular adaptive immune mechanisms
become operational. This is exemplified by the fact that mice
deficient in IFNAR1 are highly susceptible to viral infections as
extensively reviewed elsewhere.122,123

In addition to the protective role for type I IFNs during viral
infections, they are also involved in immunity against fungal
pathogens, these cytokines can have both detrimental and
beneficial roles. In one study with C. albicans, type I IFNs were
required to induce reactive oxygen species important for killing
of yeast cells by infected phagocytes,124 whereas in another
study the absence of type I IFN signaling did not alter fungal
burden but instead lead to lethal immunopathology.125 During
infections with Cryptococcus neoformans mice lacking either
Ifnar1− /− or Ifnb− /− have been shown to die from unrest-
rained pneumonia and encephalitis when compared with
control animals.126 Consistent with this, C. neoformans or
C. gattii-infected mice showed increased resistance to infection
when they were intranasally administered polyinosinic-
polycytidylic acid stabilized with poly-L-lysine (polyinosinic
-polycytidylic acid-polylysine-carboxymethylcellulose (poly-ICLC)),
a double-stranded RNA homolog which is a potent inducer of
type I IFNs.127 Although Type I IFN signaling was also reported
to be required for optimal host resistance in mice infected with
Aspergillus fumigatus,128,129 there are also reports of a detri-
mental role of type I IFNs in defense against Candida glabrata
and Histoplasma capsulatum.130,131

Albeit most critically required for host resistance against viral
infections, Type I IFNs can contribute to protection against
some bacterial infections. For example, Legionella pneumophila
remains an important opportunistic pathogen and type I IFNs
have been shown to limit its replication. IFNα significantly
suppressed Legionella pneumophila growth in WT but not
in Ifnar1− /− deficient macrophages and Legionella was able to
trigger type I IFN production in an autocrine manner.132

Treatment of mice with exogenous IFN or poly-ICLC pro-
tected mice from Bacillus anthracis and Chlamydia trachomatis
infection, and inhibited intracellular replication in both human
and mouse cells.133–135 Type I IFNs may also contribute to
host resistance against Salmonella typhimurium infection by
promoting strong IFN-γ production in an IL-12-independent
manner.136

Although in some instances, type I IFNs contribute to host
resistance against bacterial pathogens, there is mounting evi-
dence that the detrimental and pro-bacterial effects of type I IFN
are far reaching.122 The pro-bacterial effects of an inappropriate
or excessive type I IFN responses accelerate the pathogenesis
of disease by both intracellular and extracellular bacteria.
For example, the hyper-virulence of certain Mtb strains corre-
lates with enhanced type I IFN synthesis and Ifnar1− /− mice

infected with Mtb display lower bacterial loads when compared
with WT animals.137–140 Mtb-infected mice intranasally treated
with poly-ICLC exhibit exacerbated lung pathology and
increased bacterial burden.141 The relevance of these observa-
tions to human tuberculosis is supported by whole-blood
transcriptional profiles of TB patients, which were found to be
dominated by a type I IFNs gene signature that closely correlated
with disease severity.142 In line with these observations, viral co-
infection with influenza A virus increases susceptibility to Mtb
infection in a type I IFN-dependent manner.143

Listeria monocytogenes is another intracellular bacteria that
infects primarily macrophages and is most commonly associated
with food-borne illness in immune compromised individuals.
Ifnar1− /− mice are resistant to Listeria monocytogenes infection
and display increased survival and lower spleen, and liver
bacterial loads compared with WT animals.144–146 The major
mechanism attributed to this was reduced apoptotic cell death,
particularly of lymphocytes, with IFNAR1 signaling sensitizing
cells to the bacterial virulence factor listeriolysin O and resultant
cell death in WT mice.144,145 Moreover, Ifnar1− /− deficient
mice were also resistant to infection with S. aureus, where lethal
pneumonia was observed in only 10% of Ifnar1− /− mice as
compared with 80% in the WT animals.147 Increased resistance
against Pseudomonas aeruginosa has also been reported in
Ifnar1− /− mice.148

IL-1 AND TYPE I IFN CROSS TALK

Both the IL-1 and type I IFNs pathways can cause great harm
to the human body when dysregulated or activated untimely in
an inappropriate context. Studies in infants and adolescents
with inborn errors of innate immunity have revealed key roles
for both IL-1 and type I IFN in auto-inflammatory and
immunodeficiency disorders. Mutations in NLRP3 and IL1RN
lead to increased IL-1 activity such as Cryopyrin-associated
periodic syndromes and deficiency in IL-1RA.149 These diseases
are characterized by episodes of strong inflammation, including
high fevers, urticaria-like rashes, joint pain and malaise, and
present in patients early in life leading to stunted growth and
high mortality.149 In recent years it has also become evident
that inborn errors in type I IFN regulation can cause
inflammatory syndromes termed interferonopathies.150 Specifi-
cally, conditions such as Aicardi–Goutieres syndrome, STING-
associated vasculopathy with onset in infancy as well as certain
types of systemic lupus erythematosus are characterized by an
increased and dysregulated type I IFN response that underlies
these diverse pathological syndromes. The severity of these
inborn errors of IL-1 and type I IFN inflammation highlights
the critical importance of these inflammatory pathways in the
physiological state in addition to their role in response to
bacterial or viral infections. Moreover, these syndromes strongly
underscore the notion of distinct types of inflammatory classes
and increasing evidence suggests that cross-regulation by IL-1
and type I IFN plays an important role in balancing the innate
inflammatory equilibrium in both physiological homeostasis as
well as infection.
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Type I IFN regulation of IL-1
Inhibition of IL-1 by type I IFNs was first described in the
1990s when multiple groups observed that IL-1 levels were
reduced and IL-1Ra simultaneously upregulated in in vitro
studies of IFN-treated cells, and later, in patients who received a
single dose of type I IFN.151–154 These early observations were
the foundation for subsequent studies on the anti-inflammatory
properties of type I IFNs,155 and exemplified the multi-faceted
antagonism between IL-1 and type I IFNs. Importantly, both
IFNα and IFNβ can suppress IL-1α and IL-1β transcription and
translation in various cell types.76–79,156 The absence of type I
IFN-mediated IL-1 inhibition in Ifnar1 or Ifnb deficient
animals, after infection with a variety of pathogens, results in
increased IL-1 concentrations in tissues and circulation and
elevated IL-1-dependent IL-17 responses.78,157–159 IL-1 and type
I IFNs play divergent roles in host resistance to infections and
while type I IFNs can enhance or impede host resistance, type
IFN-mediated IL-1 inhibition has been observed in both
scenarios. Therefore IL-1 inhibition by type I IFNs can both
impair host resistance, as in the case of Mtb infection78,79 as
well as limit IL-1 driven immunopathology as shown recently
during S. pyogenes infection.157 Besides direct regulation of IL-1
protein expression, type I IFNs also potently induce anti-
inflammatory IL-1Ra and IL-10, which in turn can inhibit IL-1
signaling effects.79,160–165 In addition, 25-hydroxycholesterol
has been implicated as a downstream effector mechanism of
type I IFN-mediated inhibition of IL-1β expression and
inflammasome activation.166 More recently, with increased
understanding of the complex regulation of IL-1β processing,
we now know that type IFNs and IL-10 also potently regulate
NLRP1 and NLRP3 inflammasome activation thereby further
modulating IL-1 activity.164,165

Interestingly, antagonism of IL-1 does not seem to be limited
to type I IFNs. Indeed, type II IFN, IFN-γ and recently type III
IFNs, IFN-λ as well as IFN-ταυ have been reported to be able
to inhibit IL-1 expression.79,167–169 Of note, there is also
evidence that type I IFN can positively regulate IL-1 expression
via the AIM2 inflammasome, which is primarily activated by
cytosolic DNA and operational during some select bacterial and
viral infections.170–173

IL-1 regulation of type I IFNs
Much less is known about how IL-1 could in turn regulate
type I IFN production and/or effector functions. Until
recently there was limited evidence for IL-1 mediated
inhibition of type I IFNs with one study showing that
IL-1β was able to attenuate IFNα/β-induced STAT1 phos-
phorylation in hepatocytes via a proteasome-dependent
mechanism.174 Another study observed IL-1-dependent
and TNF-independent inhibition of IFN-β production
in a human fibroblast line, suggesting that IL-1 driven
inhibition of type I IFNs is an effect unique to IL-1 rather
than a general effect due to NF-κb activation via TNFα.175
PGE2 has been shown to suppress type I IFN production in
the context of LPS-induced responses in mice and more
recently during Influenza infection.176,177 However, a link

to IL-1 has not been generated in these studies and
remains to be elucidated further. In fact, recent work in
Mtb-infected cells and animals revealed that IL-1 potently
antagonizes type I IFN responses by directly regulating both
transcription and translation of IFN-β via induction of
PGE2 and PGE2 by itself is able to inhibit and antagonize
type I IFN.78 Moreover, limiting excessive and detrimental
type I IFN expression via PGE2 has proven to be a
promising host-directed therapeutic approach in Mtb
infection.78 Although IL-1 and type I IFN cross-regulation
is an emerging research area, it has become clear that the
contextual differences in pathogenesis will likely determine
whether the cross-regulation results in beneficial outcomes
with a given pathogen or contributes to inflammatory
pathology and susceptibility.

Mtb: a case study for IL-1 and type I IFN cross talk
The relevance of IL-1 and type I IFN cross talk is perhaps best
studied and exemplified in the context of mycobacterial
infections, where IL-1 plays a major protective and type I
IFN a primarily detrimental role in host resistance toMtb. Here
it has been shown that, in human monocyte-derived DC and
macrophages as well as murine bone marrow derived
dendritic cells and bone marrow derived macrophages, IFNβ
or poly-ICLC were able to potently inhibit both IL-1α and
IL-1β in response to Mtb infection in vitro.76,79 This inhibition
was at least in part due to type I IFN-dependent induction of
IL-10, an important anti-inflammatory cytokine,79,178 pre-
viously reported to inhibit IL-1 production downstream of
type I IFNs.164 Besides inhibiting IL-1α and IL-1β cytokine
expression directly, type I IFNs also potently upregulated
expression of IL-1Ra during Mtb infection in vitro and
in vivo, further amplifying the negative effects on IL-1
activity,78,79 a central feature in type I IFN opposition of
IL-1.151 In addition to modulating IL-1RA and IL-1α, and IL-1β
expression, type I IFNs also regulated expression of the decoy
receptor IL-1R2 (ref. 78; Figure 1). Moreover, the type I IFN-
mediated inhibition of IL-1 cytokine production observed
in vitro was confirmed in vivo in Mtb-infected lungs using
single-cell analysis of IL-1 producing myeloid subsets.79

A potential molecular mechanism was recently uncovered
that could shed some light on the reciprocal relationship
between IL-1 and type I IFNs and extends previous findings
that implicated the ESAT6-secretion system (ESX)-1 in type I
IFN expression and inflammasome activation.140,179 Multiple
independent groups have shown that the nucleotidyltransferase
cGAS is a central component in the cytosolic surveillance
pathway and recognizes Mtb, leading to type 1 interferon
induction and autophagy.180–183 The most recent studies
identify cGAS as the sensor for Mtb DNA in the cytosol
leading to STING activation and autophagy induction.180–182

Wasserman et al. in addition showed that AIM2 recognizes
cytosolic Mtb DNA and triggered AIM2-dependent inflamma-
some activation and IL-1 production. They found that virulent
and attenuated Mtb can engage distinct cytosolic pattern
recognition receptor systems, namely the cGAS-IFN-axis vs
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the AIM2/NLRP3-IL-1β-pathway, and that the decision as to
which pathway is triggered is determined by the relative
abundance of EsxA and/or by additional ESX-1/EsxA-depen-
dent effectors. Thus, the tug of war between IFN and IL-1
exists even at the single-cell level inside infected macrophages
and centers around innate sensing of cytosolic DNA of Mtb.

Recent work uncovered that IL-1 can in turn counter-
regulate type I IFN driven detrimental responses during Mtb
infection.78 In murine and human macrophages IL-1α and
IL-1β potently inhibit type I IFN induction at both the mRNA
and protein level, and similarly IFNβ mRNA and protein levels
are upregulated in the lungs of Mtb-infected Il1r1− /−
deficient mice.78 This inhibition is of functional importance
because mice doubly deficient in Il1r1,Ifnar1-/- are partially
protected while Il1r1− /− singly deficient animals succumb
rapidly to Mtb aerosol challenge. Moreover, when IL-1 is
present in type I IFN-treated cultures, it even suppresses the
pro-bacterial effects downstream of IFN that lead to increased
bacterial replication. Interestingly, IL-1-induced PGE2 is also
able to potently inhibit type I IFNs in a dose-dependent
manner. Targeting PGE2 during Mtb infection, either via direct
administration or its enhancement by 5 lipoxygenase blockade

with Zileuton, reversed poly-ICLC-mediated type I IFN driven
mortality.78 These data highlighted and provided proof-of-
concept that the cross talk of IL-1 and type I IFN provides
a valuable target for host-directed therapies of Mtb and plays
a major role during infection in mice.78 Thus, the above
findings generated during the study of Mtb infection played
into a broader context for previous studies that showed that
IL-1 and PGE2 can inhibit type I IFN production.176,177

CONCLUDING REMARKS

Most of our insights into IL-1 driven inflammatory processes
are based on studies during acute inflammation (or infection),
where a trigger appears suddenly and leads to a rapid onset
of innate and adaptive immune responses. Perhaps a key
determinant in whether a particular inflammatory pathway
such as IL-1 or type I IFN dominates, or the nature of the
inflammatory cross talk, is whether the inflammatory stimuli is
temporally limited or persistently present. For example, it has
become increasingly appreciated that in particular IFNα/β
can also be harmful during chronic viral infections, either
by immunosuppressive effects that impair viral control or by
triggering inflammation and tissue damage that exacerbates
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Figure 1 Cross-regulation between interleukin-1 (IL-1) and type-1 interferon (IFN) inflammatory pathways as exemplified during Mtb
infection. Mtb infection triggers both cytosolic nucleotidyltransferase GAMP synthase-STING-TBK1-interferon regulatory transcription factor
3-interferon-β (cGAS-STING-TBK1-IRF3-IFN-β) axis and AIM2/NLRP3-IL-1β pathway in myelophagocytic cells. These two pathways exert
opposite biological outcomes for host defense against Mtb: IL-1 is recognized as beneficial with anti-bacterial effects while type I IFNs are
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signaling through induction of IL-10, IL-1R2, IL-1RA and CH25H.
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disease.184–187 Perhaps a contributing factor for the pro-
nounced interplay between IL-1 and type I IFNs during
pulmonary Mtb infection in contrast to other acute bacterial
infections is the chronic nature of the infection and the slow
replication time of the bacterium. The inability of a host
to clear chronic pathogens promotes immunosuppressive
programs that lead to sustained expression of both pro- and
anti-inflammatory cytokines and vastly change the rules of
engagement between inflammatory pathways. Understanding
the rules of engagement, how they are influenced by both
magnitude and quality of a given inflammatory trigger and
how acute vs persistent stimuli influence the inflammatory
equilibrium, will be key to develop novel anti-inflammatory
agents and host-directed therapies for a variety of diseases.
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