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Many immunization strategies have been proposed to prevent infectious viruses from spreading through a
network. In this work, we study efficient immunization strategies to prevent a default contagion that might
occur in a financial network. An essential difference from the previous studies on immunization strategy is
that we take into account the possibility of serious side effects. Uniform immunization refers to a situation in
which banks are ‘‘vaccinated’’ with a common low-risk asset. The riskiness of immunized banks will
decrease significantly, but the level of systemic risk may increase due to the de-diversification effect. To
overcome this side effect, we propose another immunization strategy, called counteractive immunization,
which prevents pairs of banks from failing simultaneously. We find that counteractive immunization can
efficiently reduce systemic risk without altering the riskiness of individual banks.

S
ince the global financial crisis of 2007–2009, many researchers in various fields of natural and social
sciences, such as physicists, ecologists and economists, have been tackling the question of how to reduce
financial systemic risk1–4. Many of those studies are based on network theory, which has been used

extensively to explore complex systems since the early 2000’s.
Percolation is one of the most frequently used concepts in thinking about the fragility of networks. Percolation

theory provides a way to reveal the threshold of the number of removed nodes above which the giant component
disintegrates5–8. Applying this theory, researchers examined the fragility of various types of actual complex
networks, such as the Internet, road networks, and power grids9–11. Percolation theory also gives us some useful
insights into the question of how to control the way in which infectious viruses spread through a network. Many
studies proposed various immunization strategies to make the percolation threshold as small as possible6,12–15.

Systemic risk can be viewed as a fear of default contagion. Bank defaults can spread through a financial network
in a manner similar to the spread of infectious diseases through a social network. The idea of efficient immun-
ization would therefore give us a clue to the question of how to reduce the likelihood of default contagion. In this
work, we explore efficient bank-immunization strategies by using a simple model of the interbank network (see
Methods).

We consider two different types of ‘‘vaccine’’. One is a very-low-risk asset, possibly government bonds or cash.
Since only a few of all the types of widely traded assets are categorized as very-low-risk assets, we assume that one
such asset is used as a common vaccine. The other vaccines are pairs of negatively correlated assets, which could
be interpreted as opposite positions in risky assets. We assume that the riskiness of each of the negatively
correlated assets is the same as that of the uncorrelated assets that banks originally held before immunization.
We call the former type uniform immunization and the latter counteractive immunization (see Methods).
Counteractive immunization does not change the riskiness of individual banks, but Kobayashi16 showed that
assigning negatively correlated assets to highly ‘‘infective’’ banks would reduce systemic risk.

Even if a common vaccine is used, the effects of immunization will differ if the order of vaccination varies. We
show that the likelihood of a large-scale contagion, what is called a financial crisis, can be reduced very efficiently if
the order of immunization is based on PageRank. At the same time, however, uniform immunization leads to an
undesirable situation in which the number of bank defaults during a crisis tends to increase as immunization
proceeds. In other words, uniform immunization will make the financial market robust-yet-fragile. We also
examined some different orders of vaccination that are based on eigenvector centrality, degree centrality,
node-betweenness centrality, and the eigenvector-based index proposed by Restrepo et al17. It turns out that
the PageRank-based vaccination strategy is most efficient in terms of reducing the likelihood of financial crises. It
is shown that the undesirable trade-off between the likelihood and the size of a crisis does not arise under
counteractive immunization.
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As an objective measure of systemic risk, we employ the x-th
moment of the number of defaulted banks1,16. In addition, to see
the effects of immunization on the connectivity of the financial net-
work, we also show the likelihood that the giant strongly connected
component (GSCC) disappears due to the removal of defaulted
banks (see Methods). These two measures are supposed to capture
different aspects of the undesirable influence of bank defaults.
Nevertheless, we find that the two measures are actually closely
related and virtually coincide under a certain value of x.

Finally, we examine under what circumstances counteractive
immunization becomes more effective than uniform immunization.
We derive the threshold of the degree of social risk aversion, x, above
which counteractive immunization becomes more advantageous
than uniform immunization.

Results
The likelihood and size of a financial crisis. Following Gai and
Kapadia3, a financial crisis is defined as a situation in which at least
5% of banks go bankrupt. Fig. 1 illustrates the frequency and the
conditional average of the size of crises. Some interesting properties
are observed. First, Fig. 1a reveals that the uniform immunization

strategy based on PageRank is most successful in terms of reducing
the frequency of crises. The least efficient one is random
immunization. The reason for this is that a bank with a high
PageRank score generally a) has many interbank liabilities (i.e.,
high in-degree) and b) borrows from lenders that have few
interbank assets (i.e., low out-degree). In this model, the fact that a
bank borrows a lot means that the bank borrows from many other
banks (see Methods). Such a bank is likely to be systemically
important because its failure would undermine the balance sheets
of many lenders. In addition, the fact that the lenders of bank i
have few interbank assets indicates that the lenders’ solvency
depends largely on the solvency of bank i since the lenders’
portfolios of interbank assets are not so diversified.

Secondly, Fig. 1b states that the average number of banks that fail
during a crisis increases as more banks become immunized. This is
because a larger number of banks begin to hold a common low-risk
external asset, which reduces the frequency of medium-scale sim-
ultaneous defaults (Fig. 2a). Moreover, Fig. 1b also shows that a crisis
is likely to become more severe under the PageRank-based strategy
than under the other immunization strategies. Immunizing banks in
the order based on PageRank ‘‘efficiently’’ increases the probability

Figure 1 | The frequency and size of financial crises under alternative immunization strategies. ‘‘Financial crisis’’ is defined as a situation in which at

least 5% of banks go bankrupt. The average of crisis size is taken conditional on crisis event. (a) and (b): The case of uniform immunization. (c) and (d):

The case of counteractive immunization. The outcomes of uniform immunization based on a random vaccination order are also shown for comparison.

Returns of external risky assets follow the student t-distribution with degree of freedom 5. The probability of fundamental default, dr , is 5/N prior to

immunization. The probability of fundamental default after uniform immunization, ds, is 1/(10N). The degree of negative correlation under

counteractive immunization, r, is .6.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 3834 | DOI: 10.1038/srep03834 2



that systemically important banks will fail simultaneously, which
would lead to a crisis. In other words, the PageRank-based strategy
will rapidly shift the financial market toward a robust-yet-fragile
system.

The corresponding figures for counteractive immunization are
shown in Figs. 1c,d. Counteractive immunization introduces anti-
correlations between two assets that were previously independent of
each other without changing the riskiness of individual assets. In
contrast to the case of uniform immunization, counteractive immun-
ization decreases the frequency of crises while having an unambigu-
ous influence on the average number of bank defaults at the time of a
crisis. Assigning negatively correlated assets to pairs of connected
banks will avoid medium-scale default cascades by preventing the
balance sheets of the immunized banks from moving in sync
(Fig. 2b).

However, the speed at which the frequency of a crisis decreases is
much slower under counteractive immunization than under the
PageRank-based uniform immunization. This implies a trade-off
between frequency and severity. The desirability of an immunization
strategy thus depends on the extent of social risk aversion, repre-
sented by parameter x. In the following, we clarify how the level of
systemic risk under various types of immunization strategies
depends on the degree of risk aversion, x.

Systemic risk. Fig. 3 depicts the relationship between the fraction of
immunized banks and the expected costs under four different values
of x. Some important features should be noted. First, under uniform
immunization, the expected costs may increase even if x 5 1, where
the expected cost is equal to the average number of defaults. An
intuition into why the average number of defaults increases is that
a homogenization of banks’ external assets effectively makes the
portfolio of interbank assets less diversified. If every bank has an
idiosyncratic external asset, then the holdings of multiple
interbank assets contribute to portfolio diversification. However, if
borrowers begin to hold the same external assets as their lenders’,
then the effective degree of the lenders’ portfolio diversification will
be lowered. Such an effect, what we call the de-diversification effect,
may increase the average size of default cascades even when the risk
of external assets is diminishing. On the other hand, asset
harmonization itself also has an effect of decreasing contagious
defaults. This is because asset harmonization increases the average
number of banks that would fail simultaneously due to the loss of
external assets only. Thus, if the riskiness of the common asset is

sufficiently low, then asset harmonization would reduce the expected
costs.

Secondly, the expected costs are more likely to become upward-
sloping as x increases. This is because the degree of convexity of the
cost function increases as x goes up, reflecting the fact that the society
is becoming more risk-averse. For large values of x, the possibility of a
large-scale simultaneous default turns out to be an important source
of risk even though its probability of occurrence is quite low.

In contrast, Figs. 3e–h show that counteractive immunization
reduces systemic risk virtually monotonically. This is because
counteractive immunization can lower the likelihood of medium-
scale default cascades without causing increased asset commonality.
A limitation of this strategy is that it does not change the riskiness of a
single external asset itself. In fact, assigning anti-correlated assets to a
pair of isolated banks can slightly lower the probability that both of
the banks will survive. To demonstrate this, suppose that the prob-
ability of default is p for each bank and that the correlation coefficient
of the asset returns is 21. The probability that both banks will be
solvent is then 1 2 2p. If asset returns are independent, then the
corresponding probability is given by (1 2 p)2. Since (1 2 p)2 2 (1 2

2p) 5 p2, it follows that counteractive immunization reduces the
probability that both banks will survive. This is why counteractive
immunization may slightly increase the expected costs in some
circumstances.

Fragility of the financial network. Fig. 4 depicts the frequency with
which the GSCC of the interbank network disintegrates due to bank
defaults (Supplementary Figure S1 shows the simulated percolation
threshold). It turns out that uniform immunization tends to decrease
the frequency of disintegration, but there is a region in which the
likelihood of disintegration is increased. This phenomenon is
observed when the de-diversification effect is most profound.

Under counteractive immunization, on the other hand, the fre-
quency of disintegration decreases virtually monotonically as vac-
cination proceeds. This is because counteractive immunization
makes it possible to reduce the frequency of medium-scale default
cascades without causing the de-diversification effects (Figs. 1c,d).

We also found that the frequency of disintegration follows a tra-
jectory of the expected costs in the case of x < 3. This suggests that
the risk of network disintegration could be well captured by the third
moment of the number of failed banks. An intuitive explanation for
this coincidence is as follows. Recall that the value of x represents the
degree of risk aversion, which indicates to what extent simultaneous

Figure 2 | Histogram of the number of defaulted banks. (a) Uniform immunization based on PageRank. (b) Counteractive immunization based on

edge-betweenness centrality. The figures show that i) uniform immunization decreases the frequency of medium-scale defaults while increasing the

likelihood of extremely large-scale defaults. ii) Counteractive immunization slightly reduces the frequency of medium-scale cascades while increasing the

likelihood of small-scale defaults. See the caption of Fig. 1 for parameter values.
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defaults are more costly than a sequence of single defaults. If x 5 1,
then there is no difference between a simultaneous default of mul-
tiple banks and a sequence of single defaults as long as the total
number of defaulted banks is the same. This implies that the society
puts an identical weight on various sizes of collective defaults, which
means that the small-scale collective defaults that would not matter
for the existence of the GSCC are cared too much. When x 5 10, on
the other hand, the society is so risk averse that it cares about infre-
quent but extremely large-scale simultaneous defaults. The society
thus undervalues the costs of the medium-scale collective defaults
that would still exceed the percolation threshold. Only if the value of
x is just around 3, the society puts appropriate weights on the size of
collective defaults that would be larger than the percolation
threshold.

Efficient immunization strategies. The next question is how to
choose an immunization strategy. Fig. 5 illustrates the expected
costs under uniform immunization relative to that under counterac-
tive immunization. The relative cost depends on various aspects of
the model, such as distribution of asset returns, immunization
strategy, the degree of asset correlation and the riskiness of the
common low-risk asset.

The main results can be summarized as follows. First, it turns out
that uniform immunization is more likely to be preferable as the tail
of asset-return distribution becomes thicker. Second, a decrease in ds

will move the threshold value of x rightward, which means that a
counteractive immunization becomes less attractive. Third, the
degree of correlation between anti-correlated assets may have an
ambiguous impacts on the efficiency of counteractive immunization.
Fig. 5e illustrates that counteractive immunization is most attractive
when r 5 .6, while this is not the case if asset returns follow a normal
distribution.

A general and robust result is that uniform immunization becomes
more efficient than counteractive immunization when x is suffi-
ciently small, where the degree of social risk aversion is moderate.
Counteractive immunization becomes more advantageous when x is
large, where the possibility of large-scale simultaneous defaults is of
great concern to the society.

Discussion
Since systemic risk can be thought of as a fear of default contagion
that might occur in financial markets, the previously proposed
immunization strategies seem useful for preventing financial con-
tagion. However, a straightforward application of the previous
immunization strategies would not work if there is some possibility
of serious side effects that would prevail among vaccinated
individuals.

In the case of uniform immunization, there is a good possibility
that a large number of banks will fail simultaneously due to the

Figure 3 | The relationship between the fraction of immunized banks and the expected costs. (a)–(d): The case of uniform immunization. The increases

in the expected costs observed in (a) reflect the de-diversification effect. The expected costs tend to become upward-sloping as the value of x increases.

This reflects the fact that the society is becoming more risk-averse. (e)–(h): The case of counteractive immunization. The outcome of uniform

immunization based on a random vaccination order is also shown for comparison. The shape of the curve is little affected by the value of x under

counteractive immunization. See the caption of Fig. 1 for parameter values.
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commonality of assets. We showed that counteractive immunization
can be more useful than uniform immunization as long as the society
has a strong aversion to such serious side effects. The highest priority
for the highly risk-averse society is to avoid severe financial crises
that would rarely occur, rather than a few bank failures that would
occur with high probability. Negatively correlated assets can become
useful vaccines even if the efficacy of each vaccine is lower than that
of the common vaccine that is used under uniform immunization.

These results reinforce the idea that micro-prudential policies do
not necessarily add up to a macro-prudential policy1. From a micro
point of view, it is efficient to use a common low-risk asset when
immunizing banks. From a macro point of view, however, the best
immunization strategy may be to prevent a large-scale contagion at
the sacrifice of individual failures. The effectiveness of counteractive
immunization suggests that financial networks should be fragile-yet-
robust rather than robust-yet-fragile.

Methods
Systemic risk measures. There is no wide agreement about how to calculate the level
of systemic risk. There are many candidates, such as the expected number of defaulted
banks, the expected economic losses that would be caused by bank failures, and the
likelihood of a large-scale default3,18–21. We show two intrinsically different risk
measures in order to better understand what is happening in the financial network.
The first one is based on the costs that would result from bank failures. Following
Beale et al.1 and Kobayashi16, we assume that social costs take the form C(n) 5 nx, x g
[1, ‘), where n is the number of failed banks. The expected cost is thus given as

E C½ �~
XN

n~1

q nð Þnx, ð1Þ

where N (51000) is the total number of banks in the financial market and q(?) is the
probability function. x can be interpreted as the degree of social risk aversion. Notice

that if x 5 1, this is simply the average number of defaulted banks. If x . 1, however,
simultaneous defaults of multiple banks become more costly than a sequence of single
bank failures.

Another measure is the connectivity of the network. As a measure of connectivity,
we use the simulated probability that the GSCC of the interbank network disinte-
grates. In each simulation, we check whether the GSCC is kept connected after
removing the failed banks from the network. We use the method proposed by
Restrepo et al.17, who showed that the largest eigenvalue of the adjacency matrix
becomes smaller than 1 if the GSCC is absent as long as the network has locally
treelike structure.

In both of the risk measures, the size of failed banks is not explicitly taken into
account. However, this does not necessarily mean that systemic importance is the
same across banks. The extent of ‘‘infectivity’’ generally varies from bank to bank,
depending not only on the amount of borrowings (i.e., in-degree), but also on the
topological location in the network and the whole network structure16. Systemic
importance of individual banks will differ if their infectivity differs even when their
balance-sheet sizes are the same. The systemic risk measures used in this study allow
us to treat the systemic importance of each bank in an agnostic manner.

Generating an interbank network. Interbank markets are directed networks. Many
studies show that the degree distribution of an interbank network follows a power
law22–26. In the present study, the algorithm that generates an interbank network
follows from Chung et al.27,28. Their algorithm is also used by Restrepo et al.17.

Let din and dout denote the in-degree and out-degree of a bank, respectively. The
indegree of bank i represents the number of banks from which bank i borrows funds.
The degree distribution derived by Chung et al.’s algorithm takes the form

P dlð Þ!d{b
l , l~in, out: ð2Þ

We assume that there is no degree-degree correlation. Chung et al.’s algorithm pro-
ceeds as follows. i) Gven the parameters b, c and î0, express the bank î’s in-degree as
din î
� �

~ĉi{1= b{1ð Þ for î [ î0 ,̂i0zN
� �

. ii) The out-degree distribution is obtained as a

random permutation of the sequence of din î
� �

. iii) Nodes î and ĵ =î
� �

are linked with

probability dout î
� �

din ĵ
� ��

dNð Þ, where d is the average in- or out-degree given by the
researcher. iv) By using the condition that the total number of edges is equal to dN, it
can be shown that c 5 [(b – 2)/(b – 1)]dN1/(b – 1) and î0~N d=mð Þ b{2ð Þ= b{1ð Þ½ �b{1

Figure 4 | The frequency with which the GSCC of the financial network disintegrates. (a)–(c): Uniform immunization. (d) and (e): Counteractive

immunization. Restrepo et al.’s method is used to judge whether the GSCC is present or not17. The frequency of network disintegration is correlated

closely with the expected costs under x 5 3. See the caption of Fig. 1 for parameter values.
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for a sufficiently large N, where m denotes the maximum in-degree given by

m~ĉi{1= 1{bð Þ
0 . m and d must be determined in such a way that the probability of

placing an edge is less than 1. The parameter values follow from Restrepo et al.17

(except for m): b 5 2.5, d 5 3 and m 5 50. To eliminate the possibility that differences
in the obtained results might be due to differences in the network structure, we use
one particular network structure in all simulations.

The portfolio structure. Prior to immunization, the asset side of bank i’s balance
sheet consists of interbank assets, li, a riskless asset, bi, and a risky external asset, ai,
where cov(ai, aj) 5 0 for j ? i. The liability side of bank i’s balance sheet consists of
interbank liability, �pi , deposits, di, and net worth, wi. The balance sheet condition
implies that aizbizli~�pizdizwi, i~1, . . . ,N: The amount of bank i’s
borrowings from bank j is expressed as pij�pi , where pij denotes the relative weight of

bank i’s borrowings from j, and thereby
X

j=i
pij~1, i 5 1, …, N. The amount of

bank i’s total interbank assets, li, is given by li~
XN

j=i
pji�pj .

Bank i will default if

�piw
X
j=i

pjipjz~aizbi{di, ð3Þ

where ~ai and pj stand for the ex-post values of external assets and interbank liabilities,
respectively. It should be pointed out that deposits, di, are reserved because deposits
are senior to interbank assets.

Provided that there is no loss in the interbank assets, those banks that hold a
common low-risk asset will fail with probability ds while the others will default with
probability dr. Following Beale et al.1, asset returns are assumed to follow student’s t-
distribution with degree of freedom vs for the low-risk asset and vr for the other
external assets. For those banks with out-degree 1, the size of net worth, wo, is
determined such that Fvr {w0ð Þ~dr or wo~{F{1

vr
drð Þ, where Fvr

:ð Þ is the CDF of

student-t distribution with degree of freedom vr. The unit size of the interbank asset,�l,
is given as �l~hlwwo , where hlw is the predetermined ratio of interbank assets to net
worth. More generally, the amount of net worth is determined as
wi~li

�
hlw~max 1,dout ið Þð Þ�l

�
hlw for i 5 1 … N. Given wo, vs is obtained by solving a

nonlinear problem, Fvs {woð Þ~ds. In the case where asset returns follow normal
distributions (i.e., vr R ‘), their variances are directly adjusted according to the
probability of default, taking as given the size of net worth.

Given the unit size of interbank lending, the sizes of interbank assets and liabilities,
li and �pi, are given by the structure of the interbank network. To ensure that the
probability of fundamental defaults, i.e., defaults due to the loss of external assets only,
is common across banks, the size of external assets relative to the net worth, haw, is
fixed. If bank i has so many incoming edges that its liability side would be bigger than
the sum of interbank assets and external assets, then riskless asset, bi, is imposed to
adjust the asset side. Otherwise, deposits, di, is imposed to adjust the liability side.

The parameter values are as follows: vr 5 5, dr 5 5/N, hlw 5 3 and haw 5 7. We use
three alternative values of ds: 1/N, 1/(2N) and 1/(10N). The ratio of interbank assets to
capital is roughly consistent with the data shown by Upper30. These parameters
indicate that the ratio of capital to total risky assets is .1 for those banks that have a
positive amount of interbank assets and 1/7 < .143 for the other banks. Solving the
abovementioned nonlinear problem yields vs 5 10.930 for ds 5 1/N, 15.687 for ds 5 1/
(2N), and 47.296 for ds 5 1/(10N). Random asset returns are generated 105 times for
each case.

The algorithm for detecting failed banks. If bank i failed, then bank i’s creditors lose
k% of their credits extended to bank i. Some of these creditors may fail due to the loss
of their interbank assets. Accordingly, the creditors of the creditors of bank i may fail
as well, because they lose k% of their credits extended to the failed banks. The spread
of contagious defaults stops if it turns out that no more banks are going to fail due to
the loss of interbank assets. Following the literature, we assume that k 5 100.

Immunization strategies. Under uniform immunization, the vaccination order is
based on either PageRank29 or indegree. PageRank, yi, is given by

yi~a
X

j
Aijyj

.
kout

j zb, where Aij is the (i, j)-th element of the adjacency matrix,

which takes 1 if pij . 0 and 0 otherwise. kout
j is the out-degree of node j. The parameter

values are a 5 .85 and b 5 1. When two or more nodes have a tie score, we randomize
the order among them.

Under counteractive immunization, we pick up a pair of banks sequentially. In the
case of the edge-betweenness-based strategy, we first select a pair of banks whose edge
spanned between the two banks takes the highest value in terms of the edge-
betweenness measure31. We remove the edges coming from and going to the selected
nodes, as well as the selected nodes themselves. In the following step, edge-
betweenness centrality is recalculated, and then the new highest-ranked edge is
selected. If there are multiple edges that have the same edge-betweenness, we ran-
domly choose one edge among those edges. As for random strategy, we basically

Figure 5 | The expected cost under uniform immunization relative to that under counteractive immunization. For each immunization strategy,

expected costs are minimized with respect to the fraction of immunized banks. (a), (b) and (c): asset returns follow a normal distribution. (d), (e) and (f):

asset returns follow the t-distribution with degree of freedom 5. Unless otherwise noted, uniform immunization is based on PageRank while counteractive

immunization is based on a random order. Baseline parameters are: r 5 .6, dr 5 5/N and ds 5 1/(2N). The optimal immunization strategy is to employ

uniform immunization when x is small and counteractive immunization when it is large. The threshold value of x depends on model parameters.
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randomize the vaccination order obtained by the edge-betweenness-based strategy.
The only difference is that we randomly choose a new pair of banks when there are
multiple edges that exhibit the same edge-betweenness. In both strategies, we ran-
domly pick up a pair of banks from the remaining banks if there are no more edges in
the network.

The selected banks are required to hold negatively correlated external assets whose
correlation coefficient is 2r. Any two correlated returns, {ei, ej}, i ? j, are expressed as

ei,ej
� �

~ ei,{reiz 1{rð Þ̂ej
� �

,i=j, ð4Þ

where es has mean zero and variance s2, while ês has mean zero and variance (1 1

r)s2/(1 2 r). There is no correlation between ei and êj, V j=i. Notice that the variance
of each asset return is independent of the value of r, which means that the riskiness of
individual assets remains unchanged.
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