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The persistence of increased excitability and spontaneous activity in injured peripheral

neurons is imperative for the development and persistence of many forms of

neuropathic pain. This aberrant activity involves increased activity and/or expression

of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic

nucleotide gated (HCN) channels as well as decreased function of K+ channels.

Because they display limited central side effects, peripherally restricted Na+ and Ca2+

channel blockers and K+ channel activators offer potential therapeutic approaches

to pain management. This review outlines the current status and future therapeutic

promise of peripherally acting channel modulators. Selective blockers of Nav1.3,

Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of

neuropathic pain in animal models. Unfortunately, their performance in the clinic has

been disappointing; some substances fail to meet therapeutic end points whereas

others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation

channels retain their promise as therapeutic targets. The way forward may include

(i) further structural refinement of K+ channel activators such as retigabine and

ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel

blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or

arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-

P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing

“pain” as opposed to nociception in rodent models; (iii) recognizing sex differences

in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms

and etiology of pain in individual patients via quantitative sensory testing and other

personalized medicine approaches; (v) targeting genetic and biochemical mechanisms

controlling channel expression using anti-NGF antibodies such as tanezumab or

re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in

the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used

in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are
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selective for different channel types or regulatory processes; (vii) directing preclinical

validation work toward the use of human or human-derived tissue samples; and (viii)

application of molecular biological approaches such as clustered regularly interspaced

short palindromic repeats (CRISPR) technology.

Keywords: Nav1.3, Nav1.7, Nav1.8, Cav3.2, Kv7.2/7.3, dorsal root ganglia (DRG), primary afferent, allodynia

INTRODUCTION

Whilst opioids are extremely effective in managing deep
and nociceptive pain, the drugs available for treatment of
neuropathic pain display limited effectiveness (1, 2). Sites of
action of anti-allodynic agents such gabapentinoids, tricyclic
antidepressants, and noradrenaline-serotonin uptake inhibitors
such as duloxetine or venlafaxine reside predominantly within
the spinal cord and at other central loci (2–5). Because the
persistence of aberrant and spontaneous activity in injured
peripheral neurons is imperative for the development and
persistence of many forms of neuropathic pain (2, 6–14),
the peripheral nervous system offers a range of actual and
potential drug targets. It has been argued that targeting
the peripheral nervous system with substances that do not
readily cross the blood-brain barrier, may circumvent the dose-
limiting side effects seen with centrally acting agents (15).
For example, adverse centrally-mediated effects of gabapentin
include dizziness, somnolence, fatigue, ataxia, and nystagmus
(16). This review thus outlines the current status and future
promise of peripherally-acting agents; focusing on those that
interact with cation channels in primary afferent neurons.

Peripheral nerve injury promotes Wallerian degeneration
of severed axons, Schwann cell activation and the generation
and release of chemokines, cytokines, and growth factors.
These sensitize sensory nerve endings, attract macrophages and
lymphocytes, alter gene expression, promote post-translational
modification of proteins and alter ion channel function (17–23).
The activity and/or expression of voltage-gated TTX-sensitive
Na+ channels, voltage-gated Ca2+ channels, ASIC channels, TRP
channels, and HCN channels is increased (24–27) whereas that
of K+ channels is decreased (28). These peripheral ion channels
thus present a viable target for therapeutic intervention (24, 28)
as alterations in their activity underlies the increased excitability
of primary afferents (11, 12, 29–35). In the interest of brevity,
this review is confined to description of injury-induced changes
in voltage-gated cation channels in primary afferent neurons
and their potential as therapeutic targets. Information on ligand-
gated channels which includes purinergic P2X3 channels, acid
sensing ion channels (ASIC), and various types of TRP channel
may be found in recent publications and reviews (3, 25, 36–
40).

A summary of viable therapeutic approaches to the
management of neuropathic pain by modulation of function
or expression of voltage-gated cation channels is presented in
Table 1.

VOLTAGE-GATED Na+ CHANNELS

Injury-induced increases in Na+ channel function were first
described over 20 years ago (111–113). They reflect altered
expression of channel protein and/or its accessory subunits,
altered trafficking or post-translational modification and/or
modulation (114, 115).

The genetic and structural definitions of Nav1.1–Nav1.9
channel subtypes was also established many years ago (116–118)
and this has led to a mechanistic and molecular understanding
of injury-induced changes (8, 114). This has paved the way for
selective targeting of TTX-sensitive Nav1.3, 1.6, and 1.7 channels
and TTX-resistant Nav1.8 channels as these are particularly
important in the generation and maintenance of neuropathic
pain (114, 119–122).

As described below, different Nav channel subtypes in
different neuronal populations are involved in different types of
neuropathic and nociceptive pain (114, 123–125).

Expression and Therapeutic Modulation of
TTX-Sensitive Na+ Channels
Role of Nav1.3 in Neuropathic Pain
Nav1.3 channels were previously known as type III Na

+ channels.
They are TTX-sensitive products of the SCN3A gene and are
found in neurons and cardiac myocytes with the highest level
in embryonic and early postnatal animals (117, 126, 127). In
DRG neurons, they exhibit rapid recovery from inactivation or
“repriming,” thereby enhancing repetitive discharge (128). Their
involvement in neuropathic pain is supported by the attenuation
of allodynia seen with intra-ganglionic injection of adeno-
associated virus expressing small hairpin RNA targeting Nav1.3
(129). Nerve injury upregulates and promotes re-expression of
Nav1.3 in adult DRG neurons (127, 130, 131) as well as in
spinal dorsal horn and thalamus (132, 133). This may reflect
removal of suppression of the SCN3A gene by microRNAs
such as miR-384-5p, mir-96 and/or miR-30b suggesting that
their targeted delivery may be of use in pain management (41–
43).

Pharmacological Manipulation of Nav1.3
Because Nav1.3 is mainly present in embryonic and early
neonatal animals and because nerve injury promotes selective
upregulation of Nav1.3 in nociceptive pathways of adults,
there is considerable interest in developing Nav1.3 blockers.
Structure activity studies starting with a diphenylmethyl amide
adduct of an aryl sulphonamide has led to the development of
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TABLE 1 | Potential and actual therapeutic candidates.

Channel type Drug Mechanism of action Status

Voltage-gated sodium channels

Nav1.3 • miR-384-5p

• miR-30b

• miR-96

Negative regulation of the SCN3A

gene for Nav1.3 (41–43).

Not yet tested in the clinic

Diphenylmethyl amide adducts of an

aryl sulphonamide series (44)

Channel block Not yet tested in the clinic

Nav1.7 Lacosemide Inactivated state blocker Safe and effective, in a randomized,

placebo-controlled, double-blind,

crossover-design study of Nav1.7

related small fiber neuropathy (45)

PF-05089771 Inactivated state blocker Failed to reach therapeutic end point

in a diabetic neuropathy trial (46)

CNV1014802 (vixotrigine or raxatrigine) Inactivated state blocker Trial ongoing for effectiveness in

trigeminal neuralgia (47).

Natural and chemically modified toxins

such as JNJ63955918

• JzTx-V

• PnTx1

• GpTx-1

• ProTx-11, µ-conotoxin KIIIA

• µ-TRTX-Tp1a (Tp1a)

• Tap1a

• Tap1a-OPT1

Most of these toxins are gating

modifiers

High affinity and selectivity of various

toxins for Nav1.7 has been

demonstrated (48). None as yet have

entered clinical trials. Tap1a also

blocks Cav3.2 channels (49).

Structural modification of Tap1a may

produce especially potent and

effective agents (50)

Low dose opioids in combination with

Nav1.7 blockers

Augmentation of opioid contribution

to effectiveness of Nav1.7 blockers

(51–53)

No clinical information presently

available

“LATER” (long-lasting analgesia via

targeted in vivo epigenetic repression)

technology

CRISPR epigenetic technology to

suppress Nav1.7 expression

Encouraging results found in hiPSC

(54, 55).

Carbamazepine Channel block Use primarily restricted to trigeminal

neuralgia (56)

Nav1.8 A803467

PF-01247324

Small molecule pore blockers Not yet tested in clinic

VX-150 Prodrug metabolized to small

molecule pore blocker

Clinical trial ongoing (57)

Tanezemab Monoclonal antibody directed at

nerve growth factor

Trials in several pain states have

brought forth encouraging results (58)

Multiple actions on Na+ channels Cyclic peptides derived from the

structures of natural product channel

blockers µ-conotoxin KIIIA and (PnTx1)

Phoneutria nigriventer toxin 1 (59)

Channel block Ongoing studies seek to improve

toxin selectivity

Lidocaine patch Inactivated state blocker In clinical use (1)

Cationic local anesthetics combined

with TRPV1 activators (60–62)

Local anesthetic effect achieved

selectively in TRPV1 expressing

neurons by anesthetic permeation

of TRPV1 channels

Preclinical research is ongoing, but no

reports of clinical investigations

Voltage-gated potassium channels

Kv1.1.

Delayed Rectifier K+ channels

2-fluorophenyl glycine Direct channel activator (63) Under consideration for use in

episodic ataxia type 1, as yet

untested in pain models

Kv1.2

Delayed Rectifier K+ channels

Suberoylanilide hydroxamic acid

(Vorinostat)

HDAC2 inhibitor may attenuate pain

by increased expression of Kv1.2

and by other mechanisms (64–66)

Clinically approved anti neoplastic

agent not yet evaluated in cancer or

neuropathic pain

Kv2.1, Kv2.2

Delayed Rectifier K+ channels

Activators of associated Kv1.9 silent

subunits

Formation of hetero—tetramers

(Kv1.9–2.1–2.2) may increase

overall channel conductance (67)

Suitable compounds or methodology

not yet developed

(Continued)
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TABLE 1 | Continued

Channel type Drug Mechanism of action Status

Kv7.2

KCNQ2 or M-channels

Retigabine M-channel opener Failed to meet its efficacy endpoint in

post herpetic neuralgia (68)

Flupirtine M-channel opener Withdrawn because of toxicity issues

SCR 2682 Kv7.2 opener which also increases

KCNQ2 mRNA and Kv7.2 protein

expression (69, 70)

Mechanism of action yet to be

determined, not yet ready for clinical

trials

Mallotoxin Isovaleric acid

(E)-2-dodecenal

Natural products that act as

Kv7.2/7.3 activators (71, 72)

Effective in animal models of epilepsy,

efficacy in pain models not yet

examined

Kv4

A-channel

NS5806 Modulation of Kv channel activity by

interactions with KChips (73, 74)

Attenuates cold allodynia in a model

of trigeminal neuralgia (75)

Kir6.2

KATP channels

Diazoxide Minoxidil KATP channel openers (76–79) Despite efficacy in neuropathic pain

models their use in the clinic has not

been advocated.

Multiple actions on K+ channels

Kv7.2 KCNQ2 or M-channels

Kv1.4 A-channel

KCa1.1 BK Ca2+ sensitive K+ channel

BIX01294 UNC0638 Inhibition of histone

methyltransferase G9a (80, 81)

Histone methyltransferase inhibitors

are being developed as antineoplastic

agents, use in clinical pain yet to be

established.

Voltage-gated calcium channels

N-type voltage-gated Ca2+ channels

(Cav2.2)

Ziconotide (Synthetic ω-conotoxin

MVIIA)

Channel block Administered intrathecally when other

treatments fail (82)

• Small molecule blockers

• ZC88

• A1264087

• TROX-1

• (83–87)

Channel block No clinical data yet available

Clonidine Channel block via α2 adrenoceptor

and Gi/o interaction

Only effective in small subgroups of

patients (88–92).

Gabapentinoids Affect Cav2.2 channel trafficking

and association with release

machinery both peripherally and

centrally (93–95)

Classical anti allodynic agent (1), but

only effective in 31% of patients (96)

CNCB-2 Bifunctional, permanently charged

molecule blocks Cav2.2 and

Nav1.7. (97)

Yet to be examined in animal models

of neuropathic pain

T-type voltage-gated Ca2+ channels

(Cav3.2)

Ethosuximide Classical T-current blocker and

anticonvulsant

Clinical results in pain are

disappointing (98)

Suramin Shows analgesic activity in

neuropathic and inflammatory pain

models by prevention of action of

deubiquitinase, USP5(99, 100)

No clinical data

• TTA-P2

• TTA-A2

Small molecule blockers effective in

animal models

No clinical data

• Z 944

• ACT709478

Small molecule blockers Promising preliminary data from

clinical trials (101)

Tap1a Toxin derived from tarantula venom Also blocks Nav1.7 and shown to be

effective in murine model of irritable

bowel syndrome (49)

BK current, T current, Cav2.2, Nav1.8 Cannabinoids (102–105) Considerable discussion in the

literature relates to the efficacy of

cannabinoids in neuropathic pain

(102, 106–109)

Interactions with transduction mechanisms that control nociceptor excitability

Cercosporamide MNK 1/2 Inbitor Suppresses pain in murine models

(110) and is approved for

management of pain in rheumatoid

arthritis

Vorinostat, Histone methyltransferase inhibitor Alleviates pain in a bone cancer

model (66)
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compounds with good selectivity for Nav1.3 as well as favorable
pharmacokinetics (44).

Role of Nav1.6 in Neuropathic Pain
Nav1.6 is another TTX-sensitive Na+ channel. It is the product
of the SCN8A gene (117) and was previously known as PN4.
Nav1.6 channels are expressed along the whole length of
sensory unmyelinated axons (134) and are clustered at nodes of
Ranvier in myelinated fibers where they participate in “saltatory”
conduction (135).

The observation that knockout of Nav1.6 reduces injury-
induced pain behaviors and sensory neuron excitability (136–
138) implicates it in the etiology of neuropathic pain. It has
recently been implicated in a model of vincristine-induced
chemotherapy induced peripheral neuropathy (CIPN) and
allodynia (139) and is upregulated in the DRG in a model of
diabetic neuropathy (140). These findings are corroborated by the
description of a gain-of-function mutation in Nav1.6 in a case of
trigeminal neuralgia (141). Since its role in in pain etiology was
established relatively recently (114, 142), there have been as yet
no attempts to modulate Nav1.6 channel activity either in animal
models or in the clinic.

Role of Nav1.7 in Neuropathic Pain
The TTX-sensitive Nav1.7 channel is involved in a multiplicity
of neuropathic and nociceptive pain states (8, 48, 54, 114,
123, 143–146). It is the product of the SCN9A gene and was
previously known as PN1. Nav1.7 is the dominant voltage-
gated Na+ channel in peripheral sympathetic neurons and in
all types of DRG neuron (117, 147). Its expression extends
from peripheral nerve endings in the skin and viscera to
primary afferent terminals in the dorsal horn (148) where it is
especially concentrated (147). Nav1.7 is preferentially expressed
in small diameter nociceptors including both the CGRP-positive
subcategory and the non-peptidergic subcategory that bind the
plant lectin IB4 from Griffonia simplicifolia (114). It is also found
in olfactory sensory neurons, magnocellular neurosecretory cells
of the hypothalamic supraoptic nucleus and in vagal afferents
(51, 149–151). Because it is not found to any great extent in vital
non-neuronal tissue such as heart or skeletal muscle (114, 147),
Nav1.7 represents a specially attractive target for therapeutic
manipulation. Although it is found in pancreatic alpha and beta
cells it may be inactivated at their normal resting potential (152).

Immunohistochemical studies first demonstrated Nav1.7
upregulation in severed axons within human painful neuromas
(122, 153) and Nav1.7 has been shown to be necessary for the
release of the pain modulator substance P from primary afferent
terminals (124).

Despite this, Nav1.7 does not appear to be involved in all
manifestations of neuropathic pain. For example oxaliplatin-
induced pain and cancer-induced bone pain do not require
the presence of Nav1.7 or the Nav1.8-positive nociceptors in
which Nav1.7 is enriched (123). By contrast, paclitaxel-induced
CIPN involves the direction of Nav1.7 to cell membranes and
axons of primary afferent fibers (154). Also, neuropathic pain
produced by constriction injury (CCI) is abolished when Nav1.7
is selectively deleted in murine sensory neurons and although

spinal nerve transection or tight ligation (SNL) also produces
cold and mechanical allodynia this is not affected by selective
knockout of Nav1.7 in DRG neurons. By contrast, knockout of
Nav1.7 in both sympathetic and sensory fibers attenuates both
forms of allodynia (123). This is because SNL involves sprouting
of Nav1.7 expressing perivascular sympathetic fibers (155, 156)
and their ectopic interaction with DRG neurons (157–159).

Patients with a rare, chronic pain conditions such as primary
erythromelalgia or paroxysmal extreme pain disorder exhibit
gain of function mutations in SCN9A (8, 146, 160–163). As
of 2019, 30 mutations in SCN9A genes had been described
in inherited erythromelalgia and 13 in paroxysmal extreme
pain disorder (114). In the case of inherited erythromelalgia,
isoleucine 848 is replaced by threonine. This I848T mutation
increases the amplitude of current produced by Nav1.7 in
response to slow, small depolarizations as a result of a
hyperpolarizing shift in activation and slowed deactivation (161).
Recently, protein kinase C has been found to be responsible
for the phosphorylation of T848 found in mutant channels and
this accounts for the shift in activation (164). Meents et al.
(165) have differentiated human induced pluripotent stem cells
(hiPSC) from erythromelalgia patients into sensory nociceptors.
This will provide an extensive supply of human nociceptors
for further study of erythromelalgia. Mutations seen in Nav1.7
channels of erythromelagia patients also occur in those with
paroxysmal extreme pain disorder with an additional suppression
of fast inactivation (163). Gain of function mutations of SCN9A
also worsen neuropathic pain in a small cohort of patients with
painful diabetic neuropathy (166).

Although some patients with small fiber neuropathy display
the I228M gain-of-function mutation in Nav1.7, a pain
phenotype does not appear until they reach adulthood (167).
Expression of this same mutation in mice promotes increased
DRG excitability without the appearance of a measurable pain
phenotype. It is suggested that some compensatory mechanism
may restrain the development of pain in the mouse model and
the possible existence of a similar process in humans may delay
the development of a pain phenotype until adulthood (168).

Patients with a rare congenital insensitivity to pain (CIP)
express a loss of function mutation in Nav1.7 (169) and global
knockout of Nav1.7 in mice recapitulates this human phenotype
(170). Differentiation of hiPSC’s from CIP patients into sensory
nociceptors, produced cells where Nav1.7 was appropriately
expressed and trafficked to the cell membrane. Since these cells
failed to respond to depolarizing stimuli, CIP can be attributed to
changes in the function of the channels per se rather than defects
in their expression or trafficking (54). These results also provide
new evidence for a role of Nav1.7 in human nociception. As of
2019, 26 mutations in SCN9A have been reported to contribute
to CIP.

In addition to its role in controlling neuronal excitability
and neurotransmitter release, Nav1.7 directly or indirectly
affects gene expression (51, 52, 171). Nav1.7 deletion, leads
to upregulation of Penk mRNA for the enkephalin precursor
proenkephalin in DRG as well as met-enkephalin protein. Since
a similar effect is seen with TTX, the upregulation of endogenous
opioid function may be contingent on decreased levels of
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intracellular Na+ (52). These authors also showed that blockade
of opioid receptors with naloxone reduces the analgesia seen
in both male and female Nav1.7-null mutant mice and in a
human patient with Nav1.7 dependent congenital insensitivity
to pain [see also (51)]. The relationship between increased
opioid function and decreased Nav1.7 function is supported
by the observation that the analgesic effect of a selective
Nav1.7 blocker, µ-theraphotoxin-Pn3a (from the tarantula
Pamphobeteus nigricolor), is augmented by administration with
sub-effective doses of opioids or with an enkephalinase inhibitor
(172). Further analysis of this effect showed that Nav1.7
knockout mice have normal peripheral nociceptor activity but
synaptic transmission from nociceptor central terminals is
greatly reduced in an opioid-dependent fashion. Analgesia was
reversed substantially by central but not peripheral application of
opioid antagonists (51). These authors thus concluded inhibition
of neurotransmitter release is the principal mechanism of
analgesia in mouse and human Nav1.7-null mutants.

Second order sensory neurons in the spinal dorsal horn
express few transcripts of Nav1.7 mRNA. Despite this,
immunoreactivity for channel protein is abundant yet is
reduced following rhizotomy (173). This suggests that sensory
neurons are the source of Nav1.7 in spinal dorsal horn neurons
and that intercellular transport of the protein occurs between
these two neuronal populations. This conclusion was supported
by the observation that selective deletion of Nav1.7 in peripheral
neurons reduced the intrinsic excitability of dorsal horn neurons.

Pharmacological Manipulation of Nav1.7
Although it may not be involved in all types of neuropathic pain
(123) it is absence from non-neuronal tissue such as heart or
skeletal muscle (114, 147). Nav1.7 is therefore clearly an attractive
target for therapeutic intervention (48, 114, 145, 154, 174).
Moreover, the anticonvulsant lacosamide, which is an inactivated
state blocker of Na+ channels (175, 176) has been found to be safe
and effective, in a randomized, placebo-controlled, double-blind,
crossover-design study of Nav1.7 related small fiber neuropathy
[(45), Table 1]. Also, the effectiveness of carbamazepine which
is used to treat trigeminal neuralgia (56) may in part reflect its
affinity for Nav1.7 (177).

There is also considerable interest in various sulfonamide
analogs which display selectivity toward Nav1.7 and are effective
in pain mitigation in animal models [(178–183); see Table 1].
Therapeutic concentrations of the inactivated state blocker PF-
05089771 increase the rheobase of control neurons, but not that
of Nav1.7 knock-out neurons. Despite this selectivity for Nav1.7
and its effectiveness in animal models in vivo (54), a clinical
study of PF-05089771 in subjects with painful diabetic peripheral
neuropathy failed to meet defined efficacy criteria (46).

Another broad spectrum non-sulfonamide Nav blocker,
vixotrigine, which was previously known as raxatrigine, or
CNV1014802, BIIB074, or GSK-1014802 (184), has shown
effectiveness in animal models of Nav1.7-dependent pain. Its
safety in human patients has been established (185). A phase III
clinical trial for effectiveness in trigeminal neuralgia and phase II
trial for small fiber neuropathy are presently ongoing (47).

Nav1.7 and Natural Toxins
Another approach to therapeutic modulation of Nav1.7 activity
involves potential use and/or structural modification of natural
toxins (48, 186–190). These are typically gating modifiers as
opposed to simple pore blockers so some natural toxins increase
channel function whereas others attenuate it [(48); Table 2].
Starting points include the cone snail toxin, µ-conotoxin KIIIA,
and PnTx1 (Phoneutria nigriventer toxin 1) from a Brazilian
spider. Although structure activity studies of small cyclic peptides
derived from the structure of these toxins has not as yet revealed
Na+ channels subtype ligands, the analgesic effect of many of the
ligands involves modulation Nav1.7 channel function. This result
was achieved by observing attenuation of pain produced by the
Nav1.7 selective activator α-scorpion toxin OD1 [(191); Table 2].
Further modifications of small cyclic peptides may reveal more
subtype selective ligands with appropriate pharmacokinetics in
vivo and improved bioavailability (59).

Studies and modification of arachnoid toxins which display
natural selectivity toward Nav1.7 may also lead to development
of effective agents (190). As listed in Table 2, there are
several examples.

Venom from the tarantula Grammostola porteri contains
the 34-residue peptide, GpTx-1, with high and selective
affinity for Nav1.7 (IC50 = 10 nM). Structural modifications of
this peptide led to the identification of [Ala5, Phe6, Leu26,
Arg28] GpTx-1 (also known as GpTx-1-71) IC50 = 1.6 nM
(192). Both peptides exert powerful antinociception in mouse
models of acute, visceral, inflammatory and neuropathic pain
without impairment of motor co-ordination or development
of tolerance (144). Another modified toxin derived from
JzTx-V (from venom of the Chinese tarantula Chilobrachys
jingzhao) has a 100-fold improved efficacy compared to
GP-Tx-1-71 (193).

Studies of the venom from the Peruvian green-velvet tarantula
Thrixopelma pruriens revealed a 33 residue peptide termed µ-
TRTX-Tp1a (Tp1a or ProTx-III) with high selectivity and affinity
for Nav1.7 (194). Unlike other spider toxins that inhibit the
function of Nav channels, Tp1a inhibited hNaV1.7 without
significantly altering the voltage-dependence of activation or
inactivation. Like PnTx1, the analgesic effect of Tp1a was
demonstrated by its ability to reverse spontaneous pain induced
in mice by intraplantar injection of the Nav1.7 activator
OD1 (194).

Recently another peptide toxin named Tap1a from the
Venezuelan tarantula Theraphosa apophysiswas shown to reverse
colonic mechanical hypersensitivity in a mouse model of irritable
bowel syndrome. The toxin’s efficacy was shown to reflect
selective targeting of Nav1.7 as well as the T-type Ca2+ channel
Cav3.2 (49).

High-throughput screening has also identified µ-TRTX-
Df1a (Df1a) from the venom of the spider Davus fasciatus as
an Nav modulator. This 34-residue peptide inhibits responses
mediated by Nav1.7 that is endogenously expressed in the human
neuroblastoma cell line SH-SY5Y. It also inhibits T-type calcium
(Cav3.1 and Cav3.3) currents and other Nav currents expressed
in HEK 293 cells but has no effect on the voltage-gated potassium
channel [Kv2.1; (195)]. Df1a is active in vivo and reverses the
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TABLE 2 | List of toxins that modulate Nav1.7 channel activity.

Toxin name Abbreviation(s) Biological source

Inhibitors of channel function

µ-theraphotoxin-Pn3a Pn3a Tarantula Pamphobeteus nigricolor

Phoneutria nigriventer toxin 1 PnTx1 Brazilian spider Phoneutria nigriventer

Grammostola porter Toxin 1 GpTx-1 Rose hair or Chilean tarantula Grammostola porteri

Jingzhaotoxin-V JzTx-V Chinese tarantula Chilobrachys jingzhao

µ-theraphotoxin-Tp1a µ -TRTX-Tp1a (also known as Tp1a or ProTX-III) Peruvian green velvet Thrixopelma pruriens

Theraphosa apophysis Toxin 1a Tap1a Venezuelan tarantula Theraphosa apophysis

Davus fasciatus Toxin 1a µ-TRTX-Df1a (also known as Df1a) Costa Rican tiger rump tarantula Davus fasciatus

Huwentoxin-IV HWTX-IV Chinese bird spider Haplopelma schmidti

Hainantoxins HNTX I and III Chinese bird spider Ornithoctonus hainana

Activator of channel function

α-scorpion toxin OD1 OD1 Scorpion Odonthobuthus doriae

spontaneous pain behaviors induced by the scorpion venom Nav
activator OD1.

Other investigations have used the venom-peptide ProTX-
II (Protoxin II) from the Peruvian green velvet tarantula
(Thrixopelma pruriens) as a scaffold, to engineer a library of over
1,500 peptides. This identified JNJ63955918 as a potent, highly
selective, closed-state Nav1.7 blocking peptide which induces
insensitivity to pain that closely recapitulates key features of the
Nav1.7-null phenotype seen in mice and humans (196).

More recently attention has been drawn to huwentoxin-IV,
from the Chinese bird spiderHaplopelma schmidti. Because it has
high affinity for sodium channels it is an attractive scaffold for
engineering Nav1.7-selective molecules and several new ligands
with high affinity and selectivity have been identified (197).

Other natural products which block Nav1.7 channels include
HNTX I and III from the spider Ornithoctonus hainana (198,
199), bulleyaconitine from aconitum bulleyanum plants (200)
and the Japanese traditional medicine goshajinkigan (2, 201).

Clinical Status of Nav1.7 Blockers
In general, despite intensive pre-clinical studies with Nav1.7
blockers, tests of their efficacy in the clinic has yielded rather
disappointing results [(48), Table 1] and to the best of our
knowledge no studies of tarantula and other toxins in the clinic
have appeared. Nevertheless, the continued study of toxins, small
molecule blockers and monoclonal antibodies (202) should and
will continue (2, 8). In particular, further structural modification
of small molecule blockers such as CNV1014802 (vixotrigine)
and PF-05089771 as well as chemical modification of natural
toxins (48, 50) may provide a route to the development of more
efficacious therapeutic entities. The tarantula toxin Tap1a shows
particular promise as it appears to selectively target both Nav1.7
and Cav3.2 (49).

Since the consequences of Nav1.7 blockade are mediated at
least in part by endogenous opioids (51, 52), benefit may be
obtained by combining small molecule blockers or toxins with
low doses of opioids (48, 53).

The development of monoclonal antibodies and the delivery
of the inhibitory micoRNA miR-182 (203) or modifiers of Na+

channel β subunits (204) may reveal additional therapeutic
approaches. This approach may be especially attractive as three
different types of β subunits are differentially and selectively
expressed in small, medium, and large diameter DRG neurons
(205, 206).

An approach that has proved particularly effective for
targeting Nav1.7 uses CRISPR-dCas9 technology (clustered
regularly interspaced short palindromic repeats) (55). Epigenome
engineering platforms were introduced intrathecally in mice
via adeno-associated viruses. A novel approach that prevented
expression of Nav1.7 by editing a regulatory sequence successfully
repressed Nav1.7 expression in lumbar DRG, reduced thermal
hyperalgesia in inflammatory pain models and decreased tactile
allodynia in the neuropathic pain models without affecting
normal motor function. It is anticipated that this “LATER”
(long-lasting analgesia via targeted in vivo epigenetic repression
technology) might have therapeutic potential in management
of persistent pain states. This is important in practical terms
as chronic pain patents usually present in the clinic when they
have suffered for many months. The technology can of course be
easily modified to control expression of any potential or central
drug target.

Expression and Therapeutic Modulation of
TTX-Resistant Na+ Channels
Role of Nav1.8 in Neuropathic Pain
The TTX-resistant Nav1.8 channel is predominant in small
DRG neurons (124, 207–210) but its selective association with
nociceptors has been questioned (211). It was originally known
as SNS or PN3 and is encoded by the SCN10A gene (117). It is
characterized by its high threshold for activation and its slow rate
of inactivation at depolarized potentials (210). These properties
enable it to generate a slow persistent inward current (212).

Although peripheral nerve injury attenuates Nav1.8 function
in injured DRG neurons (213–215) it is thought to accumulate
in uninjured neurons (216) and in neuromas that develop
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at sites of nerve injury (217). Selective blockade of Nav1.8
function promotes hypoalgesia (213), gain of function mutations
of SCN10A in humans can promote painful neuropathy (218)
and its optogenetic silencing in DRG attenuates neuropathic
pain (219).

Pharmacological Manipulation of NaV1.8
The selective Nav1.8 blockers A803467 and PF-01247324 are
being developed as potential antidysrhythmic agents (220).
Although both are reported to attenuate allodynia in a rodent
model (221, 222), they have yet to be used in clinical studies (223).
Encouraging results have been seen with the pro-drug VX-150
which exhibits analgesic activity in healthy volunteers (57), but
preclinical literature in support of these studies are not available
online. The µO-conotoxins, MrVIA, MrVIB, and MfVIA block
Nav1.8 and ongoing analysis seeks to increase their affinity by
structural modifications (224).

Unlike the situation with Nav1.7, analgesia produced with
blockade of Nav1.8 is not opioid-dependent (52) and may be
attributable to decreased excitability of peripheral afferents and
their central terminals (225).

Although the efficacy of the non-psychoactive cannabinoid,
cannabidiol in management of neuropathic pain remains to
be established (106), it was recently reported to decrease the
excitability of DRG neurons by binding to the slow inactivated
state of Nav1.8 channels (102).

Expression of Nav1.8 in peptidergic DRG neurons is
controlled by nerve growth factor (NGF) (215) whereas its
expression in non-peptidergic neurons is controlled by glial
colony derived neurotrophic factor (GDNF) (226). This may
account in part for the effectiveness of the NGF antagonist
tanezumab in various pain states (58). In fact, its safety and
efficacy in humans identifies tanezumab as one of more the
promising new drug candidates for chronic and neuropathic
pain (see Clinical Trials Government Identifiers: NCT02528188
and NCT02528188).

Role of Nav1.9 in Inflammatory Pain but Not in

Neuropathic Pain
Nav1.9 is also TTX-resistant (227) and is encoded by the SCN11A
gene. It was previously known as NaN. Unlike genes encoding
other voltage-gated Na+ channels, murine SCN11A is only 75%
identical to the human gene (114). Nav1.9 was previously known
as NaN or SNS-2 (117) and because it inactivates extremely
slowly, it is capable of producing a persistent inward current
(228). Thismeans that gain of functionmutation of Nav1.9 causes
decreased excitability because other voltage-gated Na+ channels
are inactivated by persistent Nav1.9 mediated depolarization (8).
In the peripheral nervous system, NaN/Nav1.9 was first detected
in small DRG neurons of SNS/Nav1.8—null mice (228) where
it is preferentially expressed in non-peptidergic neurons which
bind the plant lectin IB4 (229). Channels are found in free nerve
endings, along axons, in DRG cell bodies and in primary afferent
terminals in spinal lamina II (substantia gelatinosa) (230). Unlike
Nav1.7, sciatic injury reduces expression of mRNA and channel
protein for Nav1.9 (231) and this may be attributable to loss of
trophic support by GDNF (226). Since Nav1.9 knockout mice

continue to display allodynia following nerve injury (232), this
channel is unlikely to play a role in injury-induced neuropathic
pain. This contrasts with the situation for inflammatory pain
where a role for Nav1.9 is well-established (114, 232).

Selective Modulation of Na+ Channels in
TRPV1 Nociceptors
The local anesthetic, lidocaine acts in its cationic form to block
all types of Na+ channels from the cytoplasmic side of the
membrane. Although the topical application of lidocaine by
means of a transdermal patch continues to be used in clinical
pain management (1), disturbance of other aspects of sensory
transmission by local anesthetics necessitates the development of
more refined approaches. An ingenious approach has been used
to selectively target lidocaine to TRPV1 expressing nociceptors
(60, 233). The quaternary analog of lidocaine, QX314 is unable
to permeate the cell membrane. It is therefore ineffective when
applied extracellularly but is an effective local anesthetic when
applied to the cytoplasmic side of the cell membrane. The pore
of open TRPV1 channels is large enough to admit QX314,
so their activation on nociceptors by capsaicin allows entry
of QX314 and an anesthetic effect which is selective for this
neuronal population. Although these findings have been repeated
by others (234, 235) and the effectiveness of a more potent
cationic anesthetic BW-031 described (61), this approach is yet
to be exploited in a clinical situation.

VOLTAGE-GATED K+ CHANNELS

It is well-established that decreased function of voltage-
gated K+ channels contributes to injury-induced increases in
peripheral nerve excitability and activity (28, 236–245). As
with Na+ channels, K+ channel function can be modified
by altered expression of channel protein and/or its accessory
subunits, altered trafficking or post-translational modification or
modulation. Also, the establishment of genetic and structural
definitions of a broad variety of K+ channel types (246–249) has
led to improved mechanistic understanding of injury induced
changes. Although the selective targeting of K+ channels has
so far been less rewarding than targeting of voltage-gated
Na+ channels, potential targets include Kv7.2 and the histone
methyltransferase G9a which controls expression of several
voltage-gated K+ channels, namely Kv7.2, Kv1.4 KCa1.1 [(250),
Table 1].

Decreased Expression and Therapeutic
Modulation of Delayed Rectifier K+

Channels
Sciatic nerve transection decreases functional expression of
delayed rectifier K+ currents in DRG neurons (236–238, 251).
Injury-induced changes may in part reflect post-translational
processes such as phosphorylation, endocytosis and/or trafficking
(245, 252, 253) that may be independent of any change in
expression of K+ channel genes and their products as will
be described in detail below. This possibility is underlined by
the observation that delayed rectifier currents are substantially
reduced in a rodent model of painful diabetic neuropathy

Frontiers in Pain Research | www.frontiersin.org 8 December 2021 | Volume 2 | Article 750583

https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles


Alles and Smith Cation Channels and Neuropathic Pain

but the mRNA levels for Kv1.1, Kv1.2, Kv2.1, and Kv2.2 are
unchanged (254).

There are many types of delayed rectifier K+ channels in DRG
neurons that assemble as hetero-tetramers or homo-tetramers
of various Kv1, Kv2, and Kv3 subtypes (28). Although most
types of Kv1 and Kv2 channels are affected by peripheral nerve
injury, their ubiquitous distribution in both excitable and non-
excitable tissues restricts the therapeutic potential of substances
that augment the activity of delayed rectifier K+ channels.

Role of Kv1.1 in Neuropathic Pain
Protein and mRNA for Kv1.1 is reduced in DRG following
sciatic nerve injury (238, 245, 255) and this is associated with
redistribution of channels away from nodal regions of A-δ
fiber axons (245). Although expression of a dominant negative
phenotype of Kv1.1 causes allodynia in mice (256), certain
glycine derivatives act as Kv1.1 channel openers (63), and
substances have been identified that attenuate the time dependent
inactivation of Kv1.1 (257), its ubiquitous distribution in brain,
heart, retina, skeletal muscle and pancreatic islets (247) may
preclude the use of Kv1.1 activators in pain management.

Role of Kv1.2 in Neuropathic Pain
Knockdown of Kv1.2 by siRNA induces mechanical and thermal
hypersensitivity in naive rats (258). mRNA for Kv1.2 is also
downregulated in several neuropathic pain models (28, 238,
255, 259, 260), and overexpression of Kv1.2 impairs neuropathic
pain but does not attenuate acute pain in rats (261). These
findings correlate with injury-induced reduction of whole-cell
Kv1.2 current (260) and reduced channel protein expression
as demonstrated by immunohistochemistry (261, 262) and/or
immunoblot (245, 263).

Six different mechanisms have been hitherto suggested to
underlie decreased Kv1.2 expression in DRG after peripheral
nerve injury.

(i) Altered expression of histone deacetylase2 (HDAC2) (263) by
NF-κB p65-dependent transcriptional regulation (264).

(ii) Increased expression of the canonical maintenance
methyltransferase DNMT1 via a CREB (cAMP response
element binding protein)—dependent process. Blockade of
DNMT1 upregulation attenuates hyperexcitability in the
injured DRG neurons and alleviated nerve injury-induced
pain hypersensitivity (260, 265).

(iii) A pathway involving the methyl-CpG-binding domain
protein 1 (MBD1), which binds to methylated sequences of
DNA and attracts the DNA methylation protein DNMT3a.
Overexpression of MBD1 leads to spontaneous pain and
evoked pain hypersensitivities in wild type mice (266, 267).

(iv) Decreased expression of ten-eleven translocation
methylcytosine dioxygenase 1 (TET1). This promotes
DNA demethylation and its overexpression in the DRG
of nerve injured animals alleviates pain hypersensitivities
without altering acute pain (268).

(v) Kv1.2 function may be controlled by the non-coding
miniature RNA miR-137. Because it impairs Kv1.2 function,
experimental impairment of miR-137 function, rescues

channel expression and function and attenuates allodynia in
rats subject to CCI (258).

(vi) A long non-coding RNA (Kcna2 antisense RNA) contributes
to neuropathic pain by silencing the KCNA2 gene and thereby
reducing expression of Kv1.2 in primary afferents (259).

Limited Feasibility of Pharmacological Manipulation

of Kv1.2
No small molecule activators of Kv1.2 have been identified (118)
and given their documented presence throughout the brain,
in spinal cord, mechanoreceptors and proprioceptors, Schwann
cells, the heart, vascular smooth muscle and retina (247), direct
pharmacological manipulation of these channels is not a viable
means of treatment of neuropathic pain. There are some reports
of alleviation of pain in animal models by attenuation of HDAC2
action (64, 65) but these may reflect modulation of its actions in
the spinal cord as well as upregulation of Kv1.2 in the periphery.
The HDAC inhibitor and antineoplastic agent, suberoylanilide
hydroxamic acid (vorinostat) has been shown to alleviate pain
in a bone cancer model (66) but to the best of our knowledge
no trails of its efficacy in any form of neuropathic pain have as
yet appeared.

Minimal Role of Kv1.3, 1.5, and 1.6 in Injury- Induced

Pain
These channels which also exhibit delayed rectification are
expressed at relatively low levels compared to Kv1.1 and 1.2 in
naïve DRG (238, 245). mRNA for Kv1.3 is decreased but that for
Kv1.5 and 1.6 is little affected by nerve injury (238, 255). In view
of the relatively limited expression of these channels in DRG,
augmentation of their function would not seem to be a desirable
therapeutic strategy for pain mitigation.

A Role for Kv2.1, 2.2, and Kv9.1 in Injury-Induced Pain
Channel protein and mRNA are reduced by nerve injury as is
Kv2 whole-cell current comprising Kv2.1 and 2.2 (262, 269).
These changes may, in part, reflect the influence of the silent
subunit Kv9.1 in hetero-tetramers with both Kv2.1 and Kv2.2
(67, 247, 270, 271). Nerve injury downregulates Kv9.1 in DRG
neurons and this may alter behavior of Kv9.1∼Kv2.1∼Kv2.2
hetero-tetramers (270). Selective downregulation of the Kcns
gene in DRG in vivo but not in other tissues, reduces Kv9.1
expression and promotes changes in pain behavior consistent
with its role in onset of neuropathic pain (67, 270). This suggests
that restoring Kcns1 activity in the periphery has therapeutic
potential in chronic pain (67).

As seen with Kv2.1, nerve injury downregulates mRNA for
Kv2.2 in DRG (255, 269). Since Kv2.2 currents are also affected
by the presence of Kv9.1 in hetero-tetramers this give further
credibility to potentiation of Kv9.1 as a therapeutic approach
(Table 1).

No Role for Kv3.1 and 3.2 in Neuropathic Pain
Although immunohistochemical, biophysical and Western
immunoblot studies have identified these isoforms in DRG
(272), there is little or no evidence for injury-induced changes in
their expression or function (255).
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Decreased Expression and Therapeutic
Modulation of Kv7.2/7.3 M- Channels
Role of Kv7.2/7.3 in Neuropathic Pain
M-channels are the Kv7.2 and Kv7.3 products of the KCNQ2/3
genes (273). They are activated by depolarization in a similar
fashion to delayed rectifiers but do not inactivate over periods of
many minutes. This and the fact that M-channels start to activate
at normal resting potential means that they play an important
role in determining neuronal excitability and accommodation of
firing (274, 275). Whole-cell M-current is reduced in a model
of bone cancer pain (276), selective knockdown of Kv7.2 in
DRG causes hyperalgesia (277) and peripheral nerve injury
induces substantial downregulation of Kv7.2 protein (239). The
observation that the M-channel openers such as flupirtine and
retigabine alleviate hyperalgesia in several rodent pain models
(239, 278, 279) initiated considerable interest in the potential
therapeutic use of this type of drug (280–285).

Pharmacological Manipulation of Kv7.2/7.3
Although a clinical study of retigabine in post herpetic neuralgia
failed to meet its efficacy endpoint (68), at least 200 Kv activators
are currently under development (285). It has also been observed
that the natural products, mallotoxin (MTX) and isovaleric acid
(IVA), act synergistically to open neuronal KCNQ channels. This
combination has been shown to suppress pentylenetetrazole-
induced tonic seizures in mice but has not yet been examined in
pain models (71). Similar effects were seen with (E)-2-dodecenal
(E-2-D), a natural product derived from cilantro leaves (72). It
has been suggested that co-administering MTX, IVA or E-2-D
with retigabine may be highly effective in opening of KCNQ2/3
channels (71) (Table 1).

A novel Kv7.2 activator known as SCR 2682 was described
recently (69). Acute application of SCR 2682 augments M-
currents in DRG neurons and alleviates nerve injury induced
pain in vivo. Both effects are reversed by M-channel inhibitor
XE991. SCR 2682 also increases KCNQ2 mRNA and Kv7.2
protein expression in a rodent model of neuropathic pain (70)
but its exact mechanism of action is yet to be determined.

Kv7 thus retains its potential as a drug target for neuropathic
pain (Table 1); chemical modification of the retigabine structure
may provide new and effective therapeutic agents.

The effects of nerve injury on expression of KCNQ
depend on the actions of inflammatory mediators (286) and/or
inhibition of transcription by repressor element 1-silencing
transcription factor (REST also known as neuron-restrictive
silencing factor, NRSF) (239, 287). Overexpression of REST in
DRG neurons strongly suppresses M-current density, increases
excitability induces mechanical and thermal hyperalgesia (288).
Specific knockout of REST in DRG prevents injury-induced
downregulation of REST target genes and prevents the
development of hyperalgesia in various models of neuropathic
pain; an effect that can be restored by REST overexpression (288).

REST inhibits transcription by recruiting the co-repressor
complexes SIN3A/B and REST corepressor 1; these complexes
modify target gene regions through the action of HDAC1/2,
the histone demethylase LSD1 and the histone methyltransferase

G9a (289, 290). Inhibition or genetic deletion of G9a in DRG
abolishes injury-induced down-regulation of Kv7.2 and reduces
neuropathic hyperalgesia. G9a may have an important role in
K+ channel regulation as it has also been implicated in injury
induced suppression of Kv1.4, Kv4.2, and BK channels (KCa1.1)
(250). Two small molecule inhibitors of G9a are available, namely
BIX01294 and UNC0638, both of which attenuate neuropathic
pain in rodent models (80, 81). Although there is considerable
interest in developing histone methyltranferase inhibitors in
cancer treatment (291), to the best of our knowledge neither
BIX01294 nor UNC0638 have been examined for treatment of
pain in the clinic. Further development of drugs of this type may
lead to new approaches to pain management (Table 1).

Decreased Expression and Therapeutic
Modulation of A-Channels
A-type potassium channels are largely inactivated at the normal
resting potential of DRG neurons and this inactivation must be
removed by hyperpolarization prior to depolarization to effect
channel opening. Once activated, A-channels display profound
and usually rapid inactivation. Despite the rather complex
protocols required to activate A-currents in a voltage-clamp
experiment, A-channels play a role in neuronal activity by
modulating the shape of action potential afterhyperpolarizations,
participating in action potential repolarization (247, 292)
and increasing the latency of depolarization activated action
potentials. There are several different types of A-current
distinguished by their sensitivity to the channel blocker 4-
aminopyridine (4-AP) and by their rate of inactivation. Nerve
injury, including diabetic neuropathy decreases whole-cell A-
current in DRG neurons (237, 238, 254, 293, 294). This reflects
altered functionality of Kv1.4, Kv3.4, and Kv4’s, which are the
dominant A-current types in DRG (28, 244). A-channels seem
especially sensitive to changes induced in models of diabetic
neuropathy (254).

Role of Kv1.4 in Neuropathic Pain
mRNA for Kv1.4 is downregulated in several models of
neuropathic pain, including a model of diabetic neuropathy (238,
250, 254, 255). Knockdown of Kv1.4 with siRNA causes allodynia
(295) and miR-17-92 overexpression downregulates A-channels
and promotes hyperalgesia (296). The molecular mechanism of
altered Kv1.4 expression is similar to that for Kv7.2 described
above (250). This means that the effectiveness of G9a inhibitors
in inhibiting neuropathic pain (80, 81) may involve preservation
of function of both Kv7.2 and Kv1.4 after injury (Table 1).

Role of Kv3.4 in Neuropathic Pain
Kv3.4 are high threshold A-channels that are particularly sensitive
to 4-AP block. Nerve injury decreases expression of Kv3.4
immunoreactivity (297) and mRNA is reduced in a model of
diabetic neuropathy (254). Kv3.4 antisense produces mechanical
hypersensitivity (297). It has also been reported that injury to
the spinal cord per se causes Kv3.4 dysfunction in DRG (298).
This may reflect the action of excitatory mediators released
from the spinal site of injury. This raises the possibility that
therapeutic control of DRG function may not only be beneficial
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for peripheral neuropathy, it may also have benefit for managing
pain originating from spinal cord injury.

Role of Kv4.1, 4.2, and 4.3 in Neuropathic Pain
Immunoreactivity and/or mRNA for all three Kv4 channels is
found in DRG neurons (28, 255, 294, 297, 299) with differences
in their distribution across different neuronal types (300, 301).
Decreased function of all Kv4 channels occurs after peripheral
nerve injury (75, 244, 254, 293, 297, 299, 302), and knockdown
of Kv4.1 and its modulatory subunits or antisense to Kv4.3
causes mechanical hypersensitivity (297, 299). Taken together
these observations strongly suggest malfunction of Kv4 channels
in neuropathic pain.

The expression and function of Kv4 channels in DRG is
controlled by signaling pathways such as MAPK (293), Kv4
channel interacting proteins (KChIPs) and dipeptidyl-peptidase-
like proteins (DPPLs) (303–305). The aforementioned neuron
restrictor silencer factor (REST), which controls expression
Kv7.2, also effects suppression of transcription of the Kv4.3 gene
(KCND3) after nerve injury (302).

Pharmacological Manipulation of Kv4
Since no activators of Kv4 channels are available, targeting
accessory subunits of A-channels may provide an alternative
strategy (244). DPPLs and KChIPs not only govern the
biophysical properties of Kv channels. They also impact channel
assembly, channel trafficking to and from the cellular surface, and
targeting of channels to different cellular compartments (304).
The compound NS5806 has been reported to potentiate Kv4
currents in a KChip dependent manner (73, 74) and has recently
been shown to attenuate cold allodynia in a rodent model of
trigeminal neuralgia [(75), Table 1].

Decreased Expression and Therapeutic
Modulation of Ca2+-Sensitive K+ Channels
Ca2+-sensitive K+ channels fall into three broad categories;
KCa1.1, also known as BK or maxi gK,Ca channels which
are high conductance, voltage-sensitive and blocked by low
concentrations of tetraethylammonium; KCa2.1,2.2 and 2.3
which are apamin sensitive, low conductance, and voltage-
independent and KCa3.1 which are intermediate conductance
and clortrimazole sensitive (246). In neurons, these channels
play a major role in the determination of spike width,
repolarization, after hyperpolarization amplitude and duration,
repetitive discharge characteristics, accommodation and overall
excitability. As with other K+ channel types, their potential as
therapeutic targets is limited by their ubiquitous distribution and
function in both excitable and non-excitable tissues (246).

Role of KCa1.1/BK Channels in Neuropathic Pain
BK channels are encoded by the KCNMA1 gene and are present
in all DRG neurons (240, 306–308). Their functional expression
is reduced by peripheral nerve injury (236, 240, 309). This is
associated with decreased expression of KCNMA1 and channel
protein (250, 310). Their involvement in generation of pain is
suggested by the observation that overexpression of BK increases
mechanical threshold in a rodent neuropathic pain model

(311). Also, the KCa1.1. blocker, iberiotoxin reduces mechanical
withdrawal threshold.

Pharmacological Manipulation of KCa1.1/BK
Channels
Intrathecal injection of the KCa1.1 channel opener [1,3-dihydro-
1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-
2H-benzi midazol-2-one] dose-dependently reverses allodynia
and hyperalgesia in nerve-injured rats but had no significant
effect on nociception in control rats (310). This substance is one
of several BK activators available including the highly effective
GoSlo-SR family of anthraquinone analogs (312). Others include
NS1619 (313, 314), NS11021 (315, 316), NS13558 (317), and
12,14-dichlorodehydroabietic acid (diCl-DHAA) (318). Because
these drugs have profound effects on tissues such as cardiac
myocytes and certain smooth muscles, they are unlikely to be of
practical use in pain management.

On the other hand, there is considerable discussion in the
literature relating to the efficacy of cannabinoids in neuropathic
pain (102, 106, 107) and it has been suggested that augmentation
of BK function may contribute to their potential therapeutic
effect (103).

As was described for Kv7.2 and Kv1.4, injury-induced
downregulation of KCNMA1 in DRG is a result of G9a activation
(250). This underlines the potential therapeutic application of
G9a blockers such as BIX01294 and UNC0638 (Table 1).

Role of KCa2.1, 2.2, 2.3, and 3.1 in Neuropathic Pain

and KCa3.1 as a Therapeutic Target
There is little information about the possible role of KCa2
channels in pain but several recent reports have drawn attention
to the possible role of KCa3.1 (Table 1). Although KCa3.1
knockout-mice show increased sensitivity to noxious chemical
stimuli they exhibit normal behavioral responses to acute
nociceptive, persistent inflammatory, and persistent neuropathic
pain (319). Despite this, the KCa3.1 channel opener, ASP0819,
modulates nociceptive processing and in vivo action potential
activity in peripheral nerves in an animal model of fibromyalgia
(320) and preliminary investigation of its action in the clinic have
provided evidence of efficacy with minimal side effects (321).

Decreased Expression and Therapeutic
Modulation of Inwardly Rectifying K+

Channels
Although a variety of two transmembrane domain inwardly-
rectifying K+ channels are found in DRG neurons (28), by far the
most information of relevance to pain mechanism and potential
management relates to findings on the KATP channel; Kir6.2
(243, 322, 323).

Role of Kir6.2/KATP Channels in Neuropathic Pain
KATP channels play an indispensable role in pancreatic insulin
secretion as a result of their inhibition by intracellular ATP and
their activation by ADP (248). Sulphonylurea receptors (SUR or
ATP binding cassettes) co-assemble with channel proteins (324).
KATP channel activation can be achieved by the anti-hypertensive
agents, diazoxide and pinacidil and their anti-nociceptive actions
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have been recognized for many years (325). Nerve injury reduces
KATP currents and channel activity in DRG neurons (323, 326)
and although there are several reports of the efficacy of KATP

openers in neuropathic pain models (76–79), these findings do
not appear to have been exploited in the clinic.

Decreased Expression and Therapeutic
Modulation Tandem Pore Domain K+

Channels
Downregulation of TRESK, TASK3, and TWIK1 by

Nerve Injury and Relevance to Neuropathic Pain
Four transmembrane-domain tandem pore domain (K2p)
channels account for K+ leak conductance and set the
resting membrane potential of most excitable cells including
DRG neurons (28, 249, 327). TRESK (k2p18) channels seem
particularly important in this regard (328). Their potential
relevance to neuropathic pain is supported by the observation
that sciatic nerve transection reduces TRESK/(k2p18)/KCNK18
mRNA to a greater extent than other K2p channels in DRG and
in vivo knock down decreases threshold to painful mechanical
stimuli (329, 330). Other K2P channels such TASK3 (K2p9) and
TWIK1 (K2P1) are also down-regulated by spared nerve injury
(SNI) (331).

Therapeutic Modulation of Tandem Pore Domain K+

Channels
Although activation of K2P channels contributes to the
therapeutic effectiveness of volatile anesthetics such as isoflurane
(327, 332) it is obviously impractical to use these drugs for
long term painmanagement. The novel TREK2/K2p10.1 activator
GI-530159 decreases DRG excitability (333), but its possible
effectiveness in pain models has not yet been reported.

VOLTAGE-GATED Ca2+ CHANNELS

Voltage-gated Ca2+ channels (VGCCs) have been studied for
more than 20 years as potential therapeutic targets for chronic
pain (93, 334, 335). They are subdivided into high-voltage
activated (HVA) L-types (Cav1.1, Cav1.2, Cav1.3, and Cav1.4),
P/Q-type (Cav2.1), N-type (Cav2.2), and R-type (Cav2.3) and
low voltage activated (LVA) T-types (Cav3.1, Cav3.2, Cav3.3)
(93, 336, 337). The distribution of channels in DRG muscle
afferents is Cav2.2 (N-type) > Cav2.1 (P/Q-type) > Cav1.2 (L-
type) (338). There is little or no evidence for the expression of
Cav1.1, Cav1.3, and Cav1.4 in DRG as these are found mainly
in heart, skeletal muscle, endocrine cells, smooth muscle and the
vestibular system (93, 336). R-type Cav2.3 and P/Q type Cav2.1
also appear to be absent from DRG (338).

VGCC set DRG neuron excitability either by generating
voltage-gated inward currents or by producing outward currents
following the activation of Ca2+ sensitive K+ channels (236).
Influx of Ca2+ through HVA channels triggers release of
excitatory neurotransmitters from presynaptic vesicles and
thereby determines dorsal horn excitability. The role of VGCC
in neuropathic pain and pain therapeutics in general is well-
established (24, 93, 236, 339–344). This is underlined by the

therapeutic effectiveness of the N-type Ca2+ channel blocker
ziconotide (339), the established use of gabapentinoids which
bind to the α2δ-1 regulatory subunit of HVA Ca2+ channels
(3, 345, 346) and the observation that N-type VGCC knockout
mice exhibit reduced signs of both inflammatory and neuropathic
pain (347). The α2δ-1 subunit plays a major role in the expression
and function of VGCC (346, 348) and α2δ-1 gene deletion
delays mechanical hypersensitivity in response to peripheral
nerve damage (349).

Since VGCC are responsible for triggering release of
neurotransmitter, blocking, or genetically deleting these channels
in peripheral neurons reduces synaptic input to the spinal cord
(93) and ω-conotoxin GVIA reduces synaptic potentials in the
spinal cord (350).

Early experimental investigations of the effects of nerve
injury on VGCC function were completed some years before
the establishment of formal structural and genetic definitions
of channel subtypes. Axotomy or chronic constriction injury
reduced function of HVA channels in the cell bodies of DRG
neurons (236, 342, 351) and there was no preferential loss of N-
type vs. L-type channels (236). As with Na+ and K+ channels,
the structural and genetic definition of VGCC subtypes (336) has
refined descriptions of injury induced changes and enabled the
logical development of current and potential therapeutic agents
(93, 335, 339).

Therapeutic Modulation of HVA Ca2+

Channels
L-Type Cav1.2 Channels in Neuropathic Pain
Although these L-type VGCC are present in rodent DRG (338),
gain of function mutations in humans do not express a pain
phenotype (93). On the other hand, following CCI of the sciatic
nerve, the “classical” dihydropyridine, nitrendipine reduces the
frequency of spontaneous EPSC’s in rat lamina II (substantia
gelatinosa) neurons. It also, albeit rather weakly, attenuates
mechanical allodynia. These effects have been attributed to
injury-induced upregulation of α2δ-1 and increased expression
of Cav1.2 after nerve injury (348). Anti-Cav1.2 siRNA or
selective knockdown of Cav1.2 in the spinal dorsal horn
but not in DRG has been shown to reverse the nerve
injury associated mechanical hypersensitivity of dorsal horn
neurons. This implies that postsynaptic effects such as CREB
phosphorylation in the spinal dorsal horn may also contribute
to the participation of Cav1.2 in neuropathic pain (352, 353).
It may relate to the finding that α2δ-1 remodels Cav1.2
voltage sensors and allows Ca2+ influx at physiological resting
potentials (354).

Pharmacological Manipulation of L-Type Cav1.2

Channels
Since we could only find one very old report of clinical
effectiveness of classical dihydropyridine, nifedipine in complex
regional pain syndrome (355), it is presently assumed that L-
type Ca2+ channels play a far smaller role in the etiology
of neuropathic pain than N- or T-types (see below). This
position may however need revision in the light of recent
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descriptions of prevalent nifedipine sensitive channels in human
DRG neurons (356).

Some novel benzodiazepines exhibit selective T-channel block
(357) whereas others block both Cav1.2 L-type and Cav3.2 T-type
calcium channels (358). To the best of knowledge there are no
reports of the effectiveness of these agents in the clinic.

Role of Cav2 Channels in Neuropathic Pain
Cav2 channels are the main subtype found in primary afferent
terminals (93, 359). Cav2.1 (N-type) and Cav2.2 (P/Q type)
both contain a synaptic protein interaction site (synprint) that
interacts with SNARE proteins (syntaxin and SNAP-25) (360,
361). By this mechanism, channels can be closely associated
with synaptic vesicles that govern release of neurotransmitter
from primary afferent terminals. Although suppression of N-
type Ca2+ channel current increases the excitability of DRG
cell bodies by concomitant decrease of BK function (236,
306), this effect is overridden in vivo by the actions of Cav2
blockers to prevent neurotransmitter release from primary
afferent terminals.

Pharmacological Manipulation of Cav2 Channels
As already mentioned, the Cav2.2 blocker ziconotide which is
a synthetic version of ω-conotoxin MVIIA from the cone snail
Conus magnus (362) is employed in pain management. The main
drawback is that it needs to be delivered directly to the spinal cord
via an intrathecal drug delivery system. Zicononotide (Prialt) is
usually only effective in patients with severe, intractable forms of
chronic pain such as that associated with cancer (82, 363).

There is therefore considerable interest in developing small
molecule blockers of Cav2 channels that may be effective orally
or perhaps by intravenous injection (24, 93, 339, 344). In our
previous review (3) we drew attention to the state-dependent
Cav2 blockers ZC88 (83, 84), A-1264087 (85, 364), and TROX-
1 (86, 87, 365). Although all of these drugs display anti-allodynic
efficacy in rodent models of neuropathic pain (344), there is as
yet no evidence of any clinical efficacy.

Two tetrahydroisoquinoline derivatives have also been shown
to display effectiveness in animal models (366, 367) but again
clinical efficacy has not yet been demonstrated.

A permanently charged cationic derivative of an N-type
calcium channel-blocker was recently synthesized (97). These
authors anticipated that this charged compound (known as
CNCB-2) would only be effective when applied intracellularly
by a mechanism analogous to QX-314 block of Na+ channels
(60). Surprisingly, extracellular application of CNCB-2 was
more effective than intracellular application in inhibiting Cav2.2
channels. Inhibition was achieved without channel opening.
Moreover, and quite unexpectedly, the compound was also
highly effective in inhibiting Nav1.7 when applied extracellularly.
CNCB-2 reduced excitability of mouse DRG neurons and
produced long lasting analgesia in several pain models. Given
the seminal role of Nav1.7 in the etiology of many forms
of neuropathic pain (8, 114), bifunctional compounds such
as CNCB-2, show considerable promise as therapeutic agents
(Table 1).

Cav2.2 interacts with collapsin response mediator protein 2
(CRMP2) which directs the channels to presynaptic terminals
(368). Interestingly it has been reported that impairment of
CRMP2 function using a homopolyarginine (R9)-conjugated
CBD3-A6K peptide inhibits Cav2.2-CRMP2 interaction,
diminishes surface expression of Cav2.2 and alleviates tactile
allodynia and ongoing pain in a rodent model (369). This
observation suggests that CRMP2 may be developed as a novel
therapeutic target.

N-type Ca2+ channels are modulated by Gi/o coupled agonists
(157, 370). The α2-adrenoceptor agonist, clonidine displays anti-
allodynic actions in a rodent model (371) and meta-analysis of
clinical trials reveals clinical efficacy (372). Effects of clonidine
may bemediated by α2-adrenergic inhibition of neurotransmitter
release leading to modulation of pain processing at the spinal
level (5) and/or by attenuation of aberrant interactions between
sympathetic and sensory nerves in the periphery (156, 157, 373).
Its effectiveness is however limited to subsets of patients within
the diabetic neuropathy, complex regional pain syndrome or
postherpetic neuralgia cohorts (88–92). In view of the restricted
effectiveness of clonidine, it does not meet the criteria for first line
treatment of neuropathic pain (1) (Table 1).

Gabapentinoids on the other hand are relatively but not
completely effective in a variety of manifestations of neuropathic
pain; about 31% of patients see clear benefit (96). Their
mechanism is still incompletely understood but clearly involves
impediment of transport of Cav2 channels to nerve terminals
and their uncoupling from the neurotransmitter release process
following interaction with their α2δ-1 accessory subunits (3, 94,
374). This occurs in both primary afferents and dorsal horn (95).
Apart from the introduction of pregabalin (375) and an enacarbil
derivative of gabapentin with improved oral bioavailability (376),
there have been no major developments in the pharmacology
of α2δ-1 ligands since their introduction in the 1990’s. Since
gabapentinoids act intracellularly, we have suggested that their
effectiveness may be increased by allowing them to enter neurons
via the open pore of TRPV1 channels (377).

Since Cav2.2 channels are found in pancreatic β-cells and
are involved in the secretion of insulin (378) it remains to
be established whether Cav2.2 blockers have undesirable effects
on blood glucose levels. On the other hand, Cav2.2 has been
implicated in microglial function (379, 380). This raises the
possibility that some of the beneficial effects of Cav2.2 blockers
result from actions on microglia.

Therapeutic Modulation of LVA Ca2+

Channels (T-Channels)
Role of Cav3.2 in Neuropathic Pain
T-type, LVA, Ca2+ channels (Cav3.1, Cav3.2, Cav3.3) play
important roles in setting neuronal excitability (93, 336, 381) and
in transmitter release from primary afferent terminals (382, 383).
As with Cav2 channels, this later functionmay involve interaction
of Cav3 channels with the synaptic vesicle release proteins
syntaxin 1A and SNAP25 (synprint) (384). DRG neurons express
Cav3.2 and 3.3 but not 3.1 (385–387). T-type calcium currents are
increased in rodent DRG neurons after peripheral nerve injury in
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a model of diabetic neuropathy and after injury to the spinal cord
per se (383, 388–390).

Although there are no reported mutations of Cav3.2 that
produce a painful phenotype in humans, most of the work
relevant to pain mechanisms has involved this channel as
opposed to Cav3.1 or Cav3.3 (93, 334, 335, 339, 391–393).
Cav3.2 is expressed in low-threshold mechanoreceptors and
conditional knockout of the channel in this neuronal subtype
has implicated Cav3.2 in allodynia linked to neuropathic pain
(394). Several mechanisms control the functional expression of
Cav3.2 channels.

(i) Upregulation of the deubiquitinase, USP5 by the
action of the inflammatory mediator interleukin-1β. This
impairs Cav3.2 ubiquitination thereby protecting it from
proteasomal degradation and prolonging its surface expression
(383, 395, 396). Knockdown of USP5 in vitro increases Cav3.2
ubiquitination and reduces Cav3.2 whole-cell currents and since
impairment of USP5 function in vivo attenuates mechanical
hypersensitivity in both inflammatory and neuropathic mouse
models, this enzyme may represent a future therapeutic target
(335, 383). Progress in this direction involves the observations
that Cav3.2/USP5 interactions are interrupted by the anti-
parasitic agent, suramin and by a TAT-cUBP1-USP5 peptide
and both substances show analgesic activity in neuropathic and
inflammatory pain models (99, 100) (Table 1).

(ii) Glycosylation and enhancement of channel trafficking
in diabetic pain (397, 398). Deglycosylation of Cav3.2 with
neuramidase reverses hyperalgesia in a model of diabetic
neuropathy (398) (Table 1).

(iii) BDNF stimulation of TrkB coupled to PI3K-p38-PKA
signaling in trigeminal neurons (399). Although a range of
small molecule TrkB inhibitors are available (400), the multiple
biological actions of BDNF in the developing and mature
nervous system, preclude the use of these agents in pain
management (401).

(iv) Cav3.2 channels interact with the scaffold protein Rack-
1 [receptor for activated C kinase 1 (402)]. Whole-cell Cav3.2
current and channel expression in the plasma membrane is
reduced when Cav3.2 and Rack-1 are co-expressed in tsA-
201 cells. Molecular interaction between the two proteins
was demonstrated by co-immunoprecipitation. These findings
assume special significance in the light of the suggested role for
Rack-1 in neuropathic pain (403).

Pharmacological Manipulation of Cav3.2
Although T-type Ca2+ channel blockers such as the
anticonvulsant ethosuximide increases withdrawal thresholds
in nerve-injured rats (404), clinical studies of its effectiveness
in pain management have been disappointing (98). A similar
picture emerges for other small molecule blockers of Cav3.2,
most of which showed considerable promise in preclinical
studies yet failed to exert significant effects in cohorts of pain
patients (334).

For example, ABT-639 showed promise in preclinical studies
(405–407) but clinical results have been disappointing (86, 334);
it did not treat pain in patients with diabetic neuropathy (408)
and has now been discontinued.

Also, because TTA-P2 is a highly selective Cav3.2 channel
blocker that has minimal effects on other cation channels, it
is used extensively in laboratory investigations of T-channel
function. Although it is effective in rodent models of chronic
inflammatory pain and diabetic neuropathy (409) we could find
no reports of its efficacy in the clinic.

Similarly, TTA-A2 is used extensively in laboratory
investigations (395) as it has higher affinity for Cav3.2 than
Cav31.1 (410). Although it is effective in rodent models of
irritable bowel syndrome (410), no clinical studies appear to have
been done.

Z944 is another high-affinity T-type channel blocker that is
effective against Cav3.1, Cav3.2, and Cav3.3 with little affinity for
other Ca2+ channel types (411). Its effectiveness in murine pain
models may reflect it actions on spinal and thalamic neurons
(412, 413). So far, the results of phase 1 and phase 2 trials appear
promising (101) (Table 1). Although there does not seem to be
any preclinical information regarding the effectiveness of the N-
(1-benzyl-1H-pyrazol-3-yl)-2-phenylacetamide derivative ACT-
709478 in animal models of neuropathic pain (414), it appears
to be showing promise in phase 2 trials (101) (Table 1).

As already mentioned the has been shown to also selectively
block Cav3.2 (49).

Cannabinoids, which are effective in some neuropathic
pain cases (108, 109), inhibit recombinant human T-type
(Cav 3.1, 3.2) Ca2+ channels (104) and as mentioned above,
augment BK (KCa1.1) currents. Intrathecal injection of the
CB1/CB2 receptor agonist NMP-7 inhibits injury-induced
neuropathic pain in a rodent model. This effect involves
CB2 receptors and Cav3.2 channels (415). To the best of our
knowledge, NMP-7 has not yet progressed to clinical trials
but its preclinical effectiveness led to the development of the
derivative [N-((1-(2-(tertbutylamino)-2-oxoethyl)piperidin-4-
yl)methyl)-9-pentyl-9Hcarbazole-3-carboxamide] (Compound
9) which displays remarkable effectiveness in murine models of
inflammatory and neuropathic pain (105).

HCN-CHANNELS

Role of HCN2 and 3 in Neuropathic Pain
There are 4 isoforms of hyperpolarization-activated cyclic
nucleotide–gated (HCN) channels (416); HCN1, HCN2, HCN3,
and HCN4 coded by HCN1, HCN2, HCN3, and HCN4 genes.
HCN3 are distinguished by their relatively low sensitivity to
intracellular cAMP (416). HCN channels underlie neuronal H-
current (Ih).

Ih is upregulated in DRG after nerve injury (417) where
it drives spontaneous activity (30, 418–421) and increases
transmitter release from primary afferents (422, 423).

Whereas, HCN1 and HCN4 channels are primarily expressed
in cardiac pacemakers, HCN2 channels are mainly expressed in
neurons. They have emerged as a promising peripheral drug
target for neuropathic as well as inflammatory pain (3, 27, 335,
418–420, 424–426).

HCN2 is expressed is expressed in about 50% of small
somatosensory neurons, which are mainly nociceptors. It plays
an important role in the control of firing frequency in
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response to noxious stimuli (420). Indeed deletion of HCN2 in
nociceptive neurons prevents the development of inflammatory
and neuropathic pain (420).

HCN3 is expressed in most DRG neurons and is persistently
activated at their normal resting potential thereby contributing
to membrane resistance. Neurons from HCN3-knockout mice
exhibit increased input resistance and increased excitability, but
experience similar levels of mechanical allodynia and thermal
hyperalgesia to wild-types following nerve injury. This suggests
that HCN3 plays little or no role in processing of neuropathic
pain (427).

Pharmacological Manipulation of HCN
Channels
Ivabradine which blocks HCN1, 2, and 4 (416) is used clinically
to treat chronic angina and heart failure (335). It abrogates
signs of neuropathic pain in animal models through peripheral
action on small sensory neurons (418, 425). The effectiveness
of ivabradine may be in part attributed to its ability to increase
Kv7 channel activity (428) and perhaps actions at the thalamic
level as seen with the classical Ih blocker ZD7288 (429). Although
we found ivabradine administered to nerve injured rats at a
dose that significantly reduced mechanical allodynia was without
noticeable effect on arterial pressure and produced only a 15%
reduction in heart rate, its cardiovascular actions have detracted
from its use as an analgesic agent in the clinic (430).

More recent work has thus focused on the search for selective
HCN2 blockers (431) that may abrogate hyperexcitability of
DRG neurons without affecting the HCN1 channels that are
responsible for controlling cardiac rhythmicity (27). However,
to the best of our knowledge, no small molecule blockers are as
yet available.

DISCUSSION

Unlike morphine for nociceptive pain, there is no equivalent
panacea for neuropathic pain. The well-tried therapeutic
approaches to neuropathic pain (gabapentinoids, tricyclic
antidepressants and serotonin-noradrenaline reuptake
inhibitors) retain their position in the “winners circle” of
effective agents (1, 2). They have not yet been superseded by any
of the treatments or approaches listed herein (223). Although a
variety of therapeutic approaches have been mentioned above,
Table 1 lists only those compounds that show considerable
promise as therapeutic agents.

In the final section of the review, we suggest future
considerations and refinements that may enable the further
development and usage of peripherally-acting drugs as possible
therapeutic approaches to pain management.

Use and Structural Refinement of
Promising Candidate Molecules
Many drugs that are effective in animal models fail to lead
to useful clinical agents because of dose limiting toxicities,
unfavorable pharmacokinetics or “off target effects.” Some of

these issues can be minimized by chemical modification of safe
pharmacological agents or drug repurposing.

Therapeutic Potential of Na+ Channel Blockers
Several Na+ channel blockers show promise as therapeutic agents
or as lead compounds for structural refinements (Table 1).

The first is the Nav1.7 blocker, vixotrigine (CNV1014802,
BIIB074, or GSK-1014802) (184, 185). The outcomes of a
phase III clinical trial for effectiveness in trigeminal neuralgia
(NCT03637387) and phase II trial for small fiber neuropathy are
eagerly awaited (47).

The Nav1.7 blocker PF-05089771 failed to meet defined
efficacy criteria in patients with painful diabetic peripheral
neuropathy (46). Since its use in clinical trials would have been
contingent on establishment of safety for use in humans, it may
serve as a safe lead compound for the development of more
effective agents.

Certain natural toxins, notably those from various types of
tarantula venom show selectivity and high affinity for Nav1.7
as well as analgesic effects in various pain models. One of the
most promising agents is Tap1a as this interacts with both
Nav1.7 and the T-type Ca2+ channel, Cav3.2 (49, 50). Recent
studies of Tap1a have shown that it interacts with voltage-sensor
domain II of Nav channels with nanomolar affinity. Structural
modification of Tap1a has produced two peptides Tap1a-OPT1
and Tap1a-OPT2 that exhibit increased affinity for Nav1.1,
Nav1.2, Nav1.3, Nav1.6, and Nav1.7. Intraplantar injection of
Tap1a-OPT1 reduces Nav1.7/OD1-induced spontaneous pain
behaviors in a murine model. Moreover the anti-nociceptive
effect of Tap1a-OPT1 is significantly greater than the native
peptide (50).

Although the selective Nav1.8 blockers A803467 and PF-
01247324 attenuate allodynia in a rodent model (221, 222), they
have not yet been examined in the clinic (223). The pro-drug VX-
150 is metabolized into a highly selective Nav1.8 blocker which
exhibits analgesic activity in healthy volunteers (57). Expression
of Nav1.8 in peptidergic DRG neurons is controlled by NGF (215)
and the NGF binding antibody tanezumab is effective in various
pain states (58). In fact, its safety and efficacy in humans identifies
tanezumab as one of more the promising new drug candidates for
chronic and neuropathic pain (see Clinical Trials Government
Identifiers: NCT02528188 and NCT02528188). Small molecule
peripherally acting TrkA inhibitors have recently been described
(432, 433).

We have also described the idea of combining cationic local
anesthetics with TRPV 1 activators (60, 61, 233), although this
seems to work well in animal models, this approach has not yet
been demonstrated in a clinical situation.

Therapeutic Potential of K+ Channel Activators
Although a clinical study of retigabine in post herpetic neuralgia
failed to meet its efficacy endpoint (68), there is considerable
interest in its structure as template for ligand-based drug design
of Kv7.2/3 activators (434); at least 200 Kv activators are currently
under development (285). Certain natural products augment Kv

currents and it has been suggested that these might augment
retigabine effectiveness (71).
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The sulphonylurea compound NS5806 which augments Kv4.3
type A-currents in animal models (75) is yet to be examined in
the clinic.

A phase 2a clinical trial of the KCa3.1 channel opener,
ASP0819 for fibromyalgia (NCT03056690), has provided
evidence of efficacy with minimal side effects (321). As
mentioned above, little, or no success has been realized with
other direct activators of Kv1, 2, 3 or 4 or KCa1 or 2.

Therapeutic Potential of Ca2+ Channel Blockers
N-type Cav2 channels have been recognized as targets for anti-
allodynic drugs for many years. The limitations to the use
of the channel blocker ziconotide and the α2-adrenoceptor
ligand clonidine have already been alluded to (363). Although
gabapentinoids interact indirectly with Cav2 via their α2δ-
1 subunits they are neither universally effective or without
undesirable adverse effects (96). As mentioned above, a few small
molecule Cav2 blockers are in development but none have as yet
been tested in a clinical situation. The compound CNCB-2 is of
special interest as it blocks both Cav2.2 and Nav1.7 channels (97).

The potential role of Cav3 in neuropathic pain was established
about 12 years ago (389, 413, 435) but the classical Cav3 blocker
ethosuximide displays only limited effectiveness in the clinic (98).
In the interim, several small molecule blockers have appeared
such as TTA-P2 and TTA-A2 which are highly selective for
Cav3.2. Clinical studies are yet to be initiated or reported. By
contrast, phase 1 and 2 clinical studies with two compounds
Z944 and ACT-70948 have yielded promising results (101).
Interest in cannabinoid modulation of Cav3.1 and 3.2 has led to
development of a series of small molecule channel blockers such
as “compound 9,” although it is remarkably effective in preclinical
studies clinical studies are yet to be initiated (105).

Improve Assessment of “Pain” as Opposed
to Nociception in Rodent Models
Preclinical effectiveness of therapeutic intervention in
neuropathic pain is often assessed by examination of drugs’
ability to attenuate behavioral indices of pain induced by surgical
or chemical lesions to peripheral nerves of experimental animals
(436, 437). Typical measurements involve examination of
mechanical or thermal withdrawal thresholds or presence of
hyperalgesia and or touch or cold-induced pain (mechanical or
thermal allodynia). It may be argued however that withdrawal
of a foot or limb in response to a noxious stimulus may simply
reflect activation of a spinal reflex (438). The inability to
measure “pain” per se with both its nociceptive and emotional
comments may underlie the limited ability of rodent models to
predict clinical efficacy (68, 171, 439). In an attempt to assess
true pain and its attenuation in rodent models, more recent
non-invasive models for assessment of chronic pain involve
quantification of indices such as facial grimace score as well
as observation of social interaction and nest-building (Turner
et al., 2019; Sotocinal et al., 2011) (437). This is complemented
by the use operant models such as conditioned place preference
protocols. In one version of this, rodents are required to make a
conscious choice between being in a pain-inducing environment
and an otherwise undesirable environment such as a brightly

illuminated space (3, 440–442). The time spent in the undesirable
brightly illuminated environment gives an index of the pain the
animal is experiencing.

Translation between animal observations and development of
effective human therapeutics may thus be improved by the use of
these operant and non-invasive protocols.

Think About Sex
Women are more prone than men to develop neuropathic
pain (12, 443–446). A recent genome wide association study
revealed that 123 single nucleotide polymorphisms (SNP) at five
independent loci were significantly associated with chronic pain
in men whereas in women, 286 genome-wide SNPs were found
at 10 independent loci (447). Gene-level analyses revealed sex-
specific associations with chronic pain with 31 genes associated
in females, 37 genes associated in males, and a single gene, DCC,
which codes for the netrin 1 receptor associated in both sexes.
Interestingly, all 37 chronic pain associated genes in men and
30/31 genes in women were found to be expressed in DRG
(447). These findings match the documented, robust differences
that exist in the genetic, molecular, cellular and systems-level
mechanisms of acute and chronic pain processing that occur in
male vs. female rodents and humans (12, 444, 446, 448–450).
This means that preclinical studies previously done exclusively
on male rodents need to be repeated in females. This is especially
the case in the pain field because sexual convergence onto shared
behavioral endpoints, such as allodynia or pain sensitivity, may
also mask sex differences in underlying molecular and cellular
mechanisms (448).

Among the cellular mechanisms so far identified, it has
been reported that spinal microglia activation is required for
injury-induced hypersensitivity in males whereas activation and
invasion of adaptive immune cells such as T-lymphocytes is
required in females (451, 452). Macrophage invasion of DRG is
predominant in males and not in females (453) and nociception
is regulated by spinal serotonin and noradrenaline in male but
not in female mice (454). It has also recently been shown that
ex vivo treatment of live human organ donor spinal cord tissue
with BDNF downregulates markers of inhibition and upregulates
markers of facilitated excitation in dorsal horn neurons from
males but not females (455). Lastly, administration of IL-23
(Interleukin 23) produces mechanical allodynia in female but
not male mice and chemotherapy-induced mechanical pain is
selectively impaired in female mice lacking IL-23 or its cognate
receptor. (456). These authors have suggested that the difference
in response may be attributed to the function of sex hormones
as IL-23-induced pain is suppressed by androgen and promoted
by estrogen.

In the peripheral nervous system, blockade of Nav1.8 channels
with A-803467 or Cav2.3 with SNX-482 is more effective in
females than in males in various models of neuropathic pain
(457, 458).

The realization that different mechanisms are engaged to
generate pain in males vs. females has obvious therapeutic
implications. If spinal serotonin and noradrenaline attenuate
pain in male rather than female rodents (454), might SNRI’s such
as duloxetine and venlafaxine work better inmen than in women?
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As already mentioned the Nav1.8 channel blocker A-803467
works better in woman than in men (457).The importance of the
incorporation of sex as a variable in future studies cannot be over
emphasized (447, 459).

Recognize Differences in Pain Etiology
(Quantitative Sensory Testing and the
Personalized Medicine Approach)
Patients with neuropathic pain are heterogeneous in
pathophysiology, etiology and clinical presentation (460).
Neuropathic pain can result from sources as varied as nerve
compression, channelopathy, autoimmune disease, infection,
disease or chemotherapy-induced neuropathy and the response
of each individual is determined by a multiplicity of factors such
as inherited genetic variants, sex, neonatal injury or maternal
separation, age, ethnicity, intestinal microbiome, personality
variables, and environmental factors (444, 461–467).

There are numerous examples of cellular mechanisms that
may contribute to these differences. For example, adult pain
responses are primed by neonatal pain experience and this is
maintained by central neuroimmune activity (463). A-channels
and HCN channels may be especially affected in diabetic
neuropathy (26, 254); might A-current activators and HCN
blockers be especially useful in this situation? Nav1.7 is found in
both sensory and sympathetic nerve fibers, might Nav1.7 blockers
be especially useful in complex regional pain syndromes? By
contrast, in animal studies Nav1.7 does not appear to be involved
in oxaliplatin-induced painful neuropathy (123) yet does appear
to be involved in that seen with paclitaxel (154). Does this mean
that Nav1.7 blockers might only be effective in subgroups of
patients with chemotherapy induced neuropathy (CIPN)?

Perturbations of Nav1.6 functionmay contribute to trigeminal
neuralgia (141), might Nav1.6 blockers be of special value in this
situation? Beyond the peripheral nervous system, the neuronal
subtypes in the dorsal horn that are involved in generation of
mechanical allodynia is defined by the nature of peripheral nerve
injury (468). This likely relates to the observation that CCI of
the sciatic nerve produces transient allodynia in animal models
whereas that produced by SNI is persistent (469, 470).

In the clinic, various subtypes of neuropathic pain may
be identified using quantitative sensory testing (QST). This
involves formalization and quantification of an existing battery
of neurological tests, such as response to von Frey filaments,
vibration, heat, pressure and cold as well as dynamic allodynia
and wind-up ratio (460, 471). Findings are compared with
large datasets that represent normal responses to sensory
tests. Neuropathic pain patients can then be grouped into
clusters based on their sensory profiles and that this may
have a role in determining treatment (472, 473). Three distinct
subgroups with characteristic sensory profiles have already been
identified in patients with peripheral neuropathic pain (460).
Cluster 1 showed a loss of small and large fiber function in
combination with paradoxical heat sensations. Cluster 2 was
characterized by preserved sensory functions in combination
with heat and cold hyperalgesia and mild dynamic mechanical
allodynia and Cluster 3 was characterized by a loss of small fiber
function in combination with pinprick hyperalgesia and dynamic

mechanical allodynia. The validity of QST is supported by the
observation that post-hoc analysis of responders to treatments
in clinical trials suggest that clinical effectiveness may cluster
according to pain phenotype (472).

In view of this, can signs and symptoms observed in each
individual patient in the clinic be traced back to underlying
pathophysiology? This would permit a “personalized medicine
approach” that would dictate the most appropriate therapeutic
approach (437, 474, 475). Such an approach may necessitate
better “harmonization” between preclinical studies and clinical
observations. Thus, while studying chemotherapy-induced pain
in rodents may be an appropriate model for understanding CIPN
in the clinic, it is less clear how classical rodent pain models
such as SNI or CCI relate to the multiplicity of chronic pain
presentations in the clinic (437).

Target the Genetic and Biochemical
Mechanisms That Control Channel
Expression
As mentioned in the introduction, peripheral nerve injury or
neuropathy is associated with the generation and release of a
variety of inflammatory mediators (17–20). These mediators
generally increase Na+, Ca2+ and HCN channel function and
attenuate K+ channel function (8, 24, 27, 28, 114) thereby
promoting the increase in primary afferent excitability which
is crucial for the onset of and persistence of neuropathic pain
(11, 12, 29–35). Despite the careful documentation of changes
in peripheral ion channels associated with neuropathic pain,
clinical results with K+ channel activators and novel Na+ or Ca2+

channel blockers have met with limited success.
One possible solution is to target the processes which

control the function of multiple channel types. We have
already mentioned the role of the histone methyltransferase
G9a in controlling the expression of Kv7.2, Kv1.4, and KCa1.1
[(250), Table 1]. A G9a inhibitor, vorinostat is available for
the management of cutaneous T-cell lymphoma. Perhaps
repurposing this clinically-approved drug may lead to effective
pain treatments.

The MNK-eIF4E signaling axis represents another potential
drug target (110). These authors showed that a single
phosphorylation site on S209 of the mRNA 5 cap-binding
protein eIF4E is a critical mechanism for changes in nociceptor
excitably. This is brought about by activation of mechanistic
target of rapamycin (mTOR) and mitogen-activated protein
kinases (MAPK) 1&2 which are downstream effectors of pro-
nociceptive agents such as NGF (215) and IL-6 (476). MAPK
1 & 2 act through MAPK-interacting kinases (MNK) 1 &
2 and co-operates with mTOR to activate specific mRNA’s.
Nociceptor sensitization and pain behaviors are attenuated in
neurons from eIF4E (S209A) mice where serine 209 is replaced
by alanine,Mnk1/2 knockout mice and by the MNK1/2 inhibitor
cercosporamide. These findings underline the idea that pathways
that regulate mRNA translation are key factors in changes in
injury-induces nociceptor excitability and in the maintenance
and/or onset of neuropathic pain These findings beg the question
of whether cercosporamide, which is already used to treat and
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control pain in rheumatoid arthritis (477) may also be useful in
other forms neuropathic pain (Table 1).

Use the Right Combination
Combination therapy is a useful therapeutic technique that
maximizes drug effects whilst limiting untoward effects. The
use of low doses of two drugs that have different and
possible synergistic mechanisms lessens their dose limiting
side effects (478). A good example comes from the field
of cardiovascular pharmacology. Both thiazide diuretics and
angiotensin converting enzyme (ACE) inhibitors are useful in the
management of hypertension. The combination of low doses of
these drugs limits side effects. In this case, thiazides tend to lower
blood K+ whereas ACE inhibitors tend to elevate it. In this case,
the combination of drugs limits perturbation of blood K+ levels.

Combination therapy has been employed in painmanagement
for many years (478), and in several cases increased therapeutic
effects have been achieved using “add on” therapies which are not
always based on rational application of known drug mechanisms.
One logically derived combination therapy is the combination
of opioids and Nav1.7 blockers (172) as endogenous opioids
appear to be involved in their action (51, 52, 171). To best of
our knowledge this type of drug combination has not yet been
examined in the clinic.

Use Human Nerves
Several recent reviews have commented on the slow translation
between animal studies and the development of new therapeutic
agents for use in the clinic (48, 475, 479). This reflects the
self-evident differences between the human and rodent nervous
systems (480). It is already known that both rodent and human
and nociceptors are more heterogeneous at a molecular level than
previously appreciated, and although there are broad similarities
between human and rodent nociceptors there are also important
differences involving ion channel function, expression, and
cellular excitability (356, 479). For example, murine SCN11A
which codes for Nav1.9 is only 75% identical to the human
gene (114). Differences in channel structure between humans
and rodents may result in differences in pharmacology. Drugs
identified to work well in rodent models may be less effective
in humans.

Up until recently there were few feasible methodologies
available for study of human nerves. However, recent advances
in technology and methodology have increased the feasibility of
human studies (356, 479). For example, nociceptor morphology
can be observed using biopsy samples (481) and cultured
human nociceptors (482). Acutely-isolated human DRG’s have
been obtained from donors undergoing surgical treatment that
required ligation of spinal nerve roots for spinal reconstruction
or to facilitate tumor resection (12) or from organ donors (356).

Amongst other differences, this has revealed that most human
DRG neurons exhibit TRPV1 receptor channels whereas in
rats, it is nearly exclusively expressed in peptidergic nociceptors
(483). There are also pronounced differences between HVA Ca2+

currents in human DRG compared to rats. Thus, in human
DRG, Ca2+ current density is significantly smaller, kinetics of
activation, inactivation, and deactivation are slower but the
proportion of nifedipine-sensitive currents is far greater (356).

Perhaps this relates to the report that nifedipine may be effective
in management of complex regional pain syndrome (355). A
further difference between human and rat DRG neurons is
that a subpopulation of human neurons display relatively large
constitutive Ca2+ current inhibition as demonstrated by paired
pulse facilitation in the absence of agonist (356).

The issue of limited availability of human DRG is also being
addressed using human induced pluripotent stem cells (hiPSC)
and differentiating them in into nociceptive sensory neurons
(54, 165, 484–486). This type of system has the advantage of
scalability (generation of large numbers of cells), investigation of
multiple tissue types (generation of glial and immunocompetent
cells) (487) and the application of high throughput technologies
such as screening of small molecule therapeutic agents and gene
therapy approaches to nociceptor function (488).

Microneurography which allows in vivo recording of
nociceptor axonal electrical activity in humans has been
available for many years (489). Technological improvements
have shown that the specific C-fiber subpopulation affected
(mechanoinsensitive vs. non-mechanoceptive) depends on the
source of neuropathic pain and the type of neuropathy (479, 490)
Modern microneurography approaches will thus play a role
in the application of personalized medicine approaches to
individual patients.

Find a CRISPR Solution
There is considerable interest in the application of molecular
biological approaches such as use of CRISPR (clustered regularly
interspaced short palindromic repeats) technology for the
management of neuropathic pain. For example, McDermott
et al. (54) used CRISPR technology to edit a Nav1.7 mutation
to restore the pain phenotype in hiPSCs from patients with
congenital insensitivity to pain (CIP). As already mentioned
Moreno et al. (55) recently targeted Nav1.7 using CRISPR-
dCas9 technology by using a novel approach that prevented
expression of Nav1.7 by editing a regulatory sequence. These
authors suggested that this “LATER” (long-lasting analgesia via
targeted in vivo epigenetic repression) technology might have
therapeutic potential in management of persistent pain states,
including primary erythromelalgia or paroxysmal extreme pain
disorder. The feasibility of this type of approach has recently been
reviewed (491, 492).
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