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Abstract

The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an
outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms
and extrinsic information shape different stages of cortical development [1]. Yet, whereas the intrinsic program of early
neocortical developmental events has been at least in part decoded [2], the exact nature and impact of extrinsic signaling
are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of
spontaneous retinal activity (retinal waves-RWs) during embryonic stages increase the rate of corticogenesis (cell cycle
withdrawal). Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a
later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating
cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue
mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating
neurogenesis in other developing sensory pathways or areas of the central nervous system.
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Introduction

Spontaneous activity (SA) influences critical developmental

events in different neuronal developing circuits such as the retina,

the cochlea, the spinal cord and other brain structures [3,4]. In

particular, developing sensory organs, prior to acquiring the

capability to transform physical stimuli in patterns of neuronal

activity, generate bursts of action potentials that convey key

information for sensory circuitry assembly [5]. Connectivity

among relaying neurons from the periphery to the cortex provides

the scaffold necessary to transfer the coordinated cues that shape

the sensory systems as a whole [6]. In early postnatal life the visual

system retinal SA (i.e. retinal waves; RWs [7] is essential for

segregation and refinement of retinotopic maps in subcortical and

cortical targets and is necessary for the development of various

receptive field properties [5,8]. However, the role of RWs during

embryonic stages of visual system development at the time when

connectivity emerges between the retina, the thalamus, and the

cortex is unknown. Cholinergic RWs initiate in the mouse retina

around embryonic day 16 (E16) [9], and disappear around the

time of eye-opening [5]. Cholinergic retinal waves (sometimes

called Stage 2) start at P1 and end at P10. Later in development

(P10–P13, Stage 3), waves are mediated by a glutamatergic circuit

and are not affected by nAChR antagonists. Earlier in develop-

ment (Stage 1), waves are partially mediated by cholinergic

transmission, thus blocking nAChRs inhibits but not the retinal

waves [5,9,10]. Remarkably, RWs are transmitted to the cortex

and drive early patterns of spontaneous activity (spindle burst) in

neonatal V1 cortex in rats [11,12].

The onset of RWs in mice and other species [4,5] correlates

spatially and temporally with three processes of visual system

development, i) targeting of the main retinal output to the dorsal

Lateral Geniculate Nuclei (dLGN) [13], ii) invasion of the sub-

plate (SP) of the developing cortex by ingrowing dLGN thalamic

axons [14], and iii) peak of layer IV neurogenesis [15]. Are these

correlated spatio-temporal events also causally linked? Here, we

set out to explore whether spontaneous activity arising from the

embryonic retina and propagating along the nascent visual

pathways connection contains long-distance information capable

of modulating cell genesis in the developing visual cortex.

Materials and Methods

Animal procedures
Animal studies were performed in accordance with experimen-

tal protocols approved by Institutional Animal Care and Use

(IACUC); ethics committee/institutional review board: Diparti-

mento Sanità Pubblica Veterinaria Dir. Gen. della Sanità Animale

e del Farmaco Veterinario, Ufficio VI Benessere Animale

Ministero della Salute (Ministry of Health). Approval ID:

A3442, entitled: ‘‘Terapia genica di malattie retiniche in
modelli animali’’ Application date 05-17-2007.

Fetal intravitreal injections of 0.3 ml of epibatidine (1 mM,

Sigma, St. Louis, Mo., USA), forskolin (10 mM, Sigma, St. Louis,

Mo., USA), NKH477 (10 mM, water soluble analogous of

Forskolin, Tocris, UK), PBS (vehicle for epibatidine) or DMSO

100% (vehicle for forskolin) were performed with pregnant

C57BL6 N on embryonic day late E15.5. Embryonic day 0.5

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e15211



(E0.5) corresponded to midday of the day of the vaginal plug. Ex-

utero surgery was performed as described previously [16]. To

determine the position of the micropipette tip and accuracy of the

injections, the drugs or vehicles were combined with 0.025% (w/v)

fast green (Sigma, St. Louis, Mo., USA). Monocular enucleation

(ME) was performed by first inserting a micropipette in the

developing eye in order to favor the holding and then the removal

of the eyeball by tweezers. Four hours after the closure of the

abdominal wall, BrdU 50 mg/kg was administered. Twenty-four

hours or 4 days after drug delivery, cervical dislocation was used to

sacrify the mothers for prenatal and P0 studies. Cholera Toxin B –

Alexa Fluor 594 (0.3 ml; Molecular Probes) of a 2 mg/ml solution

in PBS was injected, concomitantly to epibatidine (1 mM) into the

fetal eyes with the same procedures described.

Immunohistochemistry
Immunohistochemical analyses were performed as described

previously [1]. Briefly, frozen sections 12 mm were boiled in

10 mM sodium citrate, pH 6.0, and blocked in 10% normal goat

serum (NGS, sigma) and 0.3% Triton for 1 hr at room

temperature. Incubation with primary antibodies was performed

at 4uC overnight. Secondary antibodies were applied to the

sections for 2 hr at room temperature. The primary antibodies

utilized were as follows: rat anti-Ki67 (1:50, DAKO), mouse anti-

BrdU (1:300, Sigma) and anti-NF (165 KDa; 1:100 DSHB).

Secondary antibodies were conjugates of Alexa Fluor 488, 594

(1:1000, Invitrogen). Finally, slices were washed and mounted in

Vectashield with DAPI (49,69 – diamidino-2-phenylindole) (Vect-

stain), which was used as nuclear counterstaining.

RNA in situ hybridization
In situ hybridization was performed on sectioned brains, which

were cryoprotected by treatment with 30% sucrose in PBS and

embedded in optimal cutting temperature compound (OCT;

Miles, Elkhart, IN). Twenty-micrometer adjacent sections were

hybridized overnight at 65uC with the Rorb digoxigenin-labeled

sense and antisense riboprobes [1]. The Rorb probes (kindly

provided by Dr. M. Studer) were obtained by linearizing the

plasmid containing the Rorb coding sequence transcribed with

either T7 RNA polymerase (antisense probe) or T3 RNA

polymerase (sense probe) [17].

Quantification and statistical analysis
In the immunostaining experiments, the fluorescence cells were

acquired with a light-sensitive charge-coupled device (CCD) digital

camera DFC350 FX (Leica, Germany). At least 3 images for

specimen were taken on serial adjacent sections. To quantify

fluorescence cells, the counts were done in blind. All the data were

analyzed and graphs were constructed using Microsoft Excel

software. Error bars represent the standard error of the mean

(s.e.m.). Statistical significance was determined using two-tailed

Student’s t-tests, two samples equal variants.

Results and Discussion

To perturb stage I cholinergic RWs, we used a pharmacological

paradigm [18]. We injected murine fetuses monocularly at E15.5

[16] with epibatidine (nicotinic acetylcholine receptor, nAChR

agonist; 1 mM) to inhibit RWs firing pattern. To study the rate of

neurogenesis of visual cortical progenitors [19] we counted the

fraction of cells that had exited the cell cycle 24 hours after the S-

phase marker 5-bromo-29-deoxyuridine administration (BrdU,

injected 4 hours after fetal surgery; Fig. 1, supplementary Fig. S1

and supplementary video S1). We performed a double staining

BrdU and Ki67 (Fig. 1a), a marker expressed in all dividing cells,

and quantified the fraction of cells that left the cell cycle

(immunolabeled BrdU+/Ki672 cells) relative to all BrdU

incorporating cells [19] (BrdU+, Ki672 and BrdU+, Ki67+) in

the occipital neocortex (i.e. the presumptive developing primary

visual cortex) at E16.5 (Fig. 1a, b). At this stage, in mice the

majority of retinal ganglion cells (RGCs) crosses the midline,

projecting contralaterally [13]. Hence, the effect of drug-treatment

is mirrored into the opposite brain hemisphere, whereas the

ipsilateral cortices to the injected eye represent an internal control

(untreated eye) (Fig. 1a, b). In addition, administration of BrdU in

untreated animals at E15.5 and analyzed at P8 (when the various

cortical layers occupy their final position) confirmed that the

cortical neurons perturbed in our experimental setting belonged

mainly to layer IV (Fig. 2; n = 3).

Ocular epibatidine administration resulted in a significant 45%

increase of cell cycle withdrawal (neurogenesis) in the cortices

when compared to the internal opposite cortices (Fig. 1e; n = 6

animals). In addition, neurogenesis in the presumptive somato-

sensory area (S1) was equally distributed in both hemispheres

(Fig. 1e) in treated groups, suggesting the specificity of the

perturbation in V1. Injection of drug vehicle in the same litters did

not show any differences (Fig. 1e; PBS n = 4 animals). These

changes were not influenced by cell death, as assessed by TUNEL

staining (data not shown). Stage I waves also have a Gap junction-

mediated component refractory to pharmacologic cholinergic

perturbation [9] and in addition, it has been observed that

intraocular injection of epibatidine perturbs but does not block

cholinergic-driven waves completely [20]. We thus performed

acute monocular enucleation (ME) experiments to silence both

components completely. E15.5 embryos were monocularly

enucleated (ME) in utero (Fig. 1c, d, n = 4) and after 4 hours BrdU

was administered. Similarly to epibatidine-treated animals

24 hours after ME (E 16.5) cortices contralateral to the enucleated

eyes showed a 41% increase of neurogenesis restricted to V1

developing cortex compared to untreated animals (Fig. 1e).

Cholera toxin tracing and neurofilament staining showed that

connectivity of the retinogeniculate afferent and the geniculocor-

tical radiation, respectively, are established at E16 and that

treatments did not result in any apparent anomalies of these

pathways as well as in the dLGN (Figs. 3 and 4). Although we did

not directly measure the spontaneous firing characteristics

resulting by epibatidine perturbation, these results allow inferring

that the observed effect on cortical-neurogenesis by epibatidine

treatment is owed to a complete and exclusive blockade of

propagating cholinergic waves. However, considering that ME is a

non-selective perturbation, we cannot rule out the possibility that

distinct molecular cues may contribute to this phenomenon.

As a further support to the electrical nature of the signaling

incoming from the retina to the developing dividing cortical

neuroblasts, we injected murine fetuses monocularly at E15.5 with

forskolin (cAMP activator; 10 mM), which has shown to increase

the size, speed, and frequency of postnatal stage II cholinergic

RWs firing pattern [21] driving an increased occurrence of

spontaneous bursts in V1 [11,12]. Although the effects of forskolin

on Stage 1 waves are unknown, its presumptive increase of firing

pattern in the developing retina, may complement the epibatidine

experiment, further supporting the hypothesis that spontaneous

activity drives the V1 effect observed. Strikingly, forskolin

treatment was associated with a significant 40% decrease of newly

born neurons (Fig. 5). Forskolin treatment alters cAMP levels,

which is involved in many cellular processes. However, further

studies are necessary to exclude that forskolin perturbs complex

signaling besides activity [22]. Nonetheless, the biological
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Figure 1. Inhibition of fetal retinal spontaneous activity and Monocular Enucleation (ME) increases corticogenesis. (a) Schematic
representation of the intraocular pharmacological injection to evaluate the effect of the treatment on the contralateral (treated) compared to ipsi-
lateral (untreated) developing visual (V1) or somatosensory cortex (S1). The intravitreal (I.V.) injection of epibatidine or monocular enucleation (ME)
were performed at E15.5 (supplementary video S1, Figure 1) and BrdU was intraperitoneally (I.P.) administered 4 h later. (b and d) Representative
images of Ki67 (green, left panels), BrdU (red, middle panels) and merged labelling (right panels) in contra-lateral (top) and ipsi-lateral (bottom)
cortices after epibatidine treatment (b) or ME (d) of E16.5 embryos. Cells withdrawn from the cell cycle are BrdU+/Ki672. Cells re-entering the cell
cycle are BrdU+/Ki67+. (c) Representative image of Ki67 (green) BrdU (red) staining of an E16.5 embryonic head monocularly enucleated at E15.5. (e)
Quantification of cell cycle exit rate, reported as the ratio between contra- and ipsi-lateral cortices, in E16.5 embryos upon administration of
epibatidine or ME. Epibatidine treatment or ME (epibatidine n = 6, PBS n = 4 p = 0.0004; ME n = 4, untreated n = 3 p = 0.01, Student’s t-test, two
samples equal variants) increased neurogenesis. None of the treatments resulted in changes of neurogenesis in somatosensory areas (S1, epibatidine
on V1 vs S1 n = 4 p = 0.0033; ME on V1 vs S1 n = 4 p = 0.01, Student’s t-test, two samples equal variants). Abbreviations: CP cortical plate, IZ
intermediate zone, SVZ Sub-ventricular zone, VZ ventricular zone.
doi:10.1371/journal.pone.0015211.g001

Figure 2. Layer-specific corticogenesis in the V1 cortex. Representative images of BrdU staining on P8 visual cortices of untreated mice that
received BrdU injection at E13.5 (left), E15.5 (middle) and E16.5 (right), respectively. The sections were counterstained with DAPI. The cells labeled
(BrdU+) at the time of ocular treatments (E15.5) were mainly located in visual layer IV of terminally layered cortex (P8).
doi:10.1371/journal.pone.0015211.g002
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complementary effect observed with epibatidine treatment sup-

ports a perturbation of the spontaneous firing pattern by forskolin

treatment.

To determine the effects of epibatidine at a later time point, we

used the same protocol (pharmacological perturbation and BrdU

administration) and sacrificed the animals at birth (E19, 4 days

post treatment) (Fig. 6a, b). At this stage layer IV is localized at the

top of the neocortical wall under the pial surface. Consistent with

previous results, treatment with epibatidine resulted in 25%

increase of BrdU+ cells (Fig. 6b, n = 4). Moreover, in P0 occipital

cortices the specific layer IV marker Rorb [23] was more

specifically and intensively expressed in epibatidine treated

animals (Fig. 6c; n = 6).

We found that the developing retina delivers signals to the

cortex that are capable of regulating the very first developmental

event of visual cortical development: cell genesis. This result

suggests that the retina extrinsically coordinates the development

of higher-order centers of visual representation well before visual-

evoked patterns are generated. In addition, although we were

unable to directly measure perturbations of retinal spontaneous

activity, we found that the nature of this long-distance retinal to

cortex signaling is consistent with retinal electrical spontaneous

activity. This is supported by the following converging observa-

tions: i) inhibition of activity by cholinergic specific pharmacolog-

ical blockade, ii) the high temporal resolution (24 hours) of

perturbation of corticogenesis associated with the distance that

needs to be covered (two orders of neurons coupled in series, such

as ganglion and thalamo-cortical cells), and iii) phenotype

complementation upon presumptive increase of activity provided

with the cholinergic activator forskolin. In addition, the ME results

further supports this finding. However, ME is a nonselective

perturbation that may also abolish distinct molecular cues and

may alter the LGN homeostasis (loss of growth factors, for

Figure 3. Timing and connectivity of retino-thalamic and thalamocortical visual pathways are established and not altered 12 h
after ocular drug administration. (a) Representative images of antero-posterior coronal sections of the retina (top), optic chiasm (middle) and
dLGN (bottom) after intraocular injection of Cholera Toxin conjugated with 594- red fluorophore and Epibatidine 1 mM (n = 3). The dye transport
established connectivity between the retina and dLGN at E16. (b) Neurofilament (NF) staining showed an unaltered timing and connectivity of the
thalamo-cortical pathway in E16 treated brains (n = 3 for each group). Abbreviations: dLGN dorsal lateral geniculate nucleus, dTh dorsal thalamus and
NCx neocortex.
doi:10.1371/journal.pone.0015211.g003

Figure 4. Ocular treatments do not impair neurogenesis in
dLGN at E16. Representative images of Ki67 (green), BrdU (red)
staining confirmed the absence of neurogenesis at E16 in the dLGN in
treated animals. DAPI staining did not show structural anomalies in
both contralateral and ipsilateral dLGN to the treated eyes.
doi:10.1371/journal.pone.0015211.g004
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Figure 5. Foskolin treatment to the fetal retina decreases corticogenesis. Intravitreal (I.V.) injection of foskolin at E15.5 and BrdU and
analysis in E16.5 embryos. (a) Representative images of Ki67 (green) and BrdU (red) labelling in contra-lateral and ipsi-lateral cortices after forskolin
treatment. (b) Quantification of cell cycle exit rate, (ratio between contra- and ipsi-lateral cortices), in E16.5 embryos upon administration of forskolin
decreases corticogenesis rate (forskolin n = 5 DMSO n = 6 p = 0.00077, Student’s t-test, two samples equal variants). Abbreviations as for Fig. 1.
doi:10.1371/journal.pone.0015211.g005

Figure 6. Embryonic retinal pharmacologic manipulation modifies cortical layer 4. (a) BrdU+ neurons in P0 cortices treated at E15.5 are
increased in contralateral epibatidine-treated cortices. (b) Quantification of BrdU+ neurons after treatment with epibatidine (V1 vs S1 n = 4,
p = 0.0072, Student’s t-test, two samples equal variants). (c) Rorb in situ hybridization in P0 animals treated at E15.5: layer 4 (IV) expression is increased
in epibatidine treated compared to internal control cortices (ipsilateral; upper panels). Right and left panels represent a higher magnification of
highlighted boxes in the middle panel (n = 6). Abbreviations: AuD auditory cortex, Pt parietal cortex, V1 primary visual cortex, V2L secondary visual
cortex (lateral area), V2M secondary visual cortex (medial area) and WM, white matter.
doi:10.1371/journal.pone.0015211.g006
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instance). Nonetheless, both the converging results provided with

pharmacological manipulations and the acute perturbation

(24 hours, that unlikely can lead to major changes in the dLGN,

as also observed by dLGN analysis) support the role of

spontaneous activity in this phenomenon.

These results are consistent with studies showing a role of local

electrical activity in regulating neurogenesis [24,25]. Considering

that the thalamo-cortical axon terminals invading the intermediate

zone (IZ) and the SP of the developing cortex do not physically

contact the proliferating neurons within the ventricular and

subventricular zones (VZ - SVZ), these results imply that either

directly an electrical field per se or a down-stream molecular

secreted effector may eventually account for the effects on dividing

neuroblasts. There is growing evidence that RWs act in

combination with the expression of molecular cues such as ephrins

[22,26]. Notably, the ephrin/eph family is associated with

corticogenesis [27]. An intriguing hypothesis is that the feature

of spontaneous firing patterns contain key information that

accordingly to their spatial (correlation) and temporal (structure)

properties, activate a different set of genes leading to differential

downstream effects. Future studies will be aimed at unraveling

which are the temporal-spatial characteristics of RWs and their

‘‘instructive’’ or ‘‘permissive’’ interaction with molecular factors

[28,29].

These data show that retinal embryonic waves may represent a

novel and robust extrinsic cue instructive to modulate cortical cell

genesis in those neurons fated to become the main target of the

retino-thalamic input. We conclude and propose that the

embryonic retina through spontaneous activity delivers long-range

information to its foremost distant terminal, the cortex, coupling

the early coordinated development of the visual system as a whole.

Supporting Information

Figure S1 Methodology used for estimating cell cycle
exit rate. Representative ‘‘zoom in view’’ image of Ki67 (green),

BrdU (red) labeling. White arrowheads depict cells withdrawn

from the cell cycle as BrdU+ (red) cells, whereas yellow arrows cells

reentering the cell cycle as BrdU+;Ki67+ (yellow) cells. The

counted cells were used for estimating neurogenesis with the

shown formula.

(TIF)

Video S1 Drug intraocular injection in E15.5 embryos.
Exposed embryos after opening the uterus wall [16]. The needle

tip is black painted enabling to track its exact position during drug

intravitreal instillation. Drugs and vehicles were combined with

0.025% (w/v) fast green to evaluate the accuracy of the injection.

Only mice successfully injected were considered for successive

analysis.
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