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Abstract: Synucleinopathies represent a diverse set of pathologies with significant morbidity and
mortality. In this review, we highlight the surgical management of three synucleinopathies: Parkin-
son’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). After
examining underlying molecular mechanisms and the medical management of these diseases, we ex-
plore the role of deep brain stimulation (DBS) in the treatment of synuclein pathophysiology. Further,
we examine the utility of focused ultrasound (FUS) in the treatment of synucleinopathies such as PD,
including its role in blood–brain barrier (BBB) opening for the delivery of novel drug therapeutics and
gene therapy vectors. We also discuss other recent advances in the surgical management of MSA and
DLB. Together, we give a diverse overview of current techniques in the neurosurgical management of
these pathologies.

Keywords: synucleinopathies; Parkinson’s disease; multiple system atrophy; dementia with Lewy
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1. Introduction

The three members of the α-synucleinopathy family—Parkinson’s disease (PD), multi-
ple system atrophy (MSA), and dementia with Lewy bodies (DLB)—are some of the most
common and costly neurodegenerative diseases affecting neurosurgical patients [1]. Parkin-
son’s disease alone affects more than one million individuals in the United States [1–3]. In
addition to the untold emotional burden, these afflictions place an economic strain upon
the nation currently exceeding USD 50 billion per annum [4]. Considering Parkinson’s
disease alone is projected to double in incidence rate by 2030 due to an aging population, it
is essential to establish optimal management protocols for α-synucleinopathies [5]. In this
regard, we aim to highlight current medical standards of practice as well as the efficacy of
available neurosurgical interventions. Specifically, we will examine the role of deep brain
stimulation (DBS), focused ultrasound (FUS), and recent advancements in the treatment of
synucleinopathies.

1.1. Parkinson’s Disease

With a current incidence rate of 1–2 per 1000 individuals, Parkinson’s disease (PD) is
the second most common neurodegenerative disease following Alzheimer’s disease [5,6].
The prevalence of PD significantly rises with age, increasing more than 5-fold from the
sixth to ninth decades of life [7]. Furthermore, this prevalence is projected to rise drastically
by 2030 due to an aging population, underscoring the necessity of understanding and ad-
vancing its management. Decades of investigation have given way to a current consensus
that attributes PD to a combination of environmental and genetic factors [8]. The patho-
genesis of PD is multifactorial, implicating oxidative stress, altered protein handling, and
environmental mitochondrial toxins [8,9]. Of note to this review, mutations in the SNCA
gene and mitochondrial dysfunction have been shown to result in α-synuclein accumula-
tion [10,11]. In select brain regions in animal models, accumulations of α-synuclein have
been identified to inhibit complex I of the mitochondria [12–14]. Additionally, α-synuclein
toxicity is well supported to play a significant role in the pathogenesis of PD, although
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more evidence regarding the underlying molecular mechanism is needed [15,16]. The
clinical progression of PD is also highly variable among patients [17]. However, the classic
presentation is well documented to include tremors at rest, rigidity, bradykinesia, loss of
postural reflexes, and shuffling gait [18]. Pharmacological management often focuses on
symptomatic treatment, specifically targeting motor disturbances. Levodopa serves as a
standard first-line treatment, functioning to supplement decreased dopamine [19]. Other
dopamine modifying medications include NMDA receptor antagonists, muscarinic recep-
tors, or dopamine receptor agonists. Degradation of dopamine is also targeted through
catechol-O-methyltransferase inhibitors, and monoamine oxidase type B inhibitors [20]. Re-
cently, pimavanserin, an atypical antipsychotic, has been described to reduce psychosis in
PD, allowing for the treatment of some of the psychiatric comorbidities in PD1. Additional
clinical symptoms of PD include disturbances in autonomic function, sleep disruptions,
neuropsychiatric as well as sensory symptoms, and dementia, all of which are also man-
aged pharmacologically with variable success [21–23]. Notably, dopaminergic medications,
particularly at the higher doses required by patients with progressive disease, are associated
with debilitating adverse effects. Unpredictable fluctuations of on and off states as well as
levodopa induced dyskinesias represent significant barriers to effective treatment [24].

1.2. Multiple System Atrophy and Dementia with Lewy Bodies

In the other two diseases of the α-synucleinopathy family, Multiple system atrophy
(MSA) and dementia with Lewy bodies (DLB), age is also the primary risk factor. In MSA,
the annual incidence rate is 3 cases per 100,000 for a population older than 50 years [25].
Similarly, the incidence of DLB peaks in the sixth decade of life and has an incidence rate of
0.87 cases/1000 person-years in the general population [26]. Risk factors for MSA extend
to environmental factors—including exposure to organic solvents, pesticides, metals, and
monomers—and genetic factors—involving impaired variants of the enzyme encoded
by COQ2 [27,28]. General risk factors for DLB include depression, anxiety, low caffeine
intake, and stroke, as well as a genetic predisposition with specific APOE ε4 alleles [29].
MSA is a unique member of the α-synucleinopathy family, as α-synuclein deposits in
oligodendrocytes in lieu of neurons [30]. Consequently, the disease pathology stems from
oligodendrogliopathy with myelin disruption from α-synuclein positive glial cytoplasmic
inclusions (GCI), which leads to axon degeneration and eventual neuron degeneration [28].
Though the exact mechanism of their action is yet unknown, α-synuclein GCIs are required
for the diagnosis of MSA and their density correlates with disease severity [31,32]. Similarly,
though the precise pathogenesis of DLB is unknown, it is theorized to involve several
metabolic pathways that lead to dysfunctions in mitochondria, purine metabolism, protein
synthesis, energy metabolism [33], and α-synuclein deposits in neuronal Lewy bodies [34].
In MSA, nonmotor disruptions (i.e., respiratory, autonomic, and urogenital symptoms)
often manifest first; however, it is commonly diagnosed only after motor dysfunction
occurs [35]. These motor disruptions are sporadic in frequency and parkinsonian in nature,
including many of the hallmark symptoms such as rigidity, bradykinesia, and postural
instability. Furthermore, early autonomic dysfunctions are classic presentation features of
MSA [36]. While the same parkinsonism extends to DLB, visual hallucinations, variable
mental status, and dementia are also common features [37]. Treatment options for MSA
are limited. MSA is characterized by a poor response to dopaminergic therapy, with only
a transient improvement noted in 40% of patients [38]. Alternatively, the disease is often
managed by nonpharmacologic strategies such as a decreased salt intake for orthostatic
hypotension [36]. Conversely, DLB is effectively managed by acetylcholinesterase inhibitors
as a first line treatment and responds well to classic dopaminergic therapy [39].

2. Deep Brain Stimulation (DBS)
2.1. DBS and α-Synuclein in PD

Despite promising pharmacological treatment options, α-synucleinopathies can prove
to be extremely difficult to manage medically. For one, prolonged levodopa treatment is
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associated with significant side effects in PD such as dyskinesias and motor fluctuations
between the on and off state [40]. Unfortunately, due to the progressive nature of the
disease, dose escalation is an eventuality in most patients [41]. Deep brain stimulation
(DBS) offers a promising surgical option where a high frequency electrode is implanted
into a target structure in the basal ganglia or thalamus such as the globus pallidus inter-
nus (GPi), subthalamic nucleus (STN) or ventral intermediate nucleus (VIM) [42]. High
frequency electrical stimulation is then delivered from the DBS electrode to normalize
the pathologically exaggerated basal ganglia bursting activity seen in PD [43]. There is a
potential for significant stimulation induced side effects such as paresthesia, involuntary
motor contractions, speech impairment, and mood changes. To minimize these side effects,
parameters of stimulation such as its amplitude and directionality relative to the DBS elec-
trode are controlled in programming sessions in the weeks following initial implantation.
DBS therapy often leads to significant reduction in medication regimens and significant
prolongation of “on” medication periods. In one meta-analysis of 22 studies, L-dopa regi-
mens were reduced over 50%, with dyskinesias reduced around 70%, and 70% reduction in
“off” periods [44].

Despite the ability of DBS therapy to significantly improve quality of life, it is widely
believed that it cannot stop or reverse the effects of α-synuclein-mediated neurodegen-
eration in PD. In fact, disease progression with loss of dopaminergic neurons is thought
to occur rapidly, within 4 years [45]. Nevertheless, several recent works have expanded
knowledge concerning the effect of DBS on disease progression, though there remains con-
siderable debate as to whether long term DBS stimulation confers a neuroprotective effect.
In one study, rats were induced to overexpress α-synuclein using intranigral injections of an
adeno-associated viral (AAV) vector and were subsequently implanted with STN DBS [46].
Limb use by the animals was observed at baseline as well as after electrode implantation
and after electrode stimulation for a period of 26 days and was compared to mice that were
implanted but did not receive stimulation. Of note, though there was impaired contralateral
limb use following the α-syn vector injection in all rats, there was no difference in limb
use between stimulation and nonstimulation groups. Neurodegenerative changes were
assessed using tyrosine hydroxylase staining (a marker of dopaminergic neurons), which
also did not differ between stimulation and nonstimulation groups. This result suggests
that DBS stimulation does not protect against the impairment nor the neurodegenerative
changes that accompany α-synuclein accumulation [46]. Despite this, another very similar
study using an AAV induced α-synuclein overexpression rat model implanted with STN
DBS reported different findings. In particular, results of this study suggest that motor
performance after 3 weeks of stimulation was significantly improved compared to rats in
the nonstimulation group, even with stimulation turned off during motor testing. Tyrosine
hydroxylase was also significantly increased in the stimulation group [47].

In addition, beta oscillations are a significant pathologic alteration observed in PD
and are linked to some of its symptoms [48]. Recent evidence suggests that STN DBS
suppresses these pathological beta oscillations in an AAV induced α-synuclein overexpres-
sion rat model, even 2 weeks after stimulation [49]. Other studies have also demonstrated
the possible neuroprotective effects of DBS. Specifically, brain derived neurotrophic factor
(BDNF) has come under interest recently for its roles in plasticity, neurogenesis, and neuro-
protection [50]. In one study of rats injected with preformed fibrils of α-synuclein, though
STN DBS did not impact α-synuclein deposition or total BDNF, rats in the stimulation
group displayed restoration of striatal BDNF when compared to those in the nonstimulation
group [51]. Furthermore, DBS may exert a neuroprotective effect through the inhibition of
neuroinflammatory cytokines and pathways [52] and the modulation of synaptic plastic-
ity [53]. Taken together, the findings related to α-synuclein deposition in PD reiterate both
sides of thought related to DBS-induced neuroprotection (Figure 1).
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One central regulator of α-synuclein accumulation is autophagy. Rapamycin, for
instance, stimulates autophagy and improves clearance of α-synuclein [54]. Notably, derail-
ments in α-synuclein and autophagy in the perioperative environment can lead to pathol-
ogy. In turn, an important consideration in the surgical treatment of synucleinopathies is
the effect of anesthetic on α-synuclein, which was explored in a recent preclinical study.
In this study, rats were anesthetized with propofol for 4 h and were assessed for neu-
robehavioral and cognitive deficits and hippocampal α-synuclein deposition. Along with
elevated hippocampal α-synuclein deposition and impaired autophagy, 4 h of propofol
induced worse performance on the Morris water maze test and shorter freezing times in the
freezing conditioning test [55]. These results have important implications in the surgical
management of PD with DBS, where electrode implantation being conducted awake or
under general anesthetic is highly center dependent.

2.2. DBS in DLB and MSA

Despite the abundance of work related to DBS and PD, there is a relative paucity
of evidence regarding the indications and benefits related to DBS use in the remaining
synucleinopathies. The risk of cognitive decline is a central issue in DBS, making preoper-
ative neuropsychiatric evaluation of paramount importance. In one study of 60 patients
treated with STN DBS, executive functioning was significantly reduced when compared
to a control group receiving standard medical therapy but no DBS [56]. Risk factors for
cognitive decline following DBS included age and larger preoperative medication doses.
Given that patients with DLB and MSA are already at significant risk for dysfunctional
cognition, this possible adverse effect should be carefully considered in the context of each
patient being evaluated for DBS therapy. Nevertheless, there has been some investigation
into its use in DLB and MSA. In one randomized, double blind crossover study of 6 DLB
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patients implanted with bilateral nucleus basalis of Meynert (NBM) electrodes, there was
no difference between stimulation and control conditions in a variety of cognitive tasks.
Importantly, the procedure was well-tolerated and there was a positive impact on neu-
ropsychiatric inventory (NPI) scores in that study [57]. However, in another more recent
phase 1 study of six patients with bilateral NBM DBS, some cognitive decline occurred
following electrode implantation [58]. MSA is also thought to be largely unresponsive to
DBS and may be an underlying explanation for why neuromodulation fails in some patients
with PD [59,60]. In one recent systematic review of 12 studies representing 22 patients
with MSA, the majority were treated with bilateral STN electrodes (n = 18) or bilateral
GPi (n = 3) [61]. At a median follow-up of 12 months, though subjective improvements in
bradykinesia, gait, and rigidity were accompanied by a more than 12-point reduction in
UPDRS-III score, a significant 23% of patients displayed neurobehavioral or neurocognitive
side effects following DBS implantation. In MSA patients, who are particularly at risk for
cognitive impairments [62], this represents a significant barrier to the safety and tolerability
of DBS in MSA61. Furthermore, this systematic review also included 12 patients with DLB
treated with bilateral NBM DBS. Again, no significant improvements in quality of life nor
cognitive measurements were appreciated in this study [61]. Taken together, this suggests
that the surgical indications for DBS therapy in MSA and DLB are still poorly understood
and require further investigation.

3. Focused Ultrasound

Focused ultrasound (FUS) therapy is an actively studied alternative to current stan-
dard treatments involving open surgeries [63]. The primary benefit of FUS therapy is its
ability to induce biological effects on deeper target tissue without damaging surrounding
tissues [63]. FUS therapy is achieved using a piezoelectric ultrasound transducer to deliver
a FUS beam and is guided using imaging modalities such as a traditional ultrasound or
Magnetic Resonance Imaging (MRI) [64] to provide simultaneous monitoring of tissue
effects [63]. The FUS beam is steered with precision by mechanically manipulating the
transducer [64], and the spatial specificity of the beam and depth of its effects can be
parametrized by varying the delivered sonication frequency and intensity [65]. At high
intensity, the delivered FUS beam induces two main effects on target tissue: thermoabla-
tion and cavitation. Thermoablation results from tissue absorption of the beam energy,
which rapidly increases the tissue temperature to irreversibly cytotoxic levels [66]. FUS
mechanically induces cavitation, or the creation of gas cavities, in tissue by expanding and
compressing the tissue as it travels through it [66]. These effects are purposely leveraged in
clinical treatments to target varying tissues of interest as an alternative approach to surgery.
Previous research demonstrates the use of FUS thermoablation to treat uterine fibroids [67],
advanced stage renal malignancy [68], and primary bone tumors [69], and thus may offer
a potential alternative to contemporary invasive surgeries. FUS has emerged as a new
modality for treating movement disorders—such as essential tremor and PD—through
noninvasive lesioning. Additionally, FUS therapy does not require hardware placement,
such as an electrode, minimizing the risk of perioperative infection. However, FUS therapy
faces limitations such as attenuation from overlying tissue, sensitivity to patient movement,
possible treatment times of up to several hours, and the fact that lesioning is permanent
and irreversible [64,70].

3.1. FUS and Synuclein

One emerging field of research utilizing FUS therapy involves leveraging cavita-
tion to open the blood–brain barrier (BBB) [71]. The BBB historically has been a major
limiting factor in drug delivery to brain parenchyma [71,72] as it is only permeable to
lipid-soluble molecules smaller than 400 Da [72], which restricts pharmaceutical therapy
options for neurological disorders. However, recent research has shown that FUS cavitation,
in conjunction with localized microbubble injections, has the ability to noninvasively and
reversibly open the BBB at specific targets in vivo, providing the possibility for localized
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drug therapies [71,73]. In a recent phase 1 trial in PD patients, the use of FUS in the
parieto-occipito-temporal junction resulted in no serious adverse effects post-treatment but
exhibited an opening of the BBB, demonstrating the feasibility of this approach to enhance
drug delivery [73]. In another study, FUS cavitation was used to open the BBB in mice
substantia nigra and striatal caudoputamen and was coupled with intravenous adminis-
tration of the potentially neuroprotective and pro-dopaminergic neurturin neurotrophic
factor (NTN). It was demonstrated that, in both targeted locations, NTN was successfully
delivered into brain parenchyma with minimal diffusion to nontargeted areas [71]. Though
NTN bioavailability was assessed, cognitive outcomes were not reported [71]. These drug
delivery results mirror the effects observed in another study that utilized localized FUS to
open BBB to deliver anti-α-syn antibodies in the left hippocampus, caudate putamen, and
substantia nigra of PD-model mice [74]. Importantly, the α-synuclein load was decreased
without impairing neuronal cell count [74]. Another recent study utilized FU to enhance
delivery of copper nanoparticles (Cu-NPs) targeted to open TRPV1 channels [75]. The
opening of TRPV1 channels is proposed to induce a Ca2+-dependent signaling cascade,
culminating in improved phagocytosis and elimination of a-syn. In this study, FU-mediated
delivery of Cu-NPs ameliorated the histopathological alterations in tyrosine hydroxylase,
glial fibrillary acidic protein, and α-syn. Importantly, motor, memory, and anxiety tests
in mice initially worsened by α-syn aggregation were also improved with Cu-NPs [75].
Collectively, these studies demonstrate the ability of FUS cavitation to safely and effectively
disrupt the BBB in vivo to facilitate targeted drug delivery into the brain parenchyma. Thus,
with future research, FUS therapy coupled with localized drug delivery is an optimistic
noninvasive therapeutic option that can be utilized in treating neurodegenerative diseases
such as PD (Figure 2).

Biomedicines 2022, 10, x FOR PEER REVIEW 7 of 13 
 

 
Figure 2. Summary of applications of focused ultrasound to synucleinopathies. Figure created with 
BioRender.com, accessed on 19 September 2022. 

Beyond opening the BBB and facilitating drug delivery, FUS therapy offers potential 
symptomatic management options for treating PD with thermoablation. To date, there are 
three primary approaches of FUS therapy to treat PD symptoms: thalamotomy, subthala-
motomy, and pallidotomy [76]. In one study unilaterally targeting the ventral intermedi-
ate nucleus (VIM) of the thalamus in PD patients with medication-resistant tremor, tremor 
was completely abolished immediately following the treatment [77]. The procedure was 
met with mild transient adverse effects such as headache [77]. Another recent study in-
vestigated the ability of FU therapy to abate parkinsonian symptoms by unilaterally tar-
geting the subthalamic nucleus in PD patients with asymmetric parkinsonism [78]. Here, 
in a cohort of 40 patients treated with FUS or sham procedure of the STN, FUS was deliv-
ered until adequate control of tremor symptoms was achieved. UPDRS III score improved 
by almost 10 points at 4 months in the treatment group, which was significantly different 
from the 1.7-point improvement in the sham group. Specifically, FUS performed well in 
improving rigidity and tremor. Notably, dyskinesia, weakness, and abnormalities in gait 
and speech were common adverse effects. In line with previous reports, there were tran-
sient side effects related to treatment such as headache which resolved within a brief pe-
riod following treatment. Importantly, there were no major cognitive or behavioral com-
plications that developed as a result of thermoablation when measured at 4 months post-
treatment [78]. FUS therapy has also been used for unilateral pallidotomy of the globus 
pallidus internus to improve symptoms in dyskinesia-dominant PD, again associated 
with transient side effects such as minor headache [79]. Overall, these different ap-
proaches utilizing FUS therapy demonstrate consistent findings, in that FUS therapy gen-
erally improves parkinsonian symptoms with only minor transient side effects. Further-
more, all of these approaches highlight the effectiveness of FUS therapy in noninvasively 
improving patient quality of life. 

Figure 2. Summary of applications of focused ultrasound to synucleinopathies. Figure created with
BioRender.com, accessed on 19 September 2022.

BioRender.com


Biomedicines 2022, 10, 2657 7 of 12

Beyond opening the BBB and facilitating drug delivery, FUS therapy offers potential
symptomatic management options for treating PD with thermoablation. To date, there are
three primary approaches of FUS therapy to treat PD symptoms: thalamotomy, subthalam-
otomy, and pallidotomy [76]. In one study unilaterally targeting the ventral intermediate
nucleus (VIM) of the thalamus in PD patients with medication-resistant tremor, tremor was
completely abolished immediately following the treatment [77]. The procedure was met
with mild transient adverse effects such as headache [77]. Another recent study investigated
the ability of FU therapy to abate parkinsonian symptoms by unilaterally targeting the
subthalamic nucleus in PD patients with asymmetric parkinsonism [78]. Here, in a cohort
of 40 patients treated with FUS or sham procedure of the STN, FUS was delivered until
adequate control of tremor symptoms was achieved. UPDRS III score improved by almost
10 points at 4 months in the treatment group, which was significantly different from the
1.7-point improvement in the sham group. Specifically, FUS performed well in improving
rigidity and tremor. Notably, dyskinesia, weakness, and abnormalities in gait and speech
were common adverse effects. In line with previous reports, there were transient side
effects related to treatment such as headache which resolved within a brief period following
treatment. Importantly, there were no major cognitive or behavioral complications that
developed as a result of thermoablation when measured at 4 months post-treatment [78].
FUS therapy has also been used for unilateral pallidotomy of the globus pallidus internus to
improve symptoms in dyskinesia-dominant PD, again associated with transient side effects
such as minor headache [79]. Overall, these different approaches utilizing FUS therapy
demonstrate consistent findings, in that FUS therapy generally improves parkinsonian
symptoms with only minor transient side effects. Furthermore, all of these approaches
highlight the effectiveness of FUS therapy in noninvasively improving patient quality
of life.

3.2. FUS Gene Therapy Approaches

Gene therapy is a therapeutic approach that aims to genetically modify cells through
transcription and/or translation of transferred genetic material and/or integration into host
genomes [80]. With PD, the goal of gene therapy is to treat disease symptoms and, ideally,
to reverse disease progression. Gene therapy has been studied as a potential therapeutic for
PD and other neurodegenerative diseases for years. Trophic factors, such as glial cell line
derived neurotrophic factor (GDNF) and neurturin (NTN) have been explored as potential
agents for PD gene therapy [81,82]. GDNF shows promise as a gene therapy agent due
to its neurotrophic and neuroprotective effects. In primate models, the overexpression
of neuroprotective agents such as GDNF has been demonstrated to decrease symptom
severity and slow PD progression [83]. NTN is a structural and functional analogue of
GDNF that has also demonstrated its ability to improve dopaminergic activity in animal
models of PD [82]. Although preclinical trials provide ample evidence supporting GDNF
and NTN gene therapy for the treatment of PD, clinical trials to date have not proven suc-
cessful [84]. One of the key issues hindering the success of previous clinical trials has been
low volumetric coverage of the gene therapy to targeted areas after direct injection [85].
In the CERE-120 clinical trial, which directly injected NTN into the putamen of study
subjects, histological assessments show that the distribution of NTN was restricted [82].
Implementing FUS along with gene therapy has the potential to eliminate this issue that
direct injection presents. Preclinical studies have used FUS to deliver vectors to specific
animal models with encouraging results [86,87]. Xhima et al., for example, used recombi-
nant adeno associated virus serotype 9 (AAV9) along with FUS to enhance delivery of an
α-synuclein gene silencing short hairpin RNA sequence in mice overexpressing α-synuclein.
FUS was targeted in the hippocampus, substantia nigra, olfactory bulb, and dorsal motor
nucleus of the vagus. Decreased α-synuclein immunoreactivity was reported in these tar-
gets one month after FUS. Importantly, tyrosine hydroxylase (the rate-limiting enzyme in
norepinephrine, epinephrine, and dopamine synthesis) and synaptophysin expression was
not altered in targeted brain regions [86]. Mead et al. used a nanovector, particularly brain



Biomedicines 2022, 10, 2657 8 of 12

penetrating nanoparticles (BPN), along with FUS to promote GDNF transgene expression
in target brain areas of rats. After only one treatment, there were therapeutically relevant
levels of GDNF in targeted brain tissue. Furthermore, these therapeutic levels persisted for
10 weeks [88]. As previously mentioned, another key feature in the pathophysiology of PD
is an elevated state of oxidative stress. The pro-oxidative environment established in PD
potentiates neuronal stress, a pro-death environment, and progression of the disease [89].
In one study, FUS was used to deliver Nrf2, a nuclear factor which promotes downstream
antioxidative elements, into the brains of PD rat models [90]. Though motor and behavioral
outcomes were not measured in this study, Nrf2 expression was significantly elevated
and led to a reduction in the pro-oxidative superoxide dismutase. Taken together, this
suggests that FUS with viral vectors or nanovectors may show promise in developing gene
therapy approaches for patients with PD. However, human evidence is lacking currently
and requires more investigation.

4. Other Approaches in the Management of MSA and DLB

Though surgical interventions are poorly understood in the context of MSA and DLB,
several promising frontiers of treatment have recently come to light. For example, in MSA,
autonomic dysfunction remains a critical issue, characterized by progressive sympathetic
failure, namely in the form of orthostatic hypotension [91]. This orthostatic hypotension can
lead to a number of downstream sequelae, including cerebral hypoperfusion and increased
risk for falls from resulting dizziness [91]. In fact, autonomic dysregulation is a predictor of
worse outcomes in MSA and faster disease progression [92]. One recent study is poised to
target this debilitating comorbidity of MSA [93]. This study describes the implantation of
an epidural thoracic cord stimulator in a 48-year-old woman with progressive sympathetic
dysfunction with resultant orthostatic hypotension. This stimulator is paired with an
accelerometer which detects when the patient stands up and controls the delivery of
stimulation to the thoracic cord. With the stimulator off, an 85 mmHg drop in systolic
blood pressure was observed within 3 min of tilting the patient upright. This is compared
to an 85 mmHg drop in systolic blood pressure occurring over 10 min after the stimulation
was turned on [93]. Though this study lacks the power of a large clinical trial, it represents
a promising treatment option for a very debilitating comorbidity of MSA.

In DLB, pathology stems in part from the deposition of extracellular synuclein, which
leads to dysfunctional synaptic transmission and plasticity [33]. Transcranial direct current
stimulation (tDCS) may play a role in modulating cortical excitability and is thought to
induce changes in synaptic plasticity [94]. One recent double-blind clinical trial tested the
efficacy of 10 days of tDCS sessions in improving the cognitive and psychiatric assessments
of 11 DLB patients versus sham tDCS. Though there were no adverse effects from the
treatment, no significant cognitive or psychiatric differences were found between the
groups [87].

5. Conclusions

In this review, we have described the epidemiology, clinical presentation, molecular
mechanisms, and standard of care for members of the synucleinopathy family of diseases:
PD, MSA, and DLB. We examined the role of DBS in PD, including its potential for sig-
nificant side effects, with special attention towards both how it is affected by and how
it influences synuclein aggregation. Neuroinflammation, oxidative stress, and plasticity
are central concepts in the pathogenesis of synucleinopathies. In PD, DBS may play a
neuroprotective role, but these mechanisms are still poorly understood and require further
investigation, as does the role of DBS in MSA and DLB. Furthermore, we examined the
mechanism of FUS in opening the BBB and enhancing drug delivery, inducing thermoabla-
tion, and delivering gene therapy vectors. In summary, FUS represents a novel treatment
paradigm and a promising area of future study. Finally, though they represent difficult
pathological entities to treat, we further covered some novel treatment strategies for MSA
and DLB.
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